Shock interactions for the Burgers-Hilbert Equation

Alberto Bressan™, Sondre T. Galtung®, Katrin Grunert®, and Khai T. Nguyen(®

() Department of Mathematics, Penn State University,
(2) Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, Trondheim,
(3) Department of Mathematics, North Carolina State University.

E-mails: bressan@math.psu.edu, sondre.galtung@ntnu.no, katrin.grunert@ntnu.no, khai@math.ncsu.edu.

April 5, 2022

Abstract

This paper provides an asymptotic description of a solution to the Burgers-Hilbert
equation in a neighborhood of a point where two shocks interact. The solution is obtained
as the sum of a function with H? regularity away from the shocks plus a corrector term
having an asymptotic behavior like |z|In |z| close to each shock. A key step in the analysis
is the construction of piecewise smooth solutions with a single shock for a general class of
initial data.

1 Introduction

Consider the balance law obtained from Burgers’ equation by adding the Hilbert transform
as a source term

o (£) »

This equation was derived in [1] as a model for nonlinear waves with constant frequency. Here
the nonlocal source term

H[f](z) = sl—i>r(§1+71r/|| f(xy_ 2
y|>e

denotes the Hilbert transform of a function f € L2(R). It is well known [8] that H is a linear
isometry from L?(R) onto itself. Given any initial data

u(0,-) = a(") (1.2)

with 4 € H%(R), the local existence and uniqueness of solutions to (1.1) was proved in [6],
together with a sharp estimate on the time interval where this solution remains smooth. For
a general initial data 4 € L?(R), the global existence of entropy weak solutions to (1.1) was
proved in [3], together with a partial uniqueness result. We remark that the well-posedness of
the Cauchy problem for (1.1) remains a largely open question.



More recently, piecewise continuous solutions with a single shock have been constructed in [4].
As shown in Fig. 1, these solutions have the form

u(t,z) = w(t,z—y(t)) + p(z —y(t)), (1.3)

where y(t) denotes the location of the shock at time ¢, and w(t,-) € H?(] — oo, 0[U]0, 4+00[)
for all ¢ > 0. Moreover, ¢ is a fixed function with compact support, describing the asymptotic
behavior of the solution near the shock. It is smooth outside the origin and satisfies

2
o(z) = —l|z|ln|z| for |z| <1. (1.4)
T

Remarkably, this “corrector term” ¢ is universal, i.e., it does not depend on the particular
solution of (1.1). The same analysis applies to solutions with finitely many, noninteracting
shocks. In addition, the local asymptotic behavior of a solution up to the time when a new
shock is formed was investigated in [9].
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Figure 1: Decomposing a solution in the form (1.3)

The aim of the present note is to describe the asymptotic behavior of a solution in a neigh-
borhood of a point where two shocks interact. Calling T' > 0 the time when the interaction
takes place, our analysis splits into two parts. We first describe the behavior of the solution
as t — T—, i.e. as the two shocks approach each other. In a second step, to construct the
solution for ¢ > T, we solve a Cauchy problem with initial data given at t = T

As it turns out, the profile u(T, -) is not “well prepared”, in the sense that it cannot be written
in the form (1.3). To explain the difficulty, we recall that the solutions constructed in [4] had
initial data of the form

U(O,l') = W(ZC - yO) + (p(l‘ - y0)7 (15)
for some w € H? (R \ {0}) and yg € R. These data are “well prepared”, in the sense that they
already contain the corrector term . A natural class of initial data, not considered in [4], is

u(0,z) = w(x—yo) with we H*(R\{0}), o €R. (1.6)

By assumption, at time ¢ = 0 the derivative u,(0,z) = w,(x — yo) is piecewise continuous
and uniformly bounded. However, in the solution to (1.1), (1.6), at each time ¢ > 0 we expect
that uz(t,z) — +oo as © — y(t)F. For this reason, the local construction of this solution
requires a careful analysis. A more general class of initial data, containing both (1.5) and
(1.6), as well as all profiles u(T,-) emerging from our shock interactions, will be studied in
Section 2.

We recall here the definition of entropy weak solutions used in [3].

Definition 1.1 By an entropy weak solution of (1.1)-(1.2) we mean a function u €
Li ([0,00[ xR) with the following properties.

loc



(i) The map t — u(t,-) is continuous with values in L?(R) and satisfies the initial condition

(1.2).

(i) For any k € R and every nonnegative test function ¢ € C1(]0,00] xR) one has

// [ju—klor + (“2 - k2)sign<u k) + Hu(®)](x)sign(u — k)6 dzdt > 0. (1.7)

The present paper will be concerned with a more regular class of solutions, which are piecewise
continuous and can be determined by integrating along characteristics. These correspond to
the “broad solutions” considered in [2, 7]. Throughout the sequel, the upper dot denotes a
derivative w.r.t. time.

Definition 1.2 An entropy weak solution v = u(t,z) of (1.1)-(1.2), defined on the interval
t € [0,T], will be called a piecewise regular solution if there exist finitely many shock
curves y1(t), . .., yn(t) such that the following holds.

(i) For each t € [0,T], one has u(t,-) € H*(R\ {y1(t),...,yn(t)}).

(i) For each i =1,...,n, the Rankine-Hugoniot conditions hold:

u; (1) = ult,yi(t)—) > ult,y(H)+) = u (1), (1.8)
u. u+
iy = 0T u (1.9

(i1i) Along every characteristic curve t — x(t) such that
i(t) = u(t,z(t)), (1.10)

one has
d
au(t,w(t}) = Hlu](z(t)). (1.11)

In the above setting, the Hilbert transform of the piecewise regular function u(t,-) can be
computed using an integration by parts:

HuOl@) = = [ wlta) e —sldy+ - 30 [uf @) = 0] Info — (o). (112

- i=1

The remainder of the paper is organized as follows. In Section 2 we state a local existence and
uniqueness theorem for solutions to (1.1), valid for a class of initial data containing one single
shock, but more general than in [4]. Towards the proof of Theorem 2.1, Section 3 develops
various a priori estimates, while in Section 4 the local solution is constructed as a limit of a
convergent sequence of approximations. As in [4], these are obtained by iteratively solving a
sequence of linearized problems.

In the second part of the paper we study solutions of (1.1) with two shocks, up to the time of
interaction. In Section 5 we perform some preliminary computations, motivating a particular
form of the corrector term. In Section 6 we state and prove the second main result of the



paper, Theorem 6.1, providing a detailed description of solutions up to the interaction time.
This is achieved by a change of both time and space coordinates, so that the two shocks are
located at the two points

Jfl(t) =t < 0 = xz(t),

and interact at time ¢ = 0. Our analysis shows that, at the interaction time, the solution
profile contains a single shock and lies within the class of initial data covered by Theorem 2.1.
Combining our two theorems, one thus obtains a complete description of the solution to (1.1)
in a neighborhood of the interaction time.

2 Solutions with one shock and general initial data

Consider a piecewise regular solution of the Burgers-Hilbert equation (1.1), with one single
shock. By the Rankine-Hugoniot condition, the location y(t) of the shock at time ¢ satisfies

M ui(t) = lim u(t,a:). (21)

() —
y( ) 2 ’ z—y(t)£

As in [4], we shift the space coordinate, replacing x with = —y(t), so that in the new coordinate
system the shock is always located at the origin. In these new coordinates, (1.1) takes the

form
w+<u—“<”;“ﬂ”>%:=1ﬂm. (2.2)

In [4], given a “well prepared” initial data (1.5), a unique piecewise smooth entropy solution
to (2.2) of the form

2n(x)

™

u(t,z) = w(t,z)+ x| In|z|, t>0

was constructed. Here w(t,-) € H?(R\{0}), while € C*°(R) is an even cut-off function,
satisfying

n(x) =1 if |z| <1,
n(x) = 0 if |z| > 2, (2.3)
n'(z) < 0 if z>0.
For future use, it will be convenient to introduce the function
2
o(.8) = 212 T2l 1 ) In(lz| + b) — bInbd), zeR, b>0. (2.4)
T
Observe that
#(0,b) = 0 for all &> 0. (2.5)

Our main goal in this section is to solve the Cauchy problem for (2.2) with initial data
u(0,z) = w(z)+ p(x), (2.6)

where
w e H*(R\{0}), @) = (e1x gy, @, (27

for some constants c1, ca € R. Note that this reduces to (1.5) in the case ¢; = ¢co = 1.



To handle the more general initial data (2.6)-(2.7), we write the solution of (2.2) in the form
ult,2) = w(t,x) + (), (2.8)

where the corrector term @) (¢, z) now depends explicitly on time ¢ and on the strength of
the jump
W) = w(t) —wh(¢), wr(t) = w(t,0+). (2.9)

To make an appropriate guess for the function (), we observe that, by (1.12), the equation
(2.2) can be approximated by the simpler equation

() +ut(t 1

ut + <u — u()—;—u()) uy = —(ut(t) —u () In|z|. (2.10)
T

Indeed, we expect that the solutions of (2.2) and (2.10) with the same initial data will have

the same asymptotic structure near the origin. Their difference will lie in the more regular
space H%(R\{0}). With this in mind, we thus make the ansatz

W) (t)t
(w) - ). ). , ot
#(t,7) = 6,0+ (e~ 1) x o+ o1 x,,. ) 9 (x e NCREY
Inserting (2.8) into (2.2), we obtain an equation for the remaining component w(¢,-). Namely
w + a(t,z,w) - w, = F(t,z,w), (2.12)

where a and F' are given by

w— (1) + wh (1)

alt,z,w) = w(t,z)+ " (¢, z) — 5 , (2.13)
F(t,z,w) = H [cp(w)} (t,x) — <p(w)<p§:w) (t, ) (2.14)
w wt
+ <H [w] (t,z) — [gogw)(t, x) + <w(t,x) — (t)_g(t)) “ngw) (t,a:)}) .

We observe that, in the present case of a solution with a single shock, by (2.5) the entropy
admissibility condition (1.8) reduces to

w(t) > wh(t). (2.15)

Moreover, Definition 1.2 is satisfied provided that, along every characteristic curve ¢t >
x(t;tg, o) # 0 obtained by solving

(t) = a(t,z,w), z(to) = o, (2.16)

one has

w(to, xo) = E(x(();to,xg)) + /Oto F(t,:v(t;to,xo),w(t,x(t;to,xo))) dt . (2.17)

The first main result of this paper provides the existence and uniqueness of an entropic solution,
locally in time.



Theorem 2.1 For every w € H?*(R\ {0}) satisfying w(0—) — w(0+) > 0 and every c1,
co € R, the Cauchy problem for the Burgers-Hilbert equation (1.1), with initial condition as in
(2.6)-(2.7), admits a unique piecewise regular solution defined for t € [0,T], for some T > 0
sufficiently small, depending only on My, 0y, c1, and co.

The solution to the equivalent equation (2.12) will be obtained as a limit of a sequence of
approximations. Namely, consider a sequence of linear approximations constructed as follows.
As a first step, define

wy(t,x) = w(x) forall t>0, zeR. (2.18)

By induction, let w, be given. We define wy11 to be the solution of the linear, non-
homogeneous Cauchy problem

wy + a(t,z,wy) - w, = F(t,z,w), w(0,-) = w(x). (2.19)

The induction argument requires three steps:

(i) Existence and uniqueness of solutions to each linear problem (2.19).

(ii) A priori bounds on the strong norm ||wy, uniformly valid for ¢ € [0,T] and

alln > 1.

Ol 2@ (03

(iii) Convergence in a weak norm. This will follow from the bound

D Mwat) = waaa @) g ogopy < ©- (2.20)

n>2

These steps will be worked out in the next two sections.

3 Preliminary estimates

To achieve the above steps (i)-(iii), we establish in this section some key estimates on the right
hand side of (2.19), by splitting it into three parts:

F(t,z,w) = AY(t,z) + B®)(t,2) — C™(t,2), (3.1)
where
- +
AW = H o] - g, B™ = Hluw] - (w—w;“’) ¢ (2,0), (3.2)

- (w)
w = [, _ w twh) aOEN (4. 1),
C ©; +<w oz | x, 5 ((cl 1) X]—oo,0[+(02 1) X]0,+oo[)' (3.3)

Consider the function

g(z) = X[o (x) - Pp(x,b), rzeR,b>0, (3.4)

,00]



where ¢(z,b) is given by (2.4). For every b € [0, 4] one checks that the function g, €
C>=(R\{0})NC(R) is negative and decreasing on the open interval |0 1 [. Moreover, it satisfies

’ 2e

1
supp(g») < 10,2], l96(2)] < |zIn|z|| forall z € [0, 26]. (3.5)

The next lemma provides some bounds on the Hilbert transform of g;. As usual, by the
Landau symbol O(1) we shall denote a uniformly bounded quantity.

