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Abstract

The paper develops a new approach to the classical bang-bang theorem in linear control
theory, based on Baire category. Among all controls which steer the system from the origin
to a given point x̄, we consider those which minimize an auxiliary linear functional φ. For
all φ in a residual set, we show that the minimizing control is unique and takes values
within a set of extreme points.

1 Introduction

For t ∈ [0, T ], consider the Cauchy problem

ẋ(t) ∈ F
(
x(t)

)
, (1.1)

x(0) = 0 , (1.2)

where x 7→ F (x) ⊂ IRn is a bounded, Hausdorff continuous multifunction with compact convex
values. Call F ⊂ C

(
[0, T ]; IRn

)
the set of Carathéodory solutions of (1.1). Moreover, call Fext

the set of trajectories of
ẋ(t) ∈ ext F (x(t)) , (1.3)

where the time derivative takes values within the set of extreme points of F (x).

If F is Lipschitz continuous w.r.t. the Hausdorff distance, starting with the seminal paper by
Cellina [7], it is now well known that the set of extremal solutions Fext is a residual subset
of F , i.e. it contains the intersection of countably many open dense subsets [9, 10]. By an
application of Baire’s theorem, this implies that the set Fext is nonempty and every solution
of (1.1) can be uniformly approximated by solutions of (1.3).

In [3] an alternative approach was developed, still based on Baire category but from a dual
point of view. For every w ∈ IRn, consider the compact, convex subset of vectors in F (x)
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which maximize the inner product with w, namely

Fw(x)
.
=
{
y ∈ F (x) ; 〈y, w〉 = max

y′∈F (x)
〈y′, w〉

}
. (1.4)

For each continuous path t 7→ w(t), the multifunction Fw(t, x)
.
= Fw(t)(x) is upper semicon-

tinuous with compact, convex values. Hence the Cauchy problem

ẋ(t) ∈ Fw(t)
(
x(t)

)
, x(0) = 0 , (1.5)

has a non-empty, compact set of solutions Fw ⊂ C([0, T ]; IRn). The main result in [3] shows
that for “almost all” functions w ∈ C([0, T ]; IRn), in the Baire category sense, all solutions of
(1.5) are also solutions of (1.3).

Theorem 1. Let F be a bounded, Hausdorff continuous multifunction on IRn, with compact
convex values. Then the set

W
.
=
{
w(·) ; Fw ⊆ Fext

}
(1.6)

is a residual subset of C([0, T ]; , IRn).

Notice that here the Lipschitz continuity of F is not required. Incidentally, this yields yet an-
other proof of the classical theorem of Filippov [11], on the existence of solutions to differential
inclusions with continuous, non-convex valued right hand side.

The purpose of the present paper is to explore whether a “dual” Baire category approach can
be applied also to some boundary value problems (or variational problems) without convexity
assumptions. The basic setting is as follows.

Consider a non-convex problem P , and let S be the set of solutions to a suitable convexified
problem P̂ . Under natural assumptions, S will be a nonempty, closed subset of a Banach
space, hence a complete metric space. Moreover, one can identify a set Sext ⊂ S of “extremal
solutions” which solve the original non-convex problem P .

• Direct approach: Show that the set Sext of extremal solutions is residual in S.

• Dual approach: Consider a family of constrained optimization problems

min
u(·)∈S

Jw(u), (1.7)

where the functional Jw depends on an auxiliary function w, ranging in a Banach space
W . For each w ∈W , call Sw the set of minimizers. Show that the set {w ∈W ; Sw ⊆
Sext} is residual in W .

As a first step, we apply these ideas to derive an alternative proof of the classical bang-bang
principle. Namely, consider the linear control system in IRn

ẋ(t) = A(t)x(t) +B(t)u(t) , u(t) ∈ Ω. (1.8)
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Here A(t) and B(t) are n × n and n ×m matrices respectively, while Ω ⊂ IRm is a compact
convex set. Together with (1.8) we consider a system where the control takes values in the
extreme points:

ẋ(t) = A(t)x(t) +B(t)u(t) , u(t) ∈ extΩ. (1.9)

Given initial and terminal conditions

x(0) = 0, x(T ) = x̄, (1.10)

assume that the boundary value problem (1.8)-(1.10) has a solution. Then by the bang-bang
theorem [6, 8, 12] the problem (1.9)-(1.10) has a solution as well.

