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Abstract. In this paper we formulate a time-optimal control problem in the
space of probability measures. The main motivation is to face situations in �nite-
dimensional control systems evolving deterministically where the initial position
of the controlled particle is not exactly known, but can be expressed by a proba-
bility measure on Rd. We propose for this problem a generalized version of some
concepts from classical control theory in �nite dimensional systems (namely, tar-
get set, dynamic, minimum time function...) and formulate an Hamilton-Jacobi-
Bellman equation in the space of probability measure solved by the generalized
minimum time function. We prove also some representation results linking the
classical concept to the corresponding generalized ones. The main tool used is a
superposition principle, proved by Ambrosio, Gigli and Savaré, which provides a
probabilistic representation of the solution of the continuity equation as a weighted
superposition of absolutely continuous solutions of the characteristic system.

1. Introduction

Classical minimum time problem in �nite-dimension deals with the minimization
of the time needed to steer a point x0 ∈ Rd to a given closed subset S of Rd, called
the target set, along the trajectories of a controlled dynamic of the form

(1.1)


ẋ(t) ∈ F (x(t)), t > 0,

x(0) = x0,

where F is a set-valued map from Rd to Rd whose value at each point denote the
set of admissible velocities at that point.

In this way it is possible to de�ne the minimum time function T : given x ∈ Rd,
we de�ne T (x) to be the minimum time needed to steer such point to the target
S along trajectories of (1.1). The study of regularity property of T is a central
topic in optimal control theory and it has been extensively treated in literature. In
particular, we refer to [11, 12] and to references therein, for recent results on the
regularity of T in the framework of di�erential inclusions.

Our study moves from the natural consideration that in many real applications
we do not know exactly the starting position x0 ∈ Rd of the particle, and we can
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express it only with some uncertainty. This happens even if we assume to have a
deterministic evolution of the system.

A natural choice to face this situation is to model the uncertainty on the initial
position by a probability measure µ0 ∈P(Rd) on Rd, looking to a new macroscopic
control system made by a suitable superposition of a continuum of weighted solutions
of the classical di�erential inclusion (1.1) starting from each point of the support of
µ0 (microscopic point of view).

The time evolution of the macroscopic system in the space of probability measures,
under suitable assumptions, can be thought as ruled by the continuity equation

(1.2)


∂tµ(t, x) + div(vt(x)µ(t, x)) = 0, for t > 0, x ∈ Rd,

µ(0, ·) = µ0.

which represents the conservation of the total mass µ0(Rd) during the evolution.
Here vt(x) is a suitable time-depending Eulerian vector �eld, representing the ve-
locity of the mass crossing position x at time t.

In order to re�ect the original control system (1.1) at a microscopic level, a natural
requirement on the vector �eld vt(·) is to be a selection of the set-valued map F (·):
this means that the microscopic particles still obey the nonholonomic constraints
coming from (1.1). On the other hand, since the conservation of the mass gives us
the property µ(t,Rd) = µ0(Rd) for all t, we are entitled � according to our motivation
� to say that the measure µ(t, ·) actually represents the probability distribution in
the space Rd of the evolving particles at time t.

The analysis of (1.2) by mean of the superposition of ODEs of the form ẋ(t) =
v(x(t)), or ẋ(t) = v(t, x(t)), has been extensively studied in the past years by many
authors: for a general introduction, an overview of known results and open problems,
and a comprehensive bibliography, we refer to the recent survey [1]. The main issue
in these problems is to study existence, uniqueness and regularity of the solution of
(1.2), for µ0 in a suitable class of measures, when the vector �eld v has low regularity
and, hence, it does not ensure that the corresponding ODEs have a (possibly not
unique) solution among absolutely continuous functions, for every initial data x0. In
this case, the solution of (1.2) provides existence and uniqueness not in a pointwise
sense, but rather generically. However we will not address this problem in this
paper.

In order to face control problems involving measures, we need �rst of all a coherent
generalization of the target set S ⊆ Rd. To this aim, we consider an observer which
measures the average of certain quantities φ(·) ∈ Φ on the system, and consider as
target set S̃Φ ⊆P(Rd) all the probability measures representing states which make
the result of the measurements nonpositive. If we take for instance Φ = {dS(·)},
the generalized target in P(Rd) turns out to be the set of all probability measures
supported on S.