Lemma 3.1 For every 0 < b < i and |x| < i, one has

d
H[g)(x)] < O(1), s Hlwl@)| < O(1) - In” |z},
(3.6)
d? In |z| d? In|z|
— < . [ < .
)| < o MH| | S| < o[
Moreover, for every § > 0 sufficiently small one has
HH[gb](')HHQ(R\[—d,é]) < O(l)'572/37 HH[g{)]()HH2(R\[_5,5]) < O(l)'577/4' (37)

Proof. Fix b € [0, é] By (1.12), one has

2
H{gy)(x) = ~- /0 g() Iz — y| dy.

3=

Two cases are considered:

1
Case 1: If ~5 < x < 0 then we have the estimates
e

1 2 , 1 2+|x| ,
Hlgp)()] = — /O gp(y) - In(y — x) dy’ = /|| gz +2)Inz dz
2+4|x| %
_ 1./ w@+2) 4l < o). /2 nzldz+1] < 0Q),
T |l z o]
d A 2l gi (@ + 2)
Rl = || < L[
24| < |1
_ 1./ gb(CL‘;—Z)d _ o) (/2 n z| dz—|—1> < O(1) -2,
T |Jal z ol #
and similarly
d? In |z| d? In |z|
—_— < R < .
g Hig)w| < o[ )| < o |2




1
Case 2: If 0 <z < % then we split H[gp](x) into three parts as follows:
e

z/2 3x/2
Hig)(r) = i( [ bt =) dysp [ iy dy>

1 /2 1
+-/ g)In(y —z) dy = = (I + I+ I3).
T J3x/2 ™

We first estimate

z/2 z/2

L) = /0 gz —y) dy| < O1)- /0 g(y) dy|-|ma| < O) 2ln’e,
x/2

] — %) Lo\ m (%) < n?

()| = /O By + 5 E)m(E)| < o) -wre,

and similarly
Inzx Inx

Bl < o[ e < o) |BE

By a similar argument, one obtains

2 /
AN %) 3. (3TN L (® T
|Is(z)] < O(1), ‘]3(1‘)‘ = /zm/zy—x dy+2 gb(2 ln(z) < 0(1) - In”z,
and
2 4 Inzx Inx
e g/gb(y)d+01-_01-,
‘3( )‘ 3x/2(y—$)2 Yy () T () T
2 /
gb(y) Inx Inzx
1 < _9p\Y) I it L
@l < | o o [5] < o |

Finally, using the fact that g; is concave, we obtain

x—€ 3z/2
@] = |m [ g ndy+ [ gl -2y
e=0+ Jz/2 x+e
z/2 z/2
= | lim / [gy(x — 2) + gy(x + 2)] - Inz dz| < 2|gy(z)]- / Inzdz| < O(1),
e—0+ /. e
! . x/2 /" " 1 / /
@] = |t [ =2+ gt 2] made + Slah(e/2) + 630/ Inie/2)
3
z/2
< 0Q1)- (!gg(:c/2)]' / In zdz +ln2x) < O(1)-In®z,
13
and
[IY(z)| < |lim " [ (x = 2) + gy (z + )] In 2dz| + O(1) - nzl o) - Inz
2 = les0+ . b b x| = z |
\IY(z)] < | lim I/Z[ V(@ —2)+ g7 (z + 2)] Inzdz| + O(1) - Inz o) - Inz
2 = oy L b b 2| = 2




We thus achieve the same estimates as in Case 1, and this yields (3.6).

Finally, the function g, is continuous with compact support and smooth outside the origin.
Therefore, the Hilbert transform H[gp] is smooth outside the origin. As |z| — oo, one has

dk
dak
Thus, (3.6) yields (3.7). O

Hlg)(z) = O(1) - 2|7, (Hlg]) (z) = O(1)-a=®*D, k=1,2,3.

Remark 3.1 For every 0 < b < i, one has

D@ = @) —m@)]  forallz> 0.
db T
Since .
lIn(x 4+ b) —In(b)| < 7

1
the same arguments used in the proof of Lemma 3.1 yield that, for 0 < |z| < 20’
e

d B 1 d d [In(x)|
| o @) = 00)- . 21| (Go)| @] = o2
d? d In(x)
@H [(dbgb>] (@) = 01)- b |
Moreover, for § > 0 sufficiently small,
d 1 d 1
HH Lﬂ)gb] ’ < 0(1)- 5 HH [dbgb} < 0Q1)- . 523,
H(R\[-4,8]) H?(R\[-4,6])

The next lemma provides some a priori estimates on the function F' = F(t, z,w) introduced
at (2.14).

Lemma 3.2 Let w: [0,T] x R — R such that w(t,-) € H*(R\{0}) for all t € [0,T],
lwt, Mm@ oy < Mo, o™ () = w(t,0+) —w(t,0-) > 0.

Moreover, assume that 0 < T < and that 0(“’)(~) is locally Lipschitz on |0,T].

4€M0

Then there exists a constant C1 > 0, depending on My, dg, c1, and ca such that, for a.e. t €
[0,T] and |z| < 5=, one has

e’

(W) (¢
’F(tvwi)’ < Cr- ((1+M0) ’ Hnt‘ + ‘O-(w)( ) ’ ’ﬂ) )
ow)(t

(3.8)

)
&)

Furthermore, for every § > 0 sufficiently small

6(1)]
()]

[EF (2, 0)| g2@\-ss)) < C1-

(1 + My + ) 072 (1 + My) - |1n(t)y] . (3.9

9



Proof. According to (3.1), the function F' can be decomposed as the sum of three terms,
which will be estimated separately.

1. By the analysis in [4, Section 3], for every (¢,z) € [0,T] x [—5, 5] one has

|B@(t,z)| < O(1)- Mo,

B (t,2)] < O(1)- My~ | nal?,
(3.10)

| B < O(1)- My - 6723,

()| )

1
2. Next, we estimate C(*)(¢,z). For every 0 < z < 20 We have
e

cW(t,z) = ES() + (ca—1) - [”(w;“)t + (w(t,z) — w(t, 0+))

e (m U(w;(t)t> , (3.11)

where we define

Eéw)(t) - 1 —202 - by (U(w (t)t70> ) (o-_(w)(t)t+o_(w)(t)) ]

Since [|w(t, )|l g2 (m\{03) < Mo, one has lo(@) ()| < 2My,

1— (w)
2C2 " Pr (U 2(t)t’0> -ol)(t)

|C(w)(t,x)‘ < 0(1) ((1 + M) - |Int| + \a(w)(t)| ) ’x|> )

|c™)(t,04)| =

< O(1)- (14 M) |Int], (3.12)

and

o(w) (t)

Moreover, observing that

d(w) U(w)
() = (02_1).;5[( (t)t+(w(t’x)_w(t’0+))>‘% <$ (t)t)]’

xr 2 2
2 | (o) o)
oW (t,2) = (c21>-jx2[< Q“)tﬂw(t,x)w(t,oﬂ))m (:c 2“”)],
(3.13)

we estimate

CQ(EU))(t’m)‘ < 0(1)- <MO ) |x]_1/4-|- m) ’
;) (3.14)
o) < o). <M0+ :Z(w)g;D'|x|_1+|wm(t,x)|']1n|$H].

1
Similarly, for every ~% < x < 0, we have
e

d(w) O_(w)
C)(t,z) = B (t) = (e1 —1)- [ 2(t)t _ twit.2) _w(t,o_))] . (m (t)t)j

10



E%w)(t) - 1 —201 e (U(w)(t)t’0> _ (c'r(w)(t)t—l—O'(w)(t)) ‘

This yields the same bounds as in (3.11)-(3.14). We thus conclude

<M0 + 'd(w)(t>|> Y24 My - |1n(t)y] . (3.15)

= our ()

o

H2(R\[-6,4])

3. Finally, to obtain a bound on A(™) we observe that, by (3.5),

1 1

This leads to the estimates

In|x
o) < 0) - b2, [(6el) | <o) w2 e, [(pel) | <o) |
Thus,
W)+ oW (¢ . 1).5-2/3
EICRESIUS] I O R
1 c@t 1
On the other hand, if 0 < T' < ———, then sup < — and Lemma 3.1 implies for
4€M() t€[0,T 2 2e
all t € [0,7] and |z| < %, that
e
w d w
H (1 ))@)] < 0), | SHEWE)@)| < 01) el (3.16)
LHp @] < o) )| < 067, (3.17)
da? ’ - x| Dl @) T
Therefore, combining (3.10)-(3.17), we obtain (3.8)-(3.9). This completes the proof. O

Our third lemma estimates the change in the function F' = F(t,z,w) as w(-) takes different
values. These estimates will play a key role in the proof of convergence of the approximations
considered at (2.20).

Lemma 3.3 Let w; : [0,T] xR — R, i = 1,2 such that for all t € [0,T], w;(t,-) € H*(R\{0})
and
lwitt.Mieyon < Moo || 2 bo.

Moreover, assume that o) is locally Lipschitz on |0, T] and that there exists a function K(t)
such that
‘d(“’i)(t)‘ < K(t) ae te(0,T).

Set

z=wy—wi, 0@ =0 — o) M) = (|2t )l rgoy), Ma(t) = 1|20 ) 2@ o))

11



Then there exists a constant Co > 0, depending on My, dy, c1, and co such that, for every
z €[5, %] and ae. t €1[0,T)], one has

T2 2e
|F(t,z,ws) — F(t,z,wy)| < Cs- Dd(z)(t)‘ ol + My(t) - (|Int] + K(t))] . (3.18)
Moreover, for every § > 0 sufficiently small, it holds
[H [p2)(t, ) — 1)(757')]“H1(R\[—6,6])+ |52 — B l)HHl(R\[—cS,E]) < Co 511/2 ;

1+ K(t (¢
IF'(t, -, w2) = F(t, - wi) |l g2y -5y < C2- <M2(t>' (‘lnt‘ + 52/3( )> A )|>.

51/2
(3.19)
Proof. 1. For notational convenience, we set
AR = glw2) _ pglwr)  Bk) = glw) _pn) gl = olw) _ olwr),
From [4, Section 3], for every (¢,z) € [0,T] x [—i, é], it holds
. : M (t)
BO)| = 00) Mi(t),  [BOC) sy < OW) sty
Ma(t) (3.20)
. 2
HB( )(t”)HHQ(R\[ﬂS,é]) <o) 52/3 "

1
2. We now provide bounds on C*)(¢,z). By (3.11)-(3.13), for every 0 < z < 5 One has
e

5G|

K(t)x = Moz + M3 +1
% "

z+ My (t) - ( 52 5 +|Int|+ ‘w1/2lnw|>] )

0
(3.21)

|ICB(t,2)] < O(1) [

16 (1)] N (K(t) M0> ot (t)] + |2(t, ) — 2(t,0+)]

50 N X

(2) .

xz

+%WM<MW+$+%”

EARAG] K(t) My M (t) 1
<0(1) 5 < 7T 50) M)+~ + |zt @) <|ln(t)| 5 +M0>] ,
(3.22)
&) zz(t, @ z(t,x) — z(t,
mg@mgom{M?umﬂmwomm+é+M0+!@)ulﬁ)ﬁ@oﬂl

o) <|w1,m(t,x)y K@) fwialto)] | [wltr) - wl(t,o+)\> }

do 62 dox dox?
‘d(Z)(t)| li(t)l‘jl(t) lljl(t)lkjo 1
< . M -
o(1) { ( 5 + 52 + 5 + Ma(t) T

+ 22 (t, )] - (Iln(t)\ + 510 + Mo> + |01 g (t, )| - M(t) } (3.23)

12



For every —5= < x < 0, by a similar argument, we obtain the same bounds as in (3.21)-(3.23).
Therefore

; My+1 K\ |6®()]
HC( )(t’)HHl(R\{O}) < O(l) ’ (Ml(t) : (’hlt} + %O + > + (50 5

&
) My+1 K\ 1 EARAG]
[CO ) sy < OW- (0 |t + (Z5=+ 5 ) - 7] + ).

3
(3.24)

3. To achieve bound on A®) | for 0 < 2 < i we compute

() (¢
[ el) — | < o). ’050( 1 e < o) T3 -[en |
@) () M (t
g
(st — o) | < o) I OL e < o) 250y
T 0 0
@) |zl Mi(t) |In|z|
(ws) (w2) _ (w) (wr) < 01 o . < o). 21
‘(so Pz ey )m < 0(1) 5 | = o) % .
This yields
(wa) ,(W2) _ (wy), (w1) . Mi(t)
ittt = et N R
(w2) (w2)_ (wl) (wl) < 1 Ml(t) . —2/3
it — et waesy - OW e 0T

On the other hand, for 0 < z < 2—16 we observe that

O.(wz) U(wl)
o) (tx) — @ (tz) = (cp—1)- [¢ (m 2(15)15) 4 (x 2(t)t>]

-1 L (wi) (£)t @) ()t
_ 622 (/0 qbb(x,a 2() —i—T'U 2()>d7'>'(7(z)(t)t

_ el (fd =)
- o ( /0 o, (2) d7> o) (), (3.25)
(wn) (2)
with b, = Z Q(t)t yr.7 Q(t)t. Thus, by Remark 3.1 it follows
My(t
B0 - )] @) < o TR
iH [SD(wQ)(t ) — et )} (z)| < O@1) M(t) In |||
dx ’ ’ — 50 )
and .
(w2) (4 ) — plwn) (4. . s
[ o) = ]| Ly S OO M)

[ [¢2) ) = ot ]|

H2R\[-6,0) %

13



1
Similarly, one gets the same estimate for 5 < x < 0. Therefore (3.2) yields
e

1
|AB)(t, )] < o). M), ’Agf)(t,a;)‘ < O(l)-Ml(t)-il “’x”,
(5() 50
M (t)
() (¢, - it 2
AP @)1z ssy = O 5 (3.26)
M(t) ._
() (¢, . LY 523
AP E N o5y = OO) 5 0"
Finally, combining the estimates (3.20)-(3.26), we obtain (3.18)-(3.19). O

4 Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1 by constructing a solution to the Cauchy
problem (2.2) with general initial data of the form (2.6)-(2.7), locally in time. This solution
will be obtained as limit of a Cauchy sequence of approximate solutions wy (¢, z), following
the steps (i)—(iii) outlined at the end of Section 2.