The standard proof of the bang-bang theorem relies on Lyapunov’s theorem, providing the
convexity of the range of a non-atomic vector measure. An alternative approach, based on
Baire category, was developed in [5]. Call

S .
=
{
x : [0, T ] 7→ IRn ; x(0) = 0, x(T ) = x̄, ẋ(t) = A(t)x(t) +B(t)u(t)

for some measurable control u : [0, T ] 7→ Ω
}
.

Sext .
=
{
x : [0, T ] 7→ IRn ; x(0) = 0, x(T ) = x̄, ẋ(t) = A(t)x(t) +B(t)u(t)

for some measurable control u : [0, T ] 7→ extΩ
}
.

As proved in [5], one has

Theorem 2. Let A,B be bounded, measurable, matrix-valued functions, and let Ω ⊂ IRm be
a compact convex set. Assume that S 6= ∅. Then S is compact in C([0, T ]; IRn) and Sext is a
residual subset of S. In particular, Sext is nonempty.

In this paper we develop a “dual” approach, also based on Baire category. Let U be the set
of all measurable functions u : [0, T ] 7→ Ω such that the solution to the Cauchy problem

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = 0 (1.11)

satisfies the terminal condition
x(T ) = x̄ . (1.12)

Throughout the following, we shall assume that U is non-empty. Given any continuous function
w ∈ C([0, T ]; IRm), consider the constrained optimization problem

min
u∈U

∫ T

0

〈
w(t) , u(t)

〉
dt . (1.13)

We show that, for “almost all” continuous functions w ∈ C([0, T ]; IRm), in the sense of Baire
category, the problem (1.13) has a unique minimizer. This minimizer is a bang-bang control,
i.e. it takes values within the set of extreme points of Ω.

Theorem 3. Let A,B be bounded, measurable, matrix-valued functions, and let Ω ⊂ IRm

be a compact convex set. Let W ⊆ C([0, T ]; IRm) be the set of all continuous functions w
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such that the variational problem (1.13) has a unique minimizer, satisfying u(t) ∈ extΩ for
a.e. t ∈ [0, T ]. Then W is residual in C([0, T ]; IRm).

A proof of the theorem will be given in the next section. For the basic theory of multifunc-
tions and differential inclusions we refer to the classical monograph [1]. Definitions and basic
properties of Young measures, mentioned in the proof, can be found in [14, 15, 16].

2 Proof of Theorem 3

1. Given the compact convex set Ω ⊂ IRm, consider the function ϕ : IRm 7→ IR ∪ {−∞}
defined by

ϕ(y)
.
= max

{∫ 1

0
|f(s)− y|2 ds : f : [0, 1] 7→ Ω ,

∫ 1

0
f(s) ds = y

}
,

with the provision that ϕ(y)
.
= −∞ if y /∈ Ω. Otherwise stated, ϕ(y) is the maximum variance

among all probability measures supported on Ω, whose barycenter is at y. As proved in [2], ϕ
is upper semicontinuous and concave on Ω. Moreover, we have the equivalence

ϕ(y) = 0 ⇐⇒ y ∈ extΩ. (2.1)

A measurable control u : [0, T ] 7→ Ω takes values in extΩ for a.e. t iff∫ T

0
ϕ(u(t)) dt = 0 . (2.2)

2. The solution to the Cauchy problem (1.11) can be written as

x(t) =

∫ t

0
M(t, s)B(s)u(s) ds ,

where M(t, s) is the n × n matrix fundamental solution to the linear homogeneous system
ẋ = A(t)x. In other words,

∂

∂t
M(t, s) = A(t)M(t, s) , M(s, s) = In ,

where In is the n×n identity matrix. Setting G(s)
.
= M(T, s)B(s), for any w ∈ C([0, T ]; IRm)

the optimization problem (1.13) can be reformulated as follows.

(OP) Find u : [0, T ] 7→ Ω which minimizes the integral

Jw(u)
.
=

∫ T

0

〈
w(t) , u(t)

〉
dt (2.3)

subject to ∫ T

0
G(t)u(t) dt = x̄ . (2.4)
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3. For any ε > 0 and N ≥ 1, consider the set Wε,N ⊆ C([0, T ]; IRm) of all functions w with
the following property. If

u(t) ∈ argmin
ω∈Ω

〈
ω , w(t)− λG(t)

〉
(2.5)

for some row vector λ = (λ1, . . . , λn) ∈ [−N,N ]n and all t ∈ [0, T ], then∫ T

0
ϕ(u(t)) dt < ε . (2.6)

In the next two steps we will prove that each Wε,N is open and dense, hence the intersection

W] .
=

⋂
ε>0, N≥1

Wε,N (2.7)

is residual in C([0, T ]; IRm).