This choice seems to be the simplest possible in this framework and it results in
a quite natural de�nition of generalized minimum time: we aim to minimize the
time needed to steer an initial measure towards a measure in the generalized target,
along solutions of (1.2) with the additional constraint v(x) ∈ F (x) a.e. in Rd. This
can be viewed as a controlled version of (1.2).
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The links between continuity equation (1.2) and optimal transport theory have
been investigated recently by many authors. One can prove that suitable subsets of
P(Rd) can be endowed with a metric structure � the Wasserstein metric � whose
absolutely continuous curves turn out to be precisely the solutions of (1.2). This
has been applied to solve many variational problems, among which we recall optimal
transport problems, asymptotic limit for gradient �ows of integral functionals, and
calculus of variation in in�nite dimensional spaces. We refer to [3] and [23] for an
introduction to the subject, and for generalizations from Rd to in�nite dimensional
metric spaces.

Our main results can be summarized as follows:

· a theorem of existence of time�optimal curves in the space of probability
measures (Theorem 4.14);
· a comparison result between classical and generalized minimum time func-
tions in some cases (Proposition 4.8);
· a su�cient condition for the generalized minimum time function to be �nite,
with an upper estimate based on the initial data (Theorem 4.19);
· the proof that the generalized minimum time function is a viscosity solution
in a suitable sense of an Hamilton-Jacobi-Bellman equation analoguos to the
classical one (Theorem 5.10).

Recent works (see e.g. [2, 17]) have treated the problem of viscosity solutions
of Hamilton-Jacobi equations in the space of probability measures endowed with
Wasserstein metric. Since classical minimum time function can be characterized
as unique viscosity solution of Hamilton-Jacobi-Bellman equation, it would be in-
teresting to investigate if it is possible to characterize in similar way the general-
ized minimum time function in this setting. Indeed, in this paper we just proved
that the generalized minimum time function solves in a suitable viscosity sense a
natural Hamilton-Jacobi-Bellman, which presents strong analogies with the �nite-
dimensional case.
Related to such a problem, a further application could be the theory of mean

�eld games [19,20]. According to this theory, in games with a continuum of agents,
having the same dynamics and the same performance criteria, the value function
for an average player can be retrieved by solving an in�nite dimensional Hamilton�
Jacobi equation, coupled with the continuity equation describing how the mass of
players evolves in time.

Further applications of our approach, that we plan to investigate in the next
future, are in the direction of the classical control problems. For instance, in the

study of control�a�ne systems of the form ẋ =
m∑
i=1

uifi(x), where ui ∈ [−1, 1]

are the controls and fi(·) are given vector �elds. In these systems, controllability
depends on the Lie algebra generated by vector �elds fi(·). When these vector �elds
are rough, classical Lie brackets may not be available at every point of Rd, but just
in some set of full measure. This problem was treated in [21], leading to a de�nition
of nonsmooth Lie brackets. However, a valid alternative might be to extend the
given system to the measure�valued context and to choose the initial data of such
generalized system in a suitable subclass of measure, in the spirit of [1].
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Another application might be in the context of discontinuous feedback controls for
general nonlinear control systems ẋ = f(x, u). Here, the construction of stabilizing
or nearly optimal controls x 7→ u(x) cannot be performed, even for smooth dynamics,
among continuous controls [22]. However, it is possible to construct discontinuous
feedback controls which are stabilizing or nearly optimal, and whose discontinuities
are su�ciently tame to ensure the existence of Carathéodory solutions for the closed
loop system ẋ = f(x, u(x)), the so�called patchy feedback controls [4, 5, 10], but
uniqueness only holds for a set of full measure of initial data.

The paper is structured as follows: in Section 2 we review some notion from
measure theory, optimal transport, continuity equation, di�erential inclusions, and
control theory. In Section 3 we introduce the generalized target, studying its topolog-
ical and metric properties in the space of probability measures. Finally, in Section
4 we give two de�nitions of generalized minimum time functions, providing some
comparison results between them and with the classical minimum time function,
and we prove the Existence Theorem 4.14 and the Attainability Theorem 4.19. In
Section 5 we prove that the generalized minimum time function solves in a suitable
viscosity sense an Hamilton-Jacobi-Bellman equation.

2. Preliminaries

In this section we review some concepts from measure theory, optimal transport,
and control theory.