Step 1. Consider any initial profile w € H?(R\{0}). Let 8, Mo > 0 be the constants defined

by the identities
_ _ _ My
wW(O-) ~WO0+) = 60, [Wlareyon = - (41)

Given two constants c1, ca € R, the corresponding initial data of the form (2.6)-(2.7) is
u0.0) = o)+ (X g er g ) 00000
Moreover, let w,, : [0,7] x R — R be a function such that
[wn(t,08) ~TOL)] < G lwalt Mgy < Mor L[0T (42)

Set 0y, (t) = wy,(t,0—)—wy(t,0+). Asin (2.11), the correction term associated to w,, is denoted
by

eult.) = o0+ (- 1) x _y+(e-1ox,, )0 <;,; "“;t)t) L @3)

In this step, we will establish the existence and uniqueness of solutions to the linear problem
(2.19).

We begin by observing that the speed of all characteristics for (2.19) is

o (t T(t
an(t,z) = a(t,z,wy) = on(t,z) +wy(t,z) — w”()—;w"U,
where @, (t,z) = @Wn)(t,z), the correction term associated to w,. From (4.3) and (4.2) it
follows that ¢ (t,0) = 0 and

=400 < an(t,0+) = — < — 20, 200 < an(t,0—) = Jn;t) < 4do.
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1

Furthermore, for any given (t,z) € [0,T]x |0, 5;], we estimate, using (3.5),

2(2 + 1
2+ leablein]

lan(t, ) — an(t,04)] <

/0 s (£, 9)]dy

2(2 1 z 1/2
< 2Rl i ([MunstnPar) < el M)V
0

Similarly, we also have

lan(t, ) — an(t,0=)] < (2+|c1]| + Mo) - /]z], (t,x) € [0,T] x [—216,0[.

In particular, setting

1 8o 2 1
5 o= - < —. 4.4
Py (4—|—|cl|+|02|+M0> = 16 (44)
we have
_550 < an(tvx) < - 507 (t,flf) S [OaT}X ]07261]7
(4.5)
do < ap(t,z) < 5do, (t,z) € [0,T] x [-201,0[.
Next, choose
0<T<min5—li (4.6)
1050 2¢e |’ '
and denote by ¢ — x(t;to, zg) the solution to the Cauchy problem
o(t) = an(t,z(t)),  x(to) = o (4.7)
By (4.5) it follows
50(t0 - t) < |:L‘(t; to,l’o) — l’0| < 550(t0 — t), |l’0| < 51, 0 <t< to < T. (4.8)

The next lemma provides the Lipschitz continuous dependence of the characteristic curves
considered at (4.7).

Lemma 4.1 Let wy, vn, be as in (4.2)-(4.3). Then there exists a constant K1 > 0, depending
on My, 0o, c1, and ca, such that, for any x1, zo € [—01,0[ or x1, z2 €]0,01], one has

}m(t;T,mg)—m(t;T,ml)‘ < Ky - |ze — x4, forall 0<t<7t<T. (4.9)

Proof. We shall prove (4.9) for x1,x9 € [—01,0[, the other case being entirely similar. For
any —d01 < z1 < z9 < 0, it holds

|an(t7 22) - an(t7 Zl)’

IN

|wn(t7 22) *wn(t,21)| +
4—1—2‘61‘ (
i

Pults 22) = pnlt, )]

IN

|:M0—|— 1—|—‘ln|22||)] '|ZQ—21|.

Therefore, from (4.8), it follows

n 4—|—2|Cl| )
dt T

and this yields (4.9). O

i|$(t; T, x9) —x(t; T,l‘l)’ < [Mo (1+ ’ In |6o(T — t)H)] . ‘CL‘(t;’T, xg)—x(t;T,x1)|,
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From (4.5), by the same arguments as in [4, Lemma 4.1], one obtains:

Lemma 4.2 Let wy, ¢, be as in (4.2)-(4.3). There exists T > 0 sufficiently small, depending
only on My, &, c1, c2, such that, for every T € [0,T] and any solution v of the linear equation

v+ an(t,x) v, =0, v(0,) = v € H*(R\[-8o7,007]),

one has
3 9]
2

[v(T,°) ”H2 (R\{O}) = H? (R\[—éor,ém}) )

Step 2. Consider a sequence of approximate solutions w®) to (2.19), inductively defined as
follows.

o w(t,) = w(:) forall t > 0.
e For every k > 1, w V(¢ ) solves the linear equation
wy + an(ta x) Wy = F(k)(t7$)7 ’U}(O, ) = w()

with F®*) (t,z)=F (t, x, w(k)). Equivalently, w**1) satisfies the integral identiies

to
Wt (b0, 20) = w(alOsto, ) + [ POt a(tito,z0))dt. (4.10)
0

The following lemma provides a priori estimates on w®), uniformly valid for all k > 1.

Lemma 4.3 Let wy, ¢n be as in (4.2)-(4.3). Then there exists T > 0 sufficiently small,
depending only on My, do, c1, c2, and satisfying (4.6) so that the following holds. For every
k>1 and a.e. 7 € [0,T], one has

)w(k)(T,Oi)—w(Oi)‘ < &, (4.11)

‘zﬂk)(f)) < 4Cy(1+ M) - |In7], (4.12)
(k) (. <

Hw (, )HH2(R\{O}) < Moy, (4.13)

for some constant C1 > 0.

Proof. 1. It is clear that (4.11)-(4.13) hold for £ = 1. By induction, assume that (4.11) holds
for a given k > 1. By the assumptions (4.1) and (4.11), for all 7 € [0, 7] one obtains
d® (1) > wW(O0-) - wW(O0+) — |w®(r,04) - w(o+>) - ‘w(k) (r,0-) —w(0-)| > 46p.

For a fixed 7 € [0,T], let 2% : [0,7] ~ R be the characteristics which reach the origin at
time 7, from the left and the right, respectively. Recalling (4.10), (3.8), (4.1), and (4.8), we

16



estimate

wk D (7, 0+) —E(Oi)) < IW(:L'*(O)) —E(Oi)‘ N /T ‘F(k)(t,xi(t))‘ dt
0

IN

|o®)(2)]
< 3MyboT + 01(1 + Mo) . /T (1 + 501(7’ - t)) . ‘ln(t”dt
0

T 5(k) (¢
3MydoT + C / ((1 + Mp) - |Int| + |Z(k)( ) ‘xi(t)o dt
0

< O(1)-(1+ M) - |In(r)|-7 < O1)- (1 + M) - |In(T)| - T

and this shows that w1 satisfies (4.11), provided that T > 0 is chosen sufficiently small,
depending only on Mjy, dg, c1, and co.

2. For any 7 € [0,7] and —6; < Ty < Z1 < 0, consider the characteristics
t— xi(t) = z(t;7,71), t — xao(t) = x(t;7,T2).
Using (4.10), (4.9), (3.8), (4.11), and (4.8), we estimate
[ (7, 23) = 0t (7, 21)|

< ‘@(mz(())) — @(1‘1(0))’ + /OT ‘F(k)(t, xg(t)) — F(k) (75,1'1 (t))‘dt

IN

T (k) (¢
MoK - |Z2 — 1| + C4 / (1+ M) - ]:cl(t)|_1/4 + o) aa(t) — 1 (t)|dt
0 ak)(t)

MoK, - <1+O(1)- <1+ A;) : [(%)UZ ‘T?;T‘D N2 — 7.

Therefore, choosing T' > 0 sufficiently small, we obtain

IA

‘w;’fﬂ)(ﬂx)’ < 3MyK; for all 7 € [0,T],z € [—01,0]. (4.14)

An entirely similar estimate holds for 7 € [0, 7],z €]0, 61].

3. Next, given any 0 < 7 < 7 < T, denote by t — x(t) = z(t;7;,0%) the characteristic

i
which reaches the origin at time 7;, from the positive or negative side, respectively. Recalling
(4.9)-(4.11), (3.8), and (4.14), we estimate

(w(k“)(n, 0%) — w*+D (7, Oi)‘

T2

IN

‘w(kJrl)(Tl,in(Tl)) — w(kH)(Tl,O:t)‘ +/

T1

3M0K1\a:i(7'1){+01-/72 (1 Mo) - [t + 20O 1
? n lc®) ()] 2

15M0K1(50(7'2 — 7'1) + 01(1 + M())/ ]lnt!(l + 501(7'2 - t))dt

T1

(15M0K1(50 + 01(1 + Mo)‘ ln(ﬁ)D . (7‘2 — 7‘1) < 201(1 + M(])’ 1n(7'1)’ . (7’2 — 7'1),

F® (@, xét(t))’ dt

IN

IN

AN
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provided that T' > 0 is sufficiently small. In particular, we have

J(l~c—&-1)(

) — o * ()| < 4011+ Mo)|In7| - (12 — 71).

This shows that ¢(**1) satisfies (4.12).

4. Finally, from Lemma 4.2, Lemma 3.2, (4.12), and Duhamel’s formula, for all 7 € [0, 7] we
obtain

Hw<k+1>(7, -)‘ dt

F (¢, .)‘

3 3 (7
< Z.wo —.
H2(R\{0}) — 2 Hw”HZ(R\[—%TﬁOTJ)W /o

< 34MOJrg’-cl(HMo)'/ (H?'“ﬂﬂ) 2007 (r = )73 4 |nt|dt
0 0

H? (R\[féo(Tft),éo(Tft)})

3My 3 C _
< TO + 5 -C1 (14 M) - [6 <1+ 571 . |1n7‘> 502/37'1/3—1— ‘Tlnr@ < My,
0
provided that T > 0 is sufficiently small, depending only on Mjy, dg, c1, and co. This shows
that (4.13) is satisfied by w**1) as well. O

Thanks to the above estimates, we can now prove that the sequence of approximations w®) is
Cauchy and converges to a solution w of the linear problem (2.19). This is a key step toward
the proof of Theorem 2.1.

Lemma 4.4 Let wy,, ¢, be as in (4.2)-(4.3). Then, for some T > 0 sufficiently small, de-

pending only on My, &y, c1, co, such that, the sequence of approzimations (w(k))k>1 converges
to a limit function w in L ([0, T], H*(R\{0})), i.e.,
lim sup Hw(k) t,-) —wlt, - ’ =
k=00 tel0,1] (&) (&) H2(R\{0})
The function w provides a solution to the Cauchy problem (2.19) and satisfies
jw(r,0£) —w(0£)| < do,  [wt,)lmz@yoy < Mo,  t€][0,T] (4.15)
Moreover, o(t) = w(t,0—) —w(t,0+) is locally Lipschitz in (0,T) and
lo(t)] < 4C1(1+4 My) - |Int|, a.e. t€(0,T). (4.16)
Proof. 1. For any k£ > 1, we set
20 = kD) (k) eP ) = 20t 0-) — 20 (t,04),
M§ )(t) = Hz(k)(tv .)HH2(]R\{O})’ Br(T) = sup Mz(k)(t), ar(t) = sup agk)(t)‘ i
te[0,7] t€(0,7]
(4.17)

Recalling Lemma 3.3, Lemma 4.2, and Lemma 4.3, and using Duhamel’s formula, we estimate

dt

MED () < 3./ HF(HI)(t,-)—F(k)(t,-)‘
2 Jo H2(B\[-0(r )50 (1)

oy (t)

< Cs- /OT Be(t) - [In(t)] <1 + r 1t)2/3> + — dt < Cy- (Bk(T)Tl/S + ak(T)Tl/Q) ,
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and this implies
Bren(r) < Co- (B +an(r?),  re0T], k21, (4.18)
for some constant C'3,Cy > 0 depending only on My, dg, c1, and co.