4. We first show that each set Wε,N is open in C([0, T ]; IRm). Indeed, consider a sequence
(wi)i≥1 converging uniformly to w and such that wi /∈ Wε,N for every i. Then there exist
sequences λi ∈ [−N,N ]n and ui : [0, T ] 7→ Ω satisfying

ui(t) ∈ argmin
ω∈Ω

〈
ω , wi(t)− λiG(t)

〉
for all t ∈ [0, T ] (2.8)

and ∫ T

0
ϕ(ui(t)) dt ≥ ε . (2.9)

By taking subsequences, we can assume that λi → λ ∈ [−N,N ]n and ui converges weakly
in L2([0, T ], IRm) to some function u. By the linearity of the functional in (2.5), and the
convexity of the set Ω, this limit function u(·) satisfies (2.5), for a.e. t ∈ [0, T ].

By the upper semicontinuity and the concavity of ϕ in Ω it follows∫ T

0
ϕ(u(t)) dt ≥ ε . (2.10)

Hence w /∈ Wε,N , showing that Wε,N is open in C([0, T ]; IRm).

5. In this and the next two steps we will prove that each Wε,N is dense in C([0, T ]; IRm).
Consider the function Φ : IRm × IRm 7→ IR defined by

Φ(v, w)
.
= max

{
ϕ(u) ; u ∈ argmin

ω∈Ω
〈ω , w − v〉

}
. (2.11)

Observing that the map Φ is upper semicontinuous, for every η > 0 we can consider the
Lipschitz continuous approximation

Φη(v, w)
.
= max

{
Φ (v′, w′)− η |v′ − v| − η |w′ − w| ; (v′, w′) ∈ IRm × IRm

}
. (2.12)

Notice that for any η′ ≤ η it holds

Φη′(v, w) ≥ Φη(v, w), for all (v, w) ∈ IRm × IRm . (2.13)
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For any fixed v ∈ IRm, it is known that Φ(v, w) = 0 for almost every w ∈ IRm. Indeed (see
[13]) Φ(v, w) = 0 if and only if the minimum

ψ(w)
.
= min

ω∈Ω
〈ω , w − v〉

is attained at a single point. This is true if and only if the Lipschitz map z 7→ ψ(z) is
differentiable at the point z = w. By Rademacher’s theorem, this holds for a.e. w ∈ IRn.

We claim that for every δ > 0 and K,M > 0 there exists η > 0 sufficiently large so that∫
B(0,K)

Φη(v, w) dw < δ for all v ∈ IRm , |v| ≤M . (2.14)

Otherwise, let (vk, ηk)k≥1 be a sequence of vectors in IRm×IR satisfying that limk→∞ ηk = ∞,
limk→∞ vk = v̄ and ∫

B(0,K)
Φηk(vk, w) dw ≥ δ for all k ≥ 1 . (2.15)

From (2.13), for any η > 0 there is Kη > 0 such that∫
B(0,K)

Φη(vk, w) dw ≥ δ, for all k ≥ Kη .

The Lipschitz continuity of Φη implies∫
B(0,K)

Φη(v̄, w) dw = lim
k→∞

∫
B(0,K)

Φη(vk, w) ≥ δ .

Therefore, letting η → +∞ we obtain∫
B(0,K)

Φ(v̄, w) dw ≥ δ . (2.16)

This yields a contradiction because Φ(v̄, w) = 0 for almost every w.

6. Choose a constant L > 0 such that

ϕ(u) ≤ L for all u ∈ Ω . (2.17)

Relying on Lusin’s theorem, we can replace the measurable matrix-valued function G with a
continuous function Ĝ such that

meas
({
t ; Ĝ(t) 6= G(t)

})
<

ε

4L
. (2.18)

Let any radius ρ > 0 and any w̃ ∈ C([0, T ]; IRm) be given. By the previous step, we can find
η > 0 large enough so that

−
∫
B(w̃(t),ρ)

Φη
(
λ Ĝ(t) , w

)
dw ≤ ε

4T
, (2.19)

for every t ∈ [0, T ] and λ ∈ [−N,N ]n. Here and in the sequel, −
∫
S
f dx denotes the average

value of the function f over the set S. From (2.19) we deduce∫ T

0
−
∫
B(w̃(t),ρ)

Φη (λ Ĝ(t) , w ) dw dt ≤ ε

4
. (2.20)

Consider a sequence of continuous functions wν ∈ C([0, T ]; IRm), weakly converging to w̃, such
that
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(i) wν(t) ∈ B(w̃(t), ρ), for all ν ≥ 1 and t ∈ [0, T ],

(ii) as ν → ∞, the limit is described by the family of Young measures {µt ; t ∈ [0, T ]},
where µt is the probability measure uniformly distributed on the ball B(w̃(t), ρ).