2.1. Probability measure. Our main references for this part are [3] and [23].

De�nition 2.1 (Probability measures). LetX be a complete separable metric space,
P(X) be the set of Borel probability measures on X. Since P(X) can be identi�ed
with a convex subset of the unitary ball of (C0

b (X))′ (the dual space of the space of
bounded continuous functions on X), we can equip P(X) with the weak∗ topology
induced by (C0

b (X))′. In particular, we say that a sequence of probability measures
{µn}n∈N is w∗-convergent (or narrowly converges) to a probability measure µ ∈
P(X), and write µn ⇀

∗ µ, if and only if for every f ∈ C0
b (X) it holds

lim
n→∞

∫
X

f(x) dµn(x) =

∫
X

f(x) dµ(x).

We will consider on P(X) the σ-algebra of Borel sets generated by the w∗-open
subsets of P(X).

De�nition 2.2 (Tightness). Let X be a metric space and K ⊆ P(X). We say
that K is tight if for every ε > 0 there exists a compact subset Kε of X such that
µ(X \Kε) ≤ ε for every µ ∈ K . Every tight subset of P(X) is relatively compact
in P(X). The converse is true if there exists an equivalent complete metric on X.

De�nition 2.3 (Push forward). If X, Y are separable metric spaces, µ ∈ P(X),
and r : X → Y is a Borel (or, more generally, µ-measurable) map, we denote by
r]µ ∈P(Y ) the push-forward of µ through r, de�ned by

r]µ(B) := µ(r−1(B)), for all Borel sets B ⊆ Y.

Equivalently, we have ∫
X

f(r(x)) dµ(x) =

∫
Y

f(y) dr]µ(y),

for every bounded (or r]µ-integrable) Borel function f : Y → R.
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Proposition 2.4 (Properties of push forward). Let X, Y , Z be separable metric
spaces, µ ∈P(X), and let r : X → Y be a Borel map.

(1) If ν ∈P(X) satis�es ν � µ, then r]ν � r]µ.
(2) Given a Borel map s : Y → Z, the following composition rule holds

(s ◦ r)]µ = s](r]µ).

(3) If r ∈ C0(X;Y ) then r] : P(X) → P(Y ) is continuous with respect to the
narrow convergence and

r(suppµ) ⊆ supp(r]µ) = r(suppµ).

(4) Let {rn : X → Y }n∈N be a sequence of Borel maps uniformly convergent to
r on compact subsets of X, and let {µn}n∈N ⊆ P(X) be a tight sequence
narrowly convergent to µ. Then if r is continuous, we have that rn]µn ⇀

∗

r]µ.

Proof. See [3], Chapter 5, Section 2. �

De�nition 2.5 (p-moment). Let µ ∈ P(Rd), p ≥ 1. We say that µ has �nite
p-moment if

mp(µ) :=

∫
Rd
|x|p dµ(x) < +∞.

Equivalently, we have that µ has p-moment �nite if and only if for every x0 ∈ Rd

we have ∫
Rd
|x− x0|p dµ(x) < +∞.

We denote by Pp(Rd) the subset of P(Rd) consisting of probability measures with
�nite p-moment.

De�nition 2.6 (Uniform integrability). Let K ⊆ P(Rd), g : Rd → [0,+∞] be a
Borel function. We say that

(1) g is uniformly integrable with respect to K if

lim
k→∞

sup
µ∈K

∫
{x∈Rd: g(x)>k}

g(x) dµ(x) = 0.

(2) the set K has uniformly integrable p-moments, p ≥ 1, if |x|p is uniformly
integrable with respect to K .

Lemma 2.7 (Uniform integrability criterion). Let K = {µn}n∈N ⊆P(Rd), p ≥ 1,
µn ⇀

∗ µ ∈P(Rd). Then the set K has uniformly integrable p-moments if and only
if

lim
n→∞

∫
Rd
f(x) dµn(x) =

∫
Rd
f(x) dµ(x),

for every continuous function f : Rd → R such that there exist a, b ≥ 0 and x0 ∈ Rd

with |f(x)| ≤ a+ b|x− x0|p for every x ∈ Rd.

Proof. See Lemma 5.1.7 of [3]. �
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2.2. Optimal transport and Wasserstein distances.