2. We now establish a bound on Hd(kH)HLm([O 77" Given any 0 < 11 < 72 < T', denote by

t— x;t (t) = x(t; 71,0%) the characteristics, which reach the origin at time 7;, from the positive

or negative side, respectively. Using (3.18), (4.12), and (4.8) we obtain
’Z(k+1)(72, 0+) — 2D (7, ():l:)‘

T2
< ’Z(k+1)(717x§|:(71)) _ Z(k+1)(7.170:|:)’ +/ ‘F(ml) (t,zE(t)) — F® (t,xét(t))‘ dt

T1

< Bryr - ‘azf(ﬁ)’ +Cs - /T2 ag(t) - |:c2i(t)’ + Bi(t) - |Int| dt

T1

< (BBrt1(12)00 + Cs - [Br(m2) - | In 71| + ci(m2) (12 — 11)|]) - (72 = 1),

for some constants Cs > 0 and Cg > 0 depending only on My, dp,c1, and co. Thus, for
0 < T < §p sufficiently small, we obtain

Ozk+1(7') S 105k+1(7—)50 + 2056]&7‘)} lnT‘ T E]O, T], k Z 1, (4.19)

and (4.18) yields
Br+1(1) < Cr- (Br(T) + Br—1(7)) - F1/3

for some C7 > 0 depending only on My, dg, c1, and co. In particular, for 7' > 0 sufficiently
small, one has

() + 50(0) < 3+ (B + 38 ().

which implies
o

[0

=1 TE0,1] H?(R\{0})

We thus conclude that (w(k))k>1 is a Cauchy sequence in L°°([0, 7], H2(R\{0})) and converges

to a limit function w € L*([0,7], H?(R\{0})), which provides the solution to the linear
problem (2.19), and satisfies (4.15). Moreover, since klim w® (7,04) = w(r,0+), one has
—00

that klim c®)(7) = o(7) for all 7 € [0,T]. Thus, from (4.12), o(-) is locally Lipscthitz in
—00
(0,T) and satisfies (4.16). O

We are now ready to complete the proof of our first main result.

Proof of Theorem 2.1. As outlined at the end of Section 2, we construct, by induction, a
sequence of approximate solutions (wy)n>1 where each w,, is the solution to the linear problem
(2.19). For some T > 0 small enough, depending only on My, dy, c1, and c2, we claim that

Z || wn(7) — w"—1<T)HH1(R\{0}) < o0 for all t € [0,T]. (4.20)
n>2
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For a fixed n > 2, we define

Wy = wy —wp—1, ap(t,x) = a(t,z,wy,), Ap(t,x) = an(t,x) — an—1(t,x),

o | . (421)
vp =@\ —¢(1,0), Vi =vn—vp—1, Bu(t) =subseog [Wallmrm\foy)-
Set Z, = Wy, + V,,. From the above definitions, by (2.19) it follows
ZnJrl,t + ap - Zn+1,x = - (Anwn,a: + An+1vn+1,x) + Gn+1 (422)

with
Gt = Bwnt1) _ glwn) L [@(wnJrl) _ @(wn)i| _ (Sp(wnﬂ) _ (’wn)> ¢z (+,0).

Recalling the first inequality in (3.19) and (4.15), we estimate

My (t) Br1(t)

HAnH(t")'U"H’x(t")HHl(R\[fé,a]) = C7.W < Cr- s1/2
M, t Bn t
Gt ) w68 < 07‘(;/12() < C7- ﬁg).

for some constant C7 > 0 depending only on My, dg, ¢1, and cs. Hence, choosing T" > 0
sufficiently small, we have, using Duhamel’s formula,

3
||Zn+1(7-> )HHl (R\{0}) < 5 / ||Gn+1 - Anwn,m - An+lvn+1,xHHl(R\[_do(T_t),(so(T_t)]) dt

< 308 / ﬁn /8n+1§132 dt — 308 (Bn() T+2Bn+1(7—)7—1/2> (423)

for some constant Cg > 0. On the other hand, (2.11), (4.21), and (3.25) imply

Va1 (7, )l @goy < Co - [Wara (7, ) [ oy - 774

and (4.23) yields

30
Woia(m ) @ygop < S <ﬁn( ) T+25n+1(7)71/2> + Cy - [[Wagt (7, )l goy) - 7%

for some constant Cy > 0 depending only on My, dg, ¢1, and ce. In particular, for T > 0
sufficiently small, one has that

/3n+1(7_) < !

< 5 Bn(T) for all 7 € [0, 7.

Thus, (4.20) holds and for every ¢ € [0,7] the sequence of approximations w,,(t,-) is Cauchy
in the space H'(R\{0}), and hence it converges to a unique limit w(Z, -).

It remains to check that this limit function w is an entropic solution, i.e., it satisfies, cf. (2.2),
(2.8), and (2.6),

(10+ ) (to.20) = (@ +P)(a(Ost0.20)) + | T [+ 0] (1 .0 )
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where t — x(t;to, xo) is the characteristics curve, obtained by solving (2.16). This follows
from slightly rewriting (2.19), which yields

to
(wn+1 + 80(“’"“)) (to, z0) = (W + P)(zn(0; to, o)) +/O H [wnJrl + 80(“’"“)} (t, xn(t; to, xo))dt

to W . (t)+ W7 . (¢t
-/ (Zn+1— e () "“()>so;wn“)(t,xnu;to,xo))dt,
0

2

where t — x,(t; to, xo) denotes the characteristic curve, obtained by solving (4.7).

Finally, to prove uniqueness, assume that w,w are two entropic solutions. We then define

W=w-w  B(r) = SI[EP]HW(S,')||H1(R\{0})-
se|0,7

The arguments used in the previous steps now yield the inequality

1
B(r) < 5‘5(7) for all 7 € [0,T],
which implies 3(7) = 0 for all 7 € [0,7] and completes the proof. O

5 Two interacting shocks

In this section, denote by u(t,x) the solution to Burgers’ equation
ur +uuy, = 0, uw(0,z) = u(x), (5.1)
and by v(t,z) the solution to the perturbed linearized equation
v +uvy, = Hlu(t,)](z), v(0,z) = v(z). (5.2)

By the method of characteristics, at all points where u is continuous, one has

U(T, y) = @(y—Tu(T, y)) +/0TH[u(t,-)](y— (T —t)u(r,y))dt. (5.3)

We expect that v can provide a leading order correction term, in an ansatz describing the
solution with two interacting shocks to the Burgers-Hilbert equation (1.1).

To fix the ideas, consider a piecewise constant solution to Burgers’ equation containing two
interacting shocks with initial data

ul if x<z,
u(0,z) = a(x) = u™ if 7)1 <z<Za, (5.4)
u” if Zo<x.
with u’ > u™ > u”. Setting
’ ul 4 u™
o1 = u"—u", ay = Yy
oy = u"—u", u™ +u”
az = ——(F,
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1‘1(75) = X1+ ait, :Ug(t) = Z9 + aot,

we thus have

ut if z<xz(t),
u(t,z) = u™ if z1(t) <z < wa(t), (5.5)
u” if zo(t) <.

Xl X2

Figure 2: The characteristics for a solution to Burgers’ equation with two shocks at 1 (t) < x2(t).

We now compute the corresponding solution v = v(7,y) of (5.2). For this purpose, consider
the characteristic through the point (7,y), namely

x(t) = y+ (t—7)u(r,y). (5.6)

Recalling (1.12), we compute the integral

I(r,y) = /TH[u(t,-)](x(t))dt = -= Tln]azl(t)—a;(t)|dt—% “Infas(t) - a(t)] dt
0 0 0
= g3 (P00 =) = o (J21(0) — 2(0)]))
Fagge 37 (#02(0) =) = o (12(0) = 2(0)])) +e(t,)

(5.7)
Here ¢ is given by (1.4), while e = e(t, x) is an additional smooth correction term. Neglecting
smooth terms, we thus consider three cases, depending on the location of the characteristic
x(t) w.r.t. the two shocks:

CASE 1: y < z1(7). We then have

02

Iry) & 2 @) = )l - o) + 5o P @) - )| 68)
CASE 2: z1(7) <y < x2(7). We then have
I(ry) = 21y - n@) by - n(0) + (@0 -y h:n -y 69
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CASE 3: z2(7) < y. We then have

M) = 22 =m0 + (- 2a(r) iy — ()] . (6.10)

Next, consider a more general piecewise smooth solution u of the Burgers—Hilbert equation
(1.1) with two interacting shocks located at points x;(7) < x2(7) with strengths

{ oi1(r) = u(T,xl(T)—) —u(7’,£€1(’7’)+),

(5.11)
oo(1) = u(T,xg(T)—) —u(T,xg(T)—i—),

respectively. As the interaction time T is approached, we expect that the two limits will
coincide

lim w(r,zi(7)+) = lm u(r, z2(7)—).
T—=T— T—=T—

Furthermore, as shown in Fig. 2, all characteristics located in the triangular region between
the two shocks will hit one of them within time T'.

To construct such solutions, we should thus try with an ansatz of the form

u(t,y) = w(r,y) + &(7,y), (5.12)

where
w(r,) € H2<] —o00,z1(7T)[ U Ja1(7),z2(7)[ U ]xg(T),—i—oo[). (5.13)

Moreover, in view of (5.8)—(5.10), the correction ¢ should be defined as

2 @ = nm) -9+ 52w - ) <)t <),
dr) = 3 2| mE )l - m () + () (e —y)] ) <y <o),
2] o)

_m(ﬁ/ —21(7)) In(y — 21(7)) + (y — 22(7)) In(y — $2(7))_ if zo(7) <y.

(5.14)
Note that, for each fixed time 7 < T', since z1(7) < z2(7), for y < x1(7), the term In(za(7)—y)
remains smooth. The same is true for the term In(y — (7)) in the region where y > x2(7). As
a consequence, the asymptotic profile of the function ¢(7,-) near both points z1(7) and zo(7)
has the same “zln |z|” singularity that we encountered before. However, these two additional
terms cannot be removed from the definition of ¢, because they are not uniformly smooth as
T—=T—.

6 Constructing a solution with two interacting shocks

We consider here a solution of the Burgers-Hilbert equation (1.1), which is piecewise continuous
and which has two shocks located at the points y;(f) < y2(t). By the Rankine-Hugoniot
conditions, the time derivatives satisfy

ug () +uf (t)

; : i=1,2. (6.1)

vi(t) =
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Here ui (t) = u; (t,yi(t)£) denote the left and the right limits of u(t, z) as & — y;(¢). Through-
out the following, we assume that

uy (1) +uf (1)
2

ug () +uf (t)

= (t) > () = 5

The function 7 = y; — ys is negative and monotone increasing. It will be useful to change
the space and the time variables, so that in the new variables ¢, # the location of one shock is
fixed, while the other moves with constant speed 1. For this purpose, we set

T = x—yt), t = 7(t) < 0.

As a consequence, the two shocks, in the new coordinate system, are located at

n(t) =1, y2(t) =0,

and interact at the point (£, %) = (0,0). Introducing the function

v(7(t),z) = u(t,z+ ya(t)), (6.2)

we define the left and right values

’Uit(T(t)) = U(T(t),T(t):lz) = u(t,yl(t):lz), Ug:(T(t)) = U(T(t),():lz) = u(t,yg(t):lz).

(6.3)
The change of variables (6.2) yields
B _ ut(t,x+y2(t)) + 92(t) 'ux(ta$+?/2(t))
Ve (T, %) = ug(t,z + yalt)), vr(T,x) = @D — ) .
Therefore, (1.1) implies
v, (T(t), :L') + [U(T(t)7 ‘T) - yQ(t)] " Vg (T(t)a .CU) _ H.[U(T(t)v )](I) ) (6.4)

1(t) = ga(t) 91(t) = 42(t)

Thus, by (6.1), (6.3), and (6.4), we can recast the original equation (1.1) in the following

equivalent form

1 H]u]

U+ ——————— - u—a2t)| Uy = ———. 6.5
e O = 02
Given 19 < 0, for ¢ € [, 0] the two functions
_oup (8) +uf (t Couy (8) +ug (¢t
ey > ML) RS 0] 66)
2 2
yield the speeds of the two shocks in the original coordinates, as shown in Fig. 3.
We shall construct the solution of (6.5) in the form
u(t,z) = w(t,z)+ ¢(t,x) for all (¢,z) € [10,0] x R. (6.7)
Here ¢ is a continuous function, which satisfies ¢(¢,t) = ¢(¢,0) = 0, while
w(t,) € H? (] — oo, t[ U Jt,0[ U ]O,+oo[> for all ¢ € [ro,0)]. (6.8)
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NN

Figure 3: Positions of the two shocks in the original variables (left), and in the adapted variables
(right).