Since Φη is continuous, this yields

lim
ν→∞

∫ T

0
Φη (λ Ĝ(t) , wν(t) ) dt =

∫ T

0
−
∫
B(w̃(t),ρ)

Φη (λ Ĝ(t) , w ) dw dt .

Choosing w = wν for some ν sufficiently large, in view of (2.20) we obtain∫ T

0
Φη (λ Ĝ(t) , w(t) ) dt ≤ ε

3
. (2.21)

In turn, by (2.17) and (2.18) and the obvious inequality Φ ≤ Φη, this implies∫ T

0
Φ (λG(t) , w(t) ) dt ≤ L

ε

4L
+

∫ T

0
Φη (λ Ĝ(t) , w(t) ) dt ≤ ε

4
+
ε

3
. (2.22)

Since ‖w − w̃‖C ≤ ρ, and ρ > 0 can be chosen arbitrarily small, this proves the density of
Wε,N .

7. The existence of a sequence (wν)ν≥1 satisfying the properties (i)-(ii) in the previous step
follows from a standard construction. Consider a sequence of points yj ∈ B(0, ρ) uniformly
distributed on the ball centered at the origin with radius ρ. That means

lim
ν→∞

1

ν

ν∑
j=1

f(yj) = −
∫
B(0,ρ)

f dx , (2.23)

for every continuous function f : IRm 7→ IR. For a given ν ≥ 1, divide the interval [0, T ] into ν2

subintervals, inserting the times t` = h `, with h = T/ν2. Consider the piecewise continuous
function

zν(t)
.
= w̃(t) + yj if t ∈ [t`−1, t`] with ` = mν + j for some integer m.

Then choose a continuous function wν such that

meas
(
{t ; wν(t) 6= zν(t)}

)
<

1

ν
.

This sequence satisfies the required properties.

8. Now assume that w ∈ W]. We claim that the optimization problem (OP) has a unique
solution u : [0, T ] 7→ extΩ. Indeed, assume that u1, u2 are two distinct solutions. Then

u(t) = u1(t)+u2(t)
2 is also a solution. Set v(t)

.
= u1(t)−u2(t)

2 and consider the reachable subspace

Y
.
=

{∫ T

0
G(t)v(t)θ(t) dt ; θ : [0, T ] 7→ IR measurable

}
⊆ IRn. (2.24)
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Consider the control system on the product space IR× Y , with variables (y0, y).{
ẏ0(t) = 〈w(t) , v(t)〉 θ(t) ,

ẏ(t) = G(t)v(t)θ(t) .

{
y0(0) = 0 ,

y(0) = 0 .

Then the control θ∗(t) ≡ 0 provides an optimal solution to the problem

minimize: y0(T )

subject to θ(t) ∈ [−1, 1] , y(T ) = 0 .

The necessary conditions for optimality yield the existence of a nonzero vector λ = (λ0, λ) ∈
IR× Y such that

θ∗(t) = arg min
θ∈[−1,1]

(
λ0〈w(t), v(t)〉 − 〈λ, G(t)v(t)〉

)
θ

for a.e. t ∈ [0, T ]. If λ0 = 0, then the non-zero vector λ ∈ Y has the property〈
λ, G(t)v(t)

〉
= 0 for a.e. t ∈ [0, T ] .

But this contradicts the definition (2.24) of Y .

If λ0 6= 0, by a normalization we can assume λ0 = 1. Then there exists a vector λ ∈ Y such
that 〈

w(t), v(t)
〉
−
〈
λ, G(t)v(t)

〉
= 0 for a.e. t ∈ [0, T ] .

This implies

u(t) ∈ argmin
ω∈Ω

〈
ω , w(t)− λG(t)

〉
while ∫ T

0
ϕ(u(t)) dt ≥

∫ T

0
|v(t)|2 dt > 0.

This contradicts the assumption w ∈ W]. We thus conclude that W] ⊆ W. By (2.7), W] is
residual, hence the same is true for W.
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