De�nition 2.8 (Wasserstein distance). Given µ1, µ2 ∈P(Rd), p ≥ 1, we de�ne the
p-Wasserstein distance between µ1 and µ2 by setting

(2.1) Wp(µ1, µ2) :=

(
inf

{∫∫
Rd×Rd

|x1 − x2|p dπ(x1, x2) : π ∈ Π(µ1, µ2)

})1/p

,

where the set of admissible transport plans Π(µ1, µ2) is de�ned by

Π(µ1, µ2) :=

{
π ∈P(Rd × Rd) :

π(A1 × Rd) = µ1(A1),
π(Rd × A2) = µ2(A2),

for all µi-measurable sets Ai, i = 1, 2

}
.

We also denote with Πp
o(µ1, µ2) the subset of Π(µ1, µ2) consisting of optimal trans-

port plans, i.e. the set of all plans π for which the in�mum in (2.1) is attained. We
will also use the notation Πo(µ1, µ2) when the context makes clear which distance
Wp is being considered.

Proposition 2.9. Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·) is a com-
plete separable metric space. Moreover, given a sequence {µn}n∈N ⊆ Pp(Rd) and
µ ∈Pp(Rd), we have that the following are equivalent

(1) lim
n→∞

Wp(µn, µ) = 0,

(2) µn ⇀
∗ µ and {µn}n∈N has uniformly integrable p-moments.

Proof. See Proposition 7.1.5 in [3]. �

In the following Proposition we summarize some properties of the Wasserstein
distance (see chapter 6 in [23] or section 7.1 in [3]).

Proposition 2.10. The Wasserstein distances de�ned above satis�es the following
properties:

• Metric character. Wp is a pseudo-distance on P(Rd), i.e. it satis�es the
axioms of the distance, but it can assume the value +∞. Namely, for all
µ0, µ1, µ2 ∈P(Rd) we have
(i) Wp(µ0, µ1) ≥ 0, and Wp(µ0, µ1) = 0 if and only if µ0 = µ1 (positive

de�niteness);
(ii) Wp(µ0, µ1) = Wp(µ1, µ0) (symmetry);
(iii) Wp(µ0, µ2) ≤ Wp(µ0, µ1) +Wp(µ1, µ2) (triangle inequality).
When restricted to Pp(Rd), Wp is actually �nite, so it is a metric.
• Topological properties. The topology induced by Wp on Pp(Rd) is �ner
(equivalently stronger) than or equal to the narrow one.
• Lower semicontinuity. If µ0

n ⇀
∗ µ0, µ1

n ⇀
∗ µ1 in P(Rd) when n → +∞,

then
Wp(µ

0, µ1) ≤ lim inf
n→+∞

Wp(µ
0
n, µ

1
n).

Proposition 2.11 (Monge�Kantorovich duality). Given µ1, µ2 ∈ P(Rd), p ≥ 1,
the following dual representation holds

W p
p (µ1, µ2) =(2.2)

= sup


∫
Rd
ϕ(x1) dµ1(x1) +

∫
Rd
ψ(x2) dµ2(x2) :

ϕ,ψ ∈ C0
b (Rd)

ϕ(x1) + ψ(x2) ≤ |x1 − x2|p
for µi�a.e. xi ∈ Rd

 .
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Proof. See Theorem 6.1.1 in [3]. �

2.3. Continuity equation. For this part the main reference is [3].

De�nition 2.12 (Continuity equation). Given τ > 0, a Borel family of probability
measures µ = {µt}t∈[0,τ ] ⊆ P(Rd) and a Borel map v : [0, τ ] × Rd → Rd (we will
write also vt(x) = v(t, x)), we say that µ solves the continuity equation

(2.3) ∂tµt + div(vtµt) = 0,

if for every ϕ ∈ C∞c (Rd) there holds

d

dt

∫
Rd
ϕ(x)dµt(x) =

∫
Rd
〈vt(x),∇ϕ(x)〉 dµt(x),

in the sense of distributions on ]0, τ [.

According to Lemma 8.1.2 in [3], if the above v satis�es

(2.4)

∫ τ

0

∫
Rd
|vt(x)| dµt(x) dt < +∞,

then there exists a curve µ̃ : [0, τ ] → P(Rd) which is continuous with respect to
narrow convergence and such that µ̃(t) = µt for L 1-a.e. t ∈ (0, τ), i.e. each solution
of the continuity equation admits a unique narrowly continuous representative.