T
0

According to (6.8), the function w(t, ) is continuously differentiable outside the two points
x =t and x = 0. Moreover, the distributional derivative D w(t,-) is an L? function restricted
to each interval | — oo, t[, |t,0[ and ]0,4oo[. However, both w(t,-) and w(t,-) can have a
jump at =t and at x = 0. At the points (¢, t) and (t,0), the following traces are well defined:

wy (t) = wt,t—=) = uy (b), by (t) = we(t,t—),
(6.9)
wi(t) = wt,t+) = uf (1), bi(t) = walt,t+),
wQ_(t) = w(t,O—) = uQ_(t)a b2_(t) = wz(tao_)a
(6.10)
wy (1) = w(t,0+) = uj(t), by (1) = we(t,04).
For the shocks to be entropy admissible, the inequalities
wy (1) > wi(t), wy (1) > wi(t), (6.11)
will always be assumed. Writing
wy (t) +wi (¢ wy (t) + wy (t
agw)(t) - 1 ( ) 5 1 ( ) (ng)(t) - 2 ( ) 5 2 ( ) ’ (612)
the equation (6.5) reads
we +alt,z,w) - w, = F(t, z,w), (6.13)
where a and F' are given by
(w) _(w)
a(t,z,w) = w(t, 2) ?;};0 (t72) ay () (6.14)
ay () —ay (1)
(W) o (w) (w)] _ (w), (W)

o (1) — i (1) o™ (t) — o (1)

respectively. Here the function (®) (t,z) is chosen in such a way that a cancellation between
leading order terms near to the location of the two shocks at =t and at x = 0 is achieved.
More precisely, in view of (5.14) and recalling (2.3) and (2.4), we set

oole) = o(@.0) = i, (6.16)
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and define

(w)
r— oy ' (t) ) 2 — § o
po(z —t) + 20 (1) 1 o0 (1) (¢o(z) — ¢o(t)) f o<t
Pt ) = do(z —t) + po(x) — do(t) if t<z<0, (6.17)
B g — 1) — bolt) + dola)  if 0<
L o)+ 20000 ’ " |

The following theorem provides the existence of solutions to the Cauchy problem for (1.1)
where the initial datum contains two shocks. In particular, the solution to (6.5) is constructed
up to the time where the two shocks interact. Furthermore, the solution is of the form (6.7),
where ¢ = () the corrector function defined in (6.17).

Theorem 6.1 For any given constants b, My, 61, do > 0, there exists eg > 0 small enough
and a constant K such that the following holds.

Consider any 19 € [—e0,0[ and any initial condition w € H?(R\{79,0}) such that

My

w 2 T S T @x 0 (17 S b7
11| 72 R\ £0,01) 1 @z | oe 1y, 00) (6.18)
w(to—) —w(to+) > 861, w(0—) —w(0+) > 8ds.
Then the Cauchy problem (6.13) with initial data
w(ro,”) = w € H*(R\ {r,0}) (6.19)

admits a unique entropic solution, defined for t € [19,0]. Moreover, this solution satisfies

|’w(t7')”H2(R\{t,o}) < My, Hwa:(t,‘)HLoo(]To,o[) < Kb,
(6.20)
w(t,t=) —w(t, t+) > 6, w(t,0—) —w(t,04+) > b

for all t € [19,0].

Remark 6.1 By (6.20), at the interaction time ¢ = 0 the solution u = w + () is the sum of
a corrector term plus a function in H?(R \ {0}). This function lies within the class of initial
data covered by our earlier Theorem 2.1. Thus, combining Theorems 6.1 and 2.1 yields the
behavior of a solution to (1.1) across the interaction of two shocks.

Toward a proof of Theorem 6.1, solutions to (6.13) will be constructed by an iteration pro-
cedure. The main difference between this and the earlier case with a single shock is that
the correction term ¢ now depends on time through the variable strengths o1, 02 of the two
shocks. Define
WOt 2) = w(x) if x €]t,0[U]0, oo, (6.21)
w(z+19 —1t) if x€]—o0,t[
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By induction, let w(™ be given and satisfy (6.8) for every t € [rp,0[. Moreover, call O’%n) (t)

and agn) (t) the strengths of the two shocks at 2 = ¢ and & = 0 of w(™, respectively. We
construct the next iterate w = w(™* (¢, z) by solving the linear equation

wy +a (t,x,w(”)> w, = F(t,z,w), (6.22)

with initial data (6.19) and a as introduced in (6.14).

The induction argument requires the following steps:

(i) Given w(™, the equation (6.22) with the initial data @ admits a unique solution w with
w(t,) € H*(R\ {t,0}) for all ¢ € [r,0][.

(ii) A priori bounds on the strong norm |Jw(™ (t,-)|| for all t € [19,0[, n > 1.

m2(R\{1,0})

(iii) Convergence in a weak norm. This will follow from the bound

Z ”w(”ﬂ)(t, N - w™ (¢, ')HHz (R\{t,o}) s e

n>1

6.1 Some preliminary estimates

To achieve the above steps (i)-(iii), we first establish some key estimates on the right hand
side of (6.13). For any w : [m9,0] x R — R such that w(t,-) € H?(R\{¢,0}) for all ¢ € [ro, 0],
we write

w(t,-) = vi(t,-) +valt,-) (6.23)

with
(w(t,0—) + & - wy(t,0-)) -n(x) if x<O0,
va(t,z) = (6.24)
(w(t,04) + x - we(t,04)) -n(z) if x>0.

Recalling (6.9)-(6.12) and (6.15), we split F' into the four parts:

F(t,z,w) = : [A<w> (t,x) + BW(t, z) + C™) (¢, z) + D™)(¢, x)} . (6.25)

Here we take

. w w w w (v . t,O— + t,0+
Aw) = H[d )}_SO( Jpw) ) — fla) = H[vg]—<v2— va( )2v2( )>-¢6<w),
(6.26)
C) = & = Hfu] - (- MEEENEE) g e

D™ = Hw] — (w —al (t)> () — (agw) (t) - ay” (t)> o) =B — ). (6.28)

xT

Lemma 6.1 Let w : [19,0] x R — R be such that w(t,-) € H*(R\{t,0}) for all t € [r9,0], and

lw(t, M@ oy < Mo, |we(t,0-) + lwe(t,04)] < b, oi”(t) > & > 0.

27



2

M2
for j = 1,2. Then there 18 a constant C’1 > 0, depending only on My, b, &y such that, for
a.e. t € [7'0, 0] and |z| < 5, one has

1
Moreover, assume that 1 min{ } <710 <0 and o( )() is locally Lipschitz on [1p,0]

1+ My+b
|F(t,z,w)] < Cr- % + |In[¢]|
0
- (w) - (w)
oy ()] + |o3 '(t)
+ XR\Jt0 ‘ )50 ‘ ’ : <|ﬂf|1/2 + |z — t!1/2> ,
L+ Mo+ b+ xpyer - (|17 0] + |6870)])
ot z,w)| < O - TG
do
(6.29)
Furthermore, for every § > 0 sufficiently small one has for all t € |19, 0]
1+ My+b+ ‘dﬁw)(t)’ + ‘dgw) ) s
| F(t, 2, w0) || g2 (r\[—s,8)uft—6,45) < Ci1- 5 67+ [In(@)]] -
(6.30)
Proof. We observe that, for all ¢ € [, 0], it holds
w w 6
a @) =l (@) > 6o+ w(t,t+) —w(t,0=) > & — M- |t/ > 50 (6.31)

0<a](.w)(t)<a§ V() + o3 (t) = w(t,t—) — w(t, t4) + w(t,0—) — w(t,04) < (2 + /Jt]) Mo,
o1 (@ ) 2@\ ey lv2(8 )l 2@y foy) < O(1) - (Mo + b).

According to (6.25), the function F' can be decomposed as the sum of four terms, which will
be estimated separately.

1. Recalling (3.2) and (3.10), (6.26) and (6.27) imply that for every (¢, z) € [10,0] X [—5, =]
one has

BW ()] < 00)-(My+b),  [BI (@) < O0)- (Mo +b) - | nal]?,
(6.32)

| B@) (¢t < O(1)- (My+b)-672/5.

) HH"’(R\HN)
and, for every (t,z) € [70,0] X [t — %e,t + 2%]

Ct(t2)| < O(1)- (My +b),

()| < 0)- (Mo+) - [Info — 1],

|C)(¢, ) < O(1)- (M +b)-672/5.

v HHZ(R\[t—(S,t-‘rd})
(6.33)
2. Next, we estimate A®). Recalling (3.4), i.e

gb(x) = X[O oo[( ) : ¢($,b), reR,b>0,
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(2.4), and (6.16), we can rewrite, for (¢,x) € [rp,0] x [—i i],

2e’ 2e
P (t,2) = go(z — 1) + dolx) — go(t) + B\ (t,x) + BS") (¢, ), (6.34)
@ ) — _ 2 X-ood)” 01 (t). 2 _ 201" (1) . .,
El <t7 ) % (w ( ) )<t) [¢0( ) ¢0(t)] 2U§w) (t) i Jéw) (t) g\t|(t )7
Wy — 2Nl 02 (t) _ _ vy
E2 (tv ) ( )( ) n 20_ (t) [gbO( ) ¢O(t)] U%w) (t) n 20_51”) (t) g|t\( )
(6.35)

Thus, for (¢,z) € [70,0] x [—5, 5], Lemma 3.1 and [4, Section 3] imply,

[H[po™)(t,)](z)| < 0O(1), %H[go(w)(t,-)](x) < 01)- (In? |z + In? |z — t]),

[H [t

)] 2y sanop—sersy < O) 6725,

(6.36)
On the other hand, given ¢ € [ry,0], for every |z| < &, (6.34) combined with (3.5) yields
[ (t,2)| < min( (). [z — 1) In(jz — 1)),

Furthermore, we compute for every = € R\{¢,0}

2 X[ool - 05" (£) 2 X)—ood) - 0\ (1)
@) (t,2) = |1 =0l pa—t)+ (1 T - ph(x), (6.37
et ( a@@ﬂa%“w>%@ )+< 20 (0) + 040y ) O 03D

which together with [4, Section 3] implies for |z| < & that
1 1

ol (¢, 11’3)‘ < 01)- (12 + (x_lt)2> :

At a)| < O@)- (|infal| + |In|

. . . 1
A direct computation yields, for [z] < o,

(|¢welta)| < o) (2l 2+ o —1112),
di[so( VoM (t,z)| < O@1)- (In?|z] +In? |z —1]),
| Etealen| < o (|l 4 [l
and thus
H¢<w>¢§cw>(t, ) ‘HQ(R\[t—é,t—l-é}U[—é,&}) < 007,

Recalling (6.36), we get

AW (¢, )| < O(1),
| A (¢

AP (k)| < O(1) - (102 [l + P w — 1) 639

M@ psirauss < 01872
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3. Finally, to estimate D), we shall consider three cases:

Case 1: Assume that —% <t-— 2% < x < t. We have

DW(t,z) = D\(t,x) + DS (t,x) + DL (¢, x) (6.39)
with

D\t 2) = wy(t,0-)- (t — ) d)(z — 1),

(w)
Wiy oy (9270 [wt,0-) —w(t ) + wit t=) — w(t, )]
b ( 201" () + o5 (1)

(w)

D\(t,z) = [agw)(t) - agw)(t)] . [(2 w)((?) jft)(w)(t) gyt — ) — o (1) ¢fz(t) ] .
Jl 02 g

Recalling (6.16), we estimate

D (t2)] < 0() b Jo—tl[lle—t]| < O(1)-b,

d (w) d2 (w) b (6.40)
- < .b. _ _ < R
del (t,z)] < O1)-b ‘ln|:p t||, dszl (t,z)] < O(1) Pt
d w
D{(t2)] < O()- (Mo+0)-a|mal], | =Dt a)| < O(1)- (Mo+b)- | nal],
d? (w) , Mo+
D) < e dho] + 00 D
(6.41)
and
(w) (w)
w w w 1 (B)] + oy (
D (t,2)] < 0()- |af” () - o (1) ( )50‘ )xtlnxt+lnt|)
 (w)  (w)
d ) w1 0] 1670
< . _ . . _
D (t,x)‘ < 0(1)- |a§” (1) - o (1) 5 [ f — ],
(w) (w)
& w) (w) NN s 01 Kl e )
< . _ . .
|| =08 ()| < 00)- | (1) - af” ()] 5 P
(6.42)

Combining (6.39)-(6.42), we obtain

- (w) - (w)

) 61" (1) + |65 ()

(J})D (tv(xu?)‘ < 0(1)- @ + | In(t)| + ’ ! ‘5 ‘ : ‘ "m_t‘lﬂ )
a5 0) — o) ’ °

d

%D(W (t,z) Mo +b+ ‘dﬁ“’) (t)‘ + ‘déw) (t)‘

@ gy o = O 5 it =]
‘az (t) —a; (t)‘ ’

2

D (t,) Mo +b+ ]a§w><t>\+{fr§”)<t>\ |y

(w) W S o) 5 t 5 et
‘GQ () — af (t)‘ 0 |r—t 0

(6.43)
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Case 2: Assume that t < x < 0. We have

D@(t,2) = wy(t,0-)- (t—a)-gh(x—t)+ (vr(t,0) v (t,2))- () + [al () —a§”) (t)] - 64 (1),

(6.44)
and this yields
DW) (¢, z My+b
RGOl o (M504 ).
a8 (1) — o) (1) 0
d
— D) (¢, z)
d ’ My+b
(w? ) < 0Q1)- %+ -(’ln]wH%—‘ln ),
a8 (1) ~ ol (1) 0
d (w )( )
—D
dx? My+b 1 1 Wz (t, T
(5 @ = 0(1)'( ?5+ '<+ >+‘ 5( H'““W)-
‘% (t) — (t)’ 0 | e — ] 0
(6.45)
Case 3: Assume that 0 < z < 1/2. As in Case 1, writing
DW(t,z) = D\(t,z) + DS (t,x) + DL (¢, z) (6.46)

with
(D (t,2) = [oi(t.a) — oi(t,t4)] - Dyl —t)

(w)
+ [ (w )(?Jr;i(w)() (w(t, t+) — w(t,0—) + w(t,04) — w(t, x))] dolz —1),

D (t,x) = (w(t,04) — w(t,z) + zw,(t,04)) - $h(a),

< 0 )’_g (@) - w><t>~¢'<>]
) +2080)) T )+ 208 (1) |

D{(t,x) = [a”(t) —a{(1)] -

we estimate

- (w) - (w)
D®)(t, ) Mo +b o1 O+
(u‘;) (w)‘ < O1) | —5— +|In(t UH‘ ’5 ‘ ’ )
ay (t) —ay ' (t) 0 "
d w
%D( )(t, x) M0+b+’&§w)(t)‘+’d§w)(t)‘
@) w0 5 el
0y (t) — ai"(¢) "
d2
a (w) . (w W
dm2D (t,x) Mo +b+ ‘ag )(t)’ + ‘Ué )(t)’ | Wz |
o - < 01)- . .er | Inlz|] | .
[ a5 (8) = a{” () ’

(6.47)
In summary, from (6.43), (6.45), and (6.47), given ¢ € [79, 0], for every x € (—1/2,1/2)\{¢,0},
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it holds that

D) (¢, M
B (et
a8 (1) — ol (1) 0
TXR\J0,¢] * ‘ ‘ ’ ‘ (’x’1/2+’$—t\1/2)>,
d
— D) (¢, z) M . (w) . (w)
d , 0o+ b+ xmgol (|01 ()] + |05 (1)
(wj: ) <0(1) - <L ‘ ’ D (|In ||| + | In |z —t[]),
a8 (1) — ol (1) 0
DW)(¢, ) My +b+ 6 @)| + |6s ()
I (w})|H2(R\[t(—£;t+§]u(—6,§)) o ‘ ;52/3) ‘ 2 ‘+\1n|t|\ ‘
a8 (1) - ol (1) 0
(6.48)
To complete the proof, combining (6.32), (6.33), (6.38) and (6.48), we obtain (6.29)-(6.30).
U

The next lemma estimates the change in the function F' = F(t,z,w) as w(-) takes different
values. These estimates will play a key role in the proof of convergence of the approximations
inductively defined by (6.22).

Lemma 6.2 Let wi,ws : [10,0] x R — R be such that, for i € {1,2} and t € [19,0], one has
w;i(t,) € H*(R\{t,0}) and

lwit, Mmggeon < Mo [wia(t0-)] + e (00 < b, [of*(0)] = 5.

(wi)

1 }<To<Ocmde

Moreover, assume that —3 - min {1 is locally Lipschitz on [19,0[ and

4 I M2
there exists a function K(t) such that

max { ‘ ng) )|,

A )(t)‘} < K(t)  ae. te |0

Set z = wy — wy, O'Z(Z) = Ung) - agwl), and A (t) = max { ‘d;z)

|68

}. Furthermore, let

MQ(t) = ||Z(t7 ‘)HH%R\{LO}) + ’ZI(tao_)‘ + ’Zw(ta 0—’_)‘ + ’Z(tao_)‘ + ’Z(ta 0—’_)‘
Then there exists a constant Cy > 0, depending only on My, b, dg such that, for every x €
1 1
[—26, 26] and a.e. t € [19,0], one has

C
5*22 (Mo +b) -3 () - (|$\1/2X[o,oo[ + [z — t|1/2X[—oo,t[>
0

+ & [Mz(t) : <|1n\t} + M%:b + K(;it) (I:r:\l/2 + |z — tl“))] (6.49)

‘F(t7x7w2) - F(t,x,wl)’ <

and for every x € (t,0)

Cy ) B
| Fu(t, 2, ws) — Fult,w,wr)| < M) <1+50+M0+b)(\x] V2 4 g — 1/2). (6.50)
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Moreover, for every § > 0 sufficiently small, it holds

C
[F (¢, w2) = F(t, - wi) | gy j—soju—se+0) < 522 (Mo +b) -

1O (t) - 57203

C: K(t My+b+1

+2-M2(t).[< ()+50+ + +Mo+b+1> 2/3+}1n\t\\]. (6.51)
0

(52

Proof. 1. For notational convenience, we set

AG) = gw2) _ glw)  BG) = gw)_pglw) ¢k = o) o) pl) = plws)_ plw),
(6.52)
Furthermore, let z; = vy ; — v j for j = 1, 2, then

120t ) a2 @y oy < O - Ma(t) - [lz2(E )2 goy) < O() - Ma(?).
Comparing (3.2) and (6.26) and recalling (3.20), then yields, for every (t,z) € [rp,0] X
(=560 2¢).
[BO(1,2)] = 01) - Ma(t),  [BE (t,2)] = 0(1) - Ma(t) - | 1n]a] 2

M) (6.53)

<o)~

IBA(t,-) 2 s.00)

Similarly, for every (¢, x) € [19,0] x [t — Q%,t + 2—16], it holds

CO(L,2)] = 0(1) - Ma(t),  |CE(t,2)] = O(1) - Ma(t) - | In | — ]2,

M) (6.54)

52/3 ¢

HC(Z)(t <0Q)-

M i@ s i)

2. We now provide bounds on A*) (¢, z). From (6.34) and (6.35), it follows that
200 201
20{" (1) + o5 (1) 201" () + 05" (1)

204" (t) 204" (t)
) (wn) (w2) (w2
oy (t) + 20, () oy (t) + 20y

Qp(wQ)(t’x) _So(wl)(tax) = [ ] 'g|t|(t_$)

)(t)] “ gy (). (6.55)

Since
20\ (1) 20."2) (1)
90y (1) @ (5 290" (1) 1 o (¥2) (4
(1) + 0y () 201" (1) + 05" (1)
203 (1) - 208"2) (¢
o () + 205 (1) o1 (1) + 208" (1)

Lemma 3.1 implies for x ¢ {t,0} and |z| < 21—6,

( [H[p(2)(t,2) — oW (t,2)]| < O(1) ——=

d
dx

—H[pW2)(t,2) — (¢, 2)]| < OQ)- t - (In? |z + In? |z — ¢)

O(1) - M27<t) L5723,

HH[(p(wQ)(t, ) — @(wl)(t7 )} }|H2(R\[t—5,t+5]u(_575)) S 50
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and from (3.5), we obtain for z ¢ {t,0} and |z| < &,

w ) (w Mot
SO(wQ)(pgc 2) _ o 1)80:& 1) < 01)- ;0() . (|$|1/2 tlo— t|1/2) :
d M(1)
& pwe) S(wa2) _ (w1) (w1) < 228 (2 2, _
— (o) — gl )’ < 0(1) —5= - (0 fa] + 0|z — ¢])

d2 w w w w
L () — gl n)' < o)

My (t 1 | —t
| x>,cnuu+|Mx H>,

do || |z — |

(w2),,(w2) _(wy),(w1) < 1 M —-2/3
‘SO ba PP | i@\ st a)u(=65) o) 5o o
Thus, (6.26) yields
AP (t,2)| < 0(1)-M§(t>, ‘Agf)(t,x)‘ < 0(1)~M§(t)-(ln2lx!+ln2lxt!),
0 0
B My(t) _o/3
Al )(tv‘)HH2(R\[t—5,t+5}u(—5,5)) < o) 5 07,

(6.56)

3. Finally, to achieve bound on D®), we consider three cases as in the proof of Lemma 6.1.
As before, we define Dgz) = Dl(wQ) - Dgwl) fori=1,2,3.

Case 1: Assume that —1/2 <t — 5= < x < t. Note, that we can write
D (t,2) = D (t,2) + DP (¢, 2) + D (¢, )
Di’(t,2) = L7(t,2)-dh(x—1),  Dy(tw) = L7(ta)- ),
DY (t2) = I () - gyt — 2) + 135 () - (0.

which implies

(|19 < o) M) -1t - al,

axffz)(t,x)j < O(1) - My(1),

2 2 M,
021 = 0, [ < o) Mpfr) B ol
0
z Mo+
0,10 (t,2)| < 0(1)-( 05: .Mg(t)ﬂzx(t,x)y),

02,15 (t,2)| < 0(1) <W - Ma(t) + |Zm(t,x)|> ,
é%ﬂsom<mmﬂ?%@+%gW> 0] < o 3.

Thus, for t > 0 sufficiently small such that [t| < e”™o~b it holds

My+b

‘D(z)(t,a:)‘ < o) | =g

) - fo — /2

My(t) (K(t)
- ;0 -(50-\a:—t|1/2+(1+M0)-{hﬂt!})],
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and

iD<Z>(t,;L~) < 0(1)- Ma(t) @+Mo+b+1 o =tV 4 |z (t,2)| - | In |
dx do do
Mo+b .
—i—(’)(l)-( %0 -'y()(t)-‘ln]t—a:\o
d? My(t) K(t)
(2) < L2y .
5D (t,z)| < O(1) 5 K 5 +M0+b+1> |x_t+yw2m(t,x)\\ln|xy|]
My+b 1

1) | 200 .1 A (4. .

| +0)- (Jolts )] - [ el + 2052 10 L)

Case 2: Assuming t < x < 0, we have
DO (1,2) = 2(t,0-)-(t—)-h (e 1)+ (z1(£,0) — 21 (8, 2)) - dh(@) + [af (1) — o (1)] - ¢h(0),

with

which yields

DG, x)’ < 0(1)- My(t) - | In]t]],
%D(z)(t,:n) < 0(1) - [Ma(t) - (272 4o = 4] 72) + |z10(t2)] - [ Jal]]
2
\szD(%,x) < o(1)- [MQ@- <’;+’m1_ﬂ> +|zl,m(t,$)|-}1n|x|\].

Case 3: Assume that 0 < z < 1/2 and |t| < e"™0~b, As in Case 1, we estimate

‘D(z)(t,x)‘
- o). [Mgo(t) | <K(t)(M0;(;50) T (1+M0)\1n|t|\> ) MOa:b Ve ,371/2]
and
%D(z)(t,m) < 0(1) [Msst) (K(t)(]\ioJréO) + My+b+ 1) : !m\_m]
+0(1) - <|zx(t,x)| + |212(t, )| + M%: b -7(2)(t)> |zl
L0 (t)| < O [(aan(t) + anaa(t)) -] + 2522 50 L]
+O(1) - M;(fﬁ , {(K(t)(]‘iﬂ RO YA 1) |;| + |w2,xx(t,x)\‘ln\x—t|]] .
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In summary, given ¢ € [, 0] sufficiently small, for every = € (—1/2,1/2)\{¢,0}, it holds that

( Mo (t
D (t,2)| < 0(1)-[ ;0()-(1+M0)-\1n|t|\
My(t)K (¢ My+b
n ( 2(5)3 (t) + Ma(t) + 7050 A )(t)> , (,36‘1/2X[0700[Jr B _t|1/2X}foo,t})]a
d z z — —
%D( J(t,x)| < O1)- Mat & () - (||~ X o) + |7 — 74X —00)
Mo(t) [ K(t
+O(1) - K;O() (52) + My +b+ 1) + |zx(t,x)]) : (ya;rl/Q e —t]l/Q)}
z MQ(t) K(t) —2/3
IDE @) 2@ eseraussy < OO 5 K % +Mo+b+1) 6727+ |Int]
Mo+b
\ +O(1) - %;L B (t) - 57213,
(6.57)

Finally, combining (6.25)-(6.28), Lemma 6.1, and (6.52)-(6.57), we obtain (6.49)-(6.51) O

6.2 Proof of Theorem 6.1

We are now ready to give a proof of Theorem 6.1. Given 79 € [—¢ep,0[ sufficiently small
and some initial data w(7,-) = w satisfying (6.18), we construct a solution to the Cauchy
problem (6.13). This solution will be obtained as the limit of a Cauchy sequence of approximate
solutions w(™ (¢, z), following the steps (i)-(iii) outlined in the beginning of Section 6.

Step 1. Let b, My, 61, 62 > 0 and w € H?(R\{7,0}) such that

M
[@law@mon < 5 Welliequoy < b
(6.58)

w(ro—) —w(ro+) = 851,  w(0—)—w(0+) = 86s.
We first establish the existence and uniqueness of solutions to the linear problem (6.22) with

initial data @ and a given function w(™ with w(™(t,-) € H?(R\{t,0}) for all ¢t € [r,0[ and
such that for all ¢ € [, 0],

IN

M07 ‘

wl (¢, )| < Kb,
Le=(e.0D (6.59)
lw™(t,t+) —w(rot)| < &, |w™(t04) —w(O0L)| < &,

Hw(n) (") HH2(R\{t,O})

for some constant K > 0 depending only on b, My, 61, d3. Note that w(?), defined in (6.21),
satisfies all of these assumptions.

Note that if such a sequence exist, then the constant dg in Lemma 6.1 and Lemma 6.2 can be
chosen as min(dy, d2). Accordingly, we define

(5() = min(51,52>.
Assume
1 min{é7, 65}

0 6.60
4 M02 < 7 < ) ( )
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and denote by ¢ — x(t;to, zo) the solution to the Cauchy problem

z(t) = an(t,x(t)), x(ty) = mo, (6.61)
where
oy = e+ e () — o ()
n(t,z) = 0 a0 (6.62)
Here,

M) = ), o) =), o) =) forj=1,2. (6.63)

To begin with we study the travel direction of z(¢), which depends on the sign of a,,. Therefore
observe that (6.58) and (6.59) imply

66, < o\(t) < 106;  t€ [r,0[i€ {1,2}. (6.64)
Furthermore,
n n 1 n n n n
d%w—@kw—z(é>w+v?a»'—]w>wwa—w>ww»]§A@¢w

and

361 +02) = Mo/IHl < |af”(0) = a§” (8)] < 501+ 82) + Mo/
Recalling (6.60) we end up with

IN

2001 + ) < \a@(t)_ag")(t)\ 6(51 + o). (6.65)

For every (t,z) € [r9,0[x]0, [, one has, using (6.17), (6.35), and (3.5),

t o3 (1) W (t,7) = w (1, 04) + o) (t,)
an(b2) + oy T | RO
(a3 " (t) —ay " (1)) ay " (t) —ay (1)
1
Y (le™ ) — ™ ()
< 5oy () =@ o) + o))
1 1/2
< ————— . .
< 5655 (Mox'/2 + 2w lnal) . (6.66)

Similarly, for every (¢, x) € [1,0[x] — 1/2,1],

an(t, ) — 1 — 7" (1) _ o™t ) —w™ (L 1) + o™ ()
2 (o (1) - a§"” (1)) () — (1)
1
< ST (Mo e —t/2 42, |\g;—t|1nyx—t|\) , (6.67)
and for any (¢,x) € [19,0[x]¢, 0],
an(t,z) — 1 + o) _ w™ (¢, 2) — w (¢, t+) + o™ (¢, z)
9 (agn) (t) . agn) (t)) agn) (t) _ agn) (t)
I 112 1o B B
< 3001+ 03) (Mo lz—t|"? +2- (|lz — t|In|o — || + ’xln|x”)) (6.68)
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Since

ot (t) - ot (1) B ot (t)
oM (t) + 106, + 2Mo /1] 2@ () — S (®) T oM (t) + 665 — 2Mo /1]
08" (t) - R0 08" (t)

S W W S W )
o (#) + 106, + 2Mo /] 2\ (t) — SV (1)) T o{M(t) + 661 — 2Mo /1]

by (6.64), we conclude, using (6.64) and (6.60) one more, that

s G N )
0u+20 = 2(a{(t) —afV () T 201+ for all ¢ € [r9,0].
5 o5 (1) < 22

< < ;
201 + 99 2(a§") (t) _ agn) (t)) 01 + 209

Therefore, by (6.66)-(6.68) there exists § > 0 such that

(L 5% ) < 02 for all (t,7) € [ro,0[x[0, 3]
T Aac | ac n\t =~ T T o ac ) 70, 9 9
261 + 405 461 + 25, 0
451+50 2(51—(50 - —
_ 20T o) < 1— 2270 o all 0,2 € [t 0[N([t, t + o[U] — 3,0]),
451+252_a(tx)_ 25, 75, T2 t € [10,0],z € [t,0[N([t,t + 6[U] 1)
1+L < ap(t,x) < 1+5751 for all t € [r9,0],2 € [t — 6,1
201 + 460 — e o 461 + 269 0= T

(6.69)

The next lemma provides the Lipschitz continuous dependence of the characteristic curves
(6.61).

Lemma 6.3 Let w™ and ©™ be as in (6.59) and (6.63). Given T € [10,0], let x1, 29 €
R\{7,0} with Z» < Z1 such that both 1 and T3 belong to ] — &£, 7[, |7,0[ or |0, 5=[. Then
‘l’(t;T,i’l)—l‘(t;T,i'Q)‘ < Kj- |f2—.fl’ for allt € [7‘0,7‘[ (6.70)

for some K1 > 0 depending only on My, d1, 03, K, and b.

Proof. We shall prove (6.70) for Z1, T2 €]7,0[. The other cases follow the same lines as the
proof of (4.9).

For any t < z9 < x1 <0, (6.67) and (6.65) imply

‘w(") (t,x2) — w™ (t,x1)| + ‘go(”) (t,z2) — (™ (t,m1)|
[l (t) — af” (1)

lan(t, x2) —an(t,z1)| <

1

< sy B+ [nfes =t + [Infaal]) - (21 = 22)

Setting 0 < z(t) = z(t; 7, 71) — x(t; 7, T2), we obtain

1

Z(t) TSR (Kb+ |In|a(t;7,Z2) — t]| + |In|a(t;7,21)]]) - 2(2).
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Since (6.69) implies for any z € (0,¢) that

46y + 6o .7, T, - T ) (-
(1 - M) (T _t) S .%'(7'77',33') —[E(t, T,.’E) S <1 2(51 +252)> ( t)7

one ends ups with

28 S0 1+ 52) (Kb 2o (mm (2(26160+ d2)" 2(61 i) 252)) (= t)) D ’
which yields (6.70). O

Next, consider the constants

“ i 50 50 } . {5max(51,62) 5max(51,62) } (6 71)
= m 5 = m ) ) .
n 2001 +202)" 2(201 +02) f 7 2(01 + 263) * 2(201 + 62)
and define
If = [t—7(r —t),t+7(7 = )] U[=0(T — t),7%(T — t)]. (6.72)
From (6.69), one has
x(t;,z) ¢ I] forall o <t<7<0,z€[-1/2,1/2]\{0,7}. (6.73)
Furthermore, for all 79 <t <7 <0, one has
(z(t;7,2) —t) — (Z —7)| < (T —t), Te€[-5,00\{r},
(6.74)

lz(t;7,2) — & < n(r —1), z €] — 7, 3]\{0}.
By the same arguments used in [4, Lemma 4.1], we now obtain

Lemma 6.4 Let w™ and ¢™ be as in (6.59) and (6.63). There exists €9 > 0 small enough,
so that for any —eg <t <1 < 0 and any solution v of the linear equation

v+ an(t,x) vy = 0, v(10,") = v € H*R\I),

one has

3
@t z@veoy < 5 - Ivlla2@g)-

Step 2. Let us now consider a sequence of approximate solutions w®) to (6.22) inductively
defined as follows.

o w : [r5,0[xR — R such that for all t € [r9,0],

Wt 2) = w(x) if xe (t,0)U(0,00),
’ w(x+ 719 —t) if x e (—o0,t),

where w satisfies (6.58).
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e For every k > 1, w1 (¢, ) solves the linear equation
w + an(t,x) - w, = FP(t2),  w(n,) = @()

with FO) (¢, 2) = F (¢, z, w(k)) and w as in (6.58). This can be rephrased as

to
w® W (tg, 9) = w(fﬂ(To;to,l‘o))Jr/ FW(t, 2(t; to, v9))dt. (6.75)

70

The following lemma provides a priori estimates on w*), uniformly valid for all & > 1.

Lemma 6.5 Let w™ and o™ be as in (6.59) and (6.63). Then there exists eg > 0 sufficiently
small so that the following holds. If 19 € [—¢€0,0[, then for every k > 0 and a.e. T € [19,0],
one has

‘w(k)(T,Ti)—E(Toj:)‘ < o, ‘w(k)(T,Oi)—@(Oi)‘ < 6y, (6.76)
max{‘&?f)(ﬂ , ]dé’%ﬂ]} < 4Cy |7, (6.77)
‘wﬂ(ﬂk)(T’”")HquT,oD = 2Kab, Hw(k)(T")‘H%R\{T,O}) = Mo, (6.78)

for some positive constants C1 and Ks.
Proof. It is clear that (6.76)-(6.78) hold for £ = 1. By induction, assume that (6.76)-(6.78)
hold for a given k& > 1.

1. We shall establish the first inequality in (6.78). Given 7 € [19,0] and 7 < Ty < 1 < 0,
consider the characteristics t — x;(t) = x(t; 7, ;) for ¢ € {1,2}, which satisfy, cf. (6.73),

min {|z;(t)], |z (t) = t|]} > v (7 —1) for all ¢t € [ro,7],1 € {1,2}. (6.79)
Recalling (6.75), (6.70), and (6.29), we estimate
w(k-l—l)(,]_’ i’g) _ w(k+1)(’r,j1)‘

< f@lea(m)) - o)l + [

T0

Ci1(1+2My + 2K5b T 1 o

F® (£, 29(t)) — F® (¢, xl(t))‘ dt

701/250 -t

201 (1 + 2My + 2K5b) (1 — 79)Y/2 o

< K1'<b+ i - 1/2 2N ) @2 — 7

Yo do
2
. b71/260
Thus, if 0 < —19 < 0 h
us, H0'< =70 < (201(1+2M0+2K2b) , then

Wt (7, 25) = wl(r, 1) | < 2Kb- a2 —
and (6.78) is satisfied by w*+1),
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2. We shall establish (6.77) for i = 2 and the second inequality in (6.76). The other ones are
quite similar. Given any 79 < 7 < 7o < 0, let ¢ = x5 (t) = z(t;72,0%) be the characteris-
tics,which reach the origin at time 75 from the positive and negative side, respectively. From
(6.74), it follows that

25 (t)] <yl —t]  forallt € [r, 7.

Furthermore, recalling (6.77), (6.78), and (6.29), we have
‘w(kﬂ)(m 0+) — w(k+1)<7-170:|:)‘ < ‘w(kﬂ)(ﬁ,ﬁ(n)) — w(k+1)(n,0j:)‘
T2
+/ F<k>(t,x§(t))‘dt < 2(Kab+ Mo)yr - (12 — 1)
T1

T2 1
N e <1 + S0 4 242y —t)1/2)> [ [¢]] d
- 0 0

C1(1 + 2My + 2Kob 8CL(1 4+ 2vY2) |7 |1/2
1( 500 2b) + 0y <1+ 1( (;)(/)1 )’7'0| ‘ln\ﬁ\‘ .(72_71).

< | 2(Kab+ My)y +

Thus, for |7y| is sufficiently small, we then obtain (6.77) for (k+ 1) and i = 2 by
‘Uékﬂ)(m) — ng—'—l)(n)‘ < 401‘ In |7’2H (12 — T1).
Moreover, for the second inequality in (6.76), choose 71 = 7y in the above estimate, i.e.,

w® D) (15, 0£) — @(Oi))

Ci(1+2My + 2K5b 8C
< [Q(biJrMo)’Yl + 11+ 50+ 2b) + 4 (1 + 51> . ‘ln|7'0H] - |0l
0 0

and this yields (6.76).

3. Finally, from Duhamel’ formula, Lemma 6.4, (6.58), Lemma 6.1, (6.77), and (6.72), we
obtain, for all 7 € [7g, 0],

3 3 T
< Slw . k) (¢..
ey < D) 3, O]

o

H2(R\IT)

3M 3 T142My+2Ksb+8C1|In |t
< Wy S, [ML MR 2KD SN v g a
70 50’70
3My 901(25 + 2My + 2K5b + 8C - 111‘T0| )
< 3 + 373 | | -’Tg‘l/3+301~}7'01n’7'0“.
250’)/0

Identifying an upper bound on 7y such that the right hand side is less or equal than My, shows
that the second bound in (6.78) is satisfied by w*+1) as well. O

Thanks to the above estimates, we can now prove that the sequence of approximations w*)
is Cauchy, and converges to a solution w of the linear problem (6.22). This will accomplish
the inductive step, toward the proof of Theorem 6.1.
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Lemma 6.6 There exists ¢g > 0 sufficiently small so that, for all 19 € [—e0,0] the fol-
lowing holds: Let w™ o™ as in (6.59) and (6.63). Then the sequence of approzimations

(w(k) (¢, -))k21 converges uniformly for all t € [19,0] to a limit function w(t,-) in H*(R\{t,0}).
Namely,

lim sup Hw(k)(t, ) —w(t, )‘
k=00 te(7y,0]

H2(R\{t,0})

The function w provides a solution to the Cauchy problem (6.22) and satisfies for all T € |19, 0]
lw(r,7+) —w(rot)| < o1, |w(r,0+) —w(0+)] < b, (6.80)

lwe (T, @)oo grop < 2K2b,  |lw(m, )| p2ygroy < Mo (6.81)

Moreover, o1(t) = w(t,t—) —w(t,t+) and oa(t) = w(t,0—) —w(t,0+) are locally Lipscthitz in
(10,0) and
max {|51(7)[, [62(7)]} < 4Ci|In7|| a.e. 7€ [7,0]. (6.82)

Proof. 1. For any k£ > 1, we set

. k .
A= et e M) = O e o
agk’z)(T) = 2B (1, 7=) — 2B (1, 74), Jék’z)(T) = 20 (7,0=) — 2 (7,04),

a(T) = sup max ‘d(k’z)(t)’ ,

tefro,r] 1€{1,2}
Br(7) =  sup (Mz(k)(t)ﬂz;’“)(t,()—)h z;’“)(t,0+)‘+‘z(k)(t,()—)‘+‘z(’“>(t,0+)D.
\ t€(70,7]

(6.83)

Recalling Duhamel’s formula, Lemma 6.4, Lemma 6.2, (6.72), and Lemma 6.5, for all 7 € [r9, 0]
we estimate

3
MED(r) < (k1) gy _ k) (g
(r) < (1) = O
3C AC) | Int]] | (2Mo + 2Kab + 1)(1 + 6 .
< 522 /5 ‘2/;‘),“+< 0 2 e 1)( 0) =) 4 [t | dt
2 70 9070 9070
2M + 2K
o [P -0
205 )., 73/3

< Co- (I =" [iafro 11| 5u(r) + [ nle)r =07 ar)

70

(6.84)
for some constant C3 depending only on My, b, Ko, 41, and &s.
2. We now establish a bound on zg(gkﬂ)(T, 0=+). Since
(k1) (7 0 ) < H (+1) (7 ‘ < M+ 6.85
00 < [0 oy, S MV, (6.85)

it suffices to have a closer look at zg(ﬁkﬂ)(T,O—). Given 7 € [r9,0[ and 7 < T2 < 71 < 0,
consider the characteristics t — x;(t) = z(t;7,%;) for i € {1,2}. Recalling (6.75), (6.50),

42



(6.79), and (6.70), we estimate

|20 (7 22) — 26 (7, 2)|

/ ’ [F<k+1>(t, 2o(t)) — FU+D (¢ xl(t))} - [FW (t, 22(1)) — FO (2, xl(t))] dt‘

< /TT /1‘ Fk+D _F;k>) (t, (1 — s)z1(t) +3x2(t))‘ zr(t) — a(t)] ds dt

90, K
< 5221/21 //Bk (14 60 + 2Mo + 2Kab) - (7 — )"2 dt - |70 — 71|

< Oy Br(r) - |7 — 7|2 |72 — T

for some constant C4 depending only on My, b, K1, d1, and 2. This implies

’Zg(gkﬂ)(T,O—) < Gy By(r) - |m —7ol/2. (6.86)

3. Finally, we establish a bound on ay41(7) for 7 € [79,0]. We only present here the details
for égkﬂ’z) (t), since a(kH ?) (t) can estimated in the same way. Given any 79 < 71 < 172 < 0,
denote by t +— in(t) = x(t;72,0%) the characteristics which reach the origin at time 7

from the positive and negative side, respectively. Using (6.75), (6.49), (6.74), and (6.79), we
estimate

’Z(k+1)(72, 0+) — z(k‘H)(Tl, O:I:)‘

< [0 () - 26000 + [

T1

‘F("”“) (t,zx(t)) — F® (t,25(t)) ’ dt
< 2 G 12 124
< 2Bk41(m1) ‘:CQ (11) ‘ + 52 . (2M0 + 2K1b) . Ozk(t) “Y |7'2 — t‘ t

T1

C 4C1/TE] + 6 2My + 2K1b | 8C 1/2
L2, / Bt ( “ﬁ 0}1 1t]| + 050 ! EZ N ft]||r — t[M? ) dt

< (2Bk+1(72)71 +C5 [ﬁk 7’2 ‘111|7'2|‘ +ak(72) |7'1 — 7-2|1/2]> . (7-2 — 7'1)

for some constant C depending only on My, b, K1, 61, and d2. Thus, for 7 € [79, 0],

et 1(7) < 281 (T)m1 4+ Cs - Bi(7) - [ In|7|]. (6.87)

Moreover, by choosing 11 = 79 and 72 = 7 € |79, 0], we also get

’z(kﬂ)(T,Oi)‘ < Cpg - <5k HT—TO\ 1n|7—7'0|‘ +/ ag(t) - ]t—ﬂ”%lt) ,

70

and (6.84)-(6.87) imply that

Brg1(r) < Cr- (|T—701/3.\1n|7—70|y.ﬁk(T)Jr/ ak(t)-|7-—t|_2/3dt>

0

< Cs- | —7o"* - |In|r — 7ol | - (Br(T) + Bro1 (7))
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In particular, for 79 < 0 sufficiently close to 0, we get

Bua) + 56 < 5+ (B + 5B )

which implies
[ee]

Zﬁk(T) < 0.

k=1

sup Hz(k) (1, )‘
k—1 TE[70,0]

H2(R\{t,0})

We thus conclude that (w(k) (1,)) > converges uniformly for all 7 € [79, 0] to a limit function

w(r,-) in H?(R\{t,0}), which provides the solution to the linear problem (6.22). Moreover,

since lim w® (7,0+) = w(r,0+) and lim w® (7, 74) = w(r, 74), one has that lim O'Z-(k) (1) =
k—ro00 k—ro00 k—o0

oi(7) for all 7 € [0,7]. Furthermore, klim w® (7,0+) = wy(r,0+) and klim w (7, 74) =

—00 —00

wy (7, 7%) and hence Lemma 6.5 implies that w satisfies (6.80)-(6.82).

O

We are now ready to complete the proof of our second main theorem, describing the asymptotic
behavior of solutions up to the time when two shocks interact.

Proof of Theorem 6.1. 1. By induction, we construct a sequence of approximate solutions

(w("))n>1 where each w(™t1) is the solution to the linear problem (6.22). Assuming that

To € [—e0, 0] is sufficiently close to 0, we claim that

4+ N _ o)y .
nz>:1 Hw (t,-) —w™(t, )HHI(R\{W}) < 0 for all ¢ € [, 0]. (6.88)

w™ (t,2) + o™ (t, ) — al (1)
o™ (1) — ad”(t)

For a fixed n > 2, recalling that a,(t,x) = , we define

W = ) — =D AP (7 2) = ay(7,2) — an_1(T, ),
o (r) = WO (r,r=) =W (r,74), o8 (r) = WO (r,0-) = W) (7,04),

BM(r) = sup } [HW(”)(T, -)HHI(R\{W}) + ’W(")(t,o—)’ + ’W(")(t,O—i-)’ }

te([ro,7

Set ZW =W 4 V) with V) = 4™ — (=1 and v = o) — pg(z — t) — ¢o(x) . From
the above definitions, by (6.22), we deduce

20 g,z = (A<">w§,") + A<“+1>v;”+1>) + G+ _ g (6.89)
with () ()
H [w\(t,:) + o™ (L, )| (x
G010y = LG PN Gy e — )+ o).
aj(t) —ay ()
We split
w(t,O—) ' 77(3’3)7 T < 07
w(n) = U1n + V2n, 'U2,n(t7 x) =

w(t,04) -n(x), 0<zx.
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Recalling the definition of B and C' in (6.26)-(6.27), we write

Coan(t @) —van(t )] - gp(z — 1) + [Vt @) — via(t,0)] - ¢p(z)
a” (1) — " (1)

B®20)(t,x) + CU) (b, @) + Hp™ ()] (z) — oM (¢t @) - [go(a — ) + ¢o()]

GM(t,x) + ¢h(x —t) =

_|_
af" (t) — ag" (¢)
Here it is important to note that Wj(n) = vj(-n) — v](-n_l) satisfies

[wc.0)

g = O (MO + W0, 0] + W 00)]) < 001) - 50),

while, (6.31) implies,

108 (&, e geopy < O™ g 07y < O() Mo
Recalling (6.31), (3.10), (3.20), (6.34), (3.6), (3.5), and (6.36), we get
(GO — G0 (r,2)| < Ty pOTI(7), 7<2<0,
,3(”+1)(T) (6.90)

(n+1) _ cn)y(r B A )
H<G ¢ )(T7)’Hl(R\[—é,zﬂU[T—&T—O—é]) =1 stz

for some positive constant I'y. Furthermore, we have for all z[—3, 2]\{r,0} that
AW (r,2)| < T80 (r), [, 0)] < T80 (r) - (o724 fo - 7172
o8 (1)

7')HHI(R\[-&,&]U[T—&TM]) = 512

(6.91)
for some constant I'y > 0, dependent on My, b ,01, and d2. Hence, if 79 < 0 is sufficiently close
to 0, we have, using Duhamel’s formula and (6.71), for all 7 € [y, 0 that

| A < TopM(r), ||[AMy

() HHl(]R\{T,O}) =

e

|:G("+1) B G(n) _ A(n)w:(r:n) o A(n+1)11£,n+1)] (t7 )‘

< /
H! (R\{T,O}) 2 T0
< 2(Il+12 /ﬁn) —l—,Bnl() 1/( )1/2dt.

HY(R\IT)

Thus, there exists a constant I's3 > 0 dependent on My, b, 1, and o such that
|20z, )| < Ty (BO7) - fro — | + BOF(r) - |mo - 71Y2) . (6.92)

H(R\{7,0})

2. We establish a bound on |Z("+1)(7'7 0+)|. Given any 79 <7 <0, let ¢ — 2o(t) = z(t;7,0-)
be the characteristic, which reaches the origin at time 7 from the negative side. Since

20 (m,2) = 0, |Z20(5,04)| < 1207, e g (6.93)

we have
Z(n+1)(7—70_))‘ < /
< (T +Ty)- /6 () + B - (142902 = 0)712) dt

< Ta- (B7() - Ir = 7ol + BF(7) - 7 = m['2) - (6.94)

(~AMf) — A L GO GO0,y (1))] i
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where we used (6.74) and T'y denotes a positive constant dependent on My, b, 41, and Js.
Combining (6.92) -(6.94), we end up with

e

Zm ) (7, 0—)‘ + ‘Z(nﬂ)(T,O-i-)’
H(R\(r0))
< Ty (8) - r = ol + B (r) - |7~ l12),

where I's > 0 denotes a constant dependent on My, b, 61, and Js.

3. From (6.34), it holds that W+ (7, 74) = Z0+ D (1 74) WD (7 04) = 2+ (7,04),
and

e

HY(R\{7,0})
< T - (‘W("H)(T,T—)’ + )W("Jrl)(T, T—l—)‘ + ‘W("H)(T, 0—)’ + ‘W(nﬂ)(T, 0+)’>

= Tg- (’Z(n+1)(T,T—)‘ +

Z ) (7, 7‘+)‘ + ‘Z(n—H)(T,O—)’ + ‘Z(”“)(T,OJF)D
< 306 (1200 )l grop + |20 (1,0-)| + [ 207D (7, 04))
for some positive constant I'¢ on My, b, 61, and do. Thus, we end up with
() < (148T6) (1200 (7, i o + 2040 (7,0)] + | 200 7, 04))
<17 (B(7) - |7 = mol + B () |7 = 70[12)
Provided that 79 < 0 is sufficiently close to 0, we obtain that
() < pM(r)/2  forall T € [10,0][.

Thus, (6.88) holds for all T € [r, 0], and the sequence of approximations w(™ (,-) is Cauchy
in the space H'(R\{r,0}), and hence it converges to a unique limit w(r, -).

It remains to check that this limit function w is an entropic solution, i.e., it satisfies, cf. (6.5),
(6.7), and (6.13),

to H [w ()] (t. 2
<w+<,0(w)) (to,xo)Z(w+g0)(x(To))+/ Hw+ o] (t))dt,

70 a1 (t) — az(t)

where t — x(t; tg, o) denotes the characteristics curve, obtained by solving & = a(¢, z,w) with
x(to) = xo. This follows from slightly rewriting (2.19), which yields

n n L fo H [w™ ™) + o] (2, 2, (1))
(s +9) ) = @+ [ ),
70 a) (t) —ay (t)

¢ n+1),— n+1), (n+1)
I <Z<n+1)_ WD () 4 WO >+<t>> A a0)
70

AV ) ) | i — 2T AW ) g
0 a0 ) - a 1) ?

to
/q—
0

46



where t — x,(t) denotes the characteristic curve, obtained by solving (6.61) with z,,(t9) = xo.

Finally, to prove uniqueness, assume that w and w are two entropic solutions. We define

W=w-w  f(r) = Sup. ||W(ta')HH1(R\{t,0})+|W(t70_)’+|W(taO+)|]
€|0,7

The arguments used in the previous steps now yield the inequality

B(r) < B(7)/2,

and this implies Z(7) = 0 for all 7 € [r9, 0], completing the proof. O
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