The following gluing lemma will be also used.

Lemma 2.13. Let T1, T2 > 0 be given. For i = 1, 2, assume that µi = {µit}t∈[0,Ti] are
narrowly continuous families of probability measures on Rd, and vi : [0, Ti]×Rd → Rd

are Borel maps such that µ1
|t=T1

= µ2
|t=0 and

∂tµ
i
t + div(vitµ

i
t) = 0,

∫ Ti

0

∫
Rd
|vit(x)| dµit(x) dt < +∞,

i = 1, 2 .

Then if we set

(µt, vt) =

{
(µ1

t , v
1
t ), for 0 ≤ t ≤ T1,

(µ2
t−T1

, v2
t−T1

), for T1 ≤ t ≤ T1 + T2,

we have that µ := {µt}t∈[0,T1+T2] solves the continuity equation ∂tµt + div(vtµt) = 0.

Proof. See Lemma 4.4 in [16]. �

Theorem 2.14 (Superposition principle). Let µ = {µt}t∈[0,T ] be a solution of the
continuity equation ∂tµt + div(vtµt) = 0 for a suitable Borel vector �eld v : [0, T ]×
Rd → Rd satisfying ∫ T

0

∫
Rd

|vt(x)|
1 + |x|

dµt(x) dt < +∞ .

Then there exists a probability measure η ∈ P(Rd × ΓT ), with ΓT = C0([0, T ];Rd)
endowed with the sup norm, such that
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(i) η is concentrated on the pairs (x, γ) ∈ Rd × ΓT such that γ is an absolutely
continuous solution of{

γ̇(t) = vt(γ(t)), for L 1-a.e t ∈ (0, T )

γ(0) = x,

(ii) for all t ∈ [0, T ] and all ϕ ∈ C0
b (Rd) we have∫

Rd
ϕ(x)dµt(x) =

∫∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ).

Conversely, given any η satisfying (i) above and de�ned µ = {µt}t∈[0,T ] as in (ii)
above, we have that ∂tµt + div(vtµt) = 0 and µ|t=0 = γ(0)]η.

Proof. See Theorem 5.8 in [9] and Theorem 8.2.1 in [3]. �

2.4. Di�erential inclusions and classical minimum time. For this part, our
main references are [7] and [8].

De�nition 2.15 (Standing Assumption). We will say that a set-valued function
F : Rd ⇒ Rd satis�es the assumption (Fj), j = 0, 1, 2, 3 if the following hold true

(F0) F (x) 6= ∅ is compact and convex for every x ∈ Rd, moreover F (·) is contin-
uous with respect to the Hausdor� metric, i.e. given x ∈ X, for every ε > 0
there exists δ > 0 such that |y − x| ≤ δ implies F (y) ⊆ F (x) + B(0, ε) and
F (x) ⊆ F (y) +B(0, ε).

(F1) F (·) has linear growth, i.e. there exist nonnegative constants L1 and L2 such

that F (x) ⊆ B(0, L1|x|+ L2) for every x ∈ Rd,
(F2) F (·) is Lipschitz continuous with respect to the Hausdor� metric, i.e., there

exists L > 0, L ∈ R, such that for all x, y ∈ Rd it holds

F (x) ⊆ F (y) + L|y − x|B(0, 1).

(F3) F (·) is bounded, i.e. there exist M > 0 such that ‖y‖ ≤ M for all x ∈ Rd,
y ∈ F (x).

Theorem 2.16. Under assumption (F0) and (F1), the di�erential inclusion

(2.5) ẋ(t) ∈ F (x(t)) ,

has at least one Carathéodory solution de�ned in [0,+∞[ for every initial data x(0)
in Rd, i.e., an absolutely continuous function x(·) satisfying (2.5) for a.e. t ≥ 0.
Moreover, the set of trajectories of the di�erential inclusions (2.5) is closed in the
topology of uniform convergence.

Proof. See e.g. Theorem 2 p. 97 in [7] and Theorem 1.11 p.186 in Chapter 4 of
[14]. �

The following simple classical lemma will be used.

Lemma 2.17 (A priori estimate on di�erential inclusions). Assume (F0) and (F1).
Let K ⊂ Rd be compact and T > 0 and set ‖K‖ = max

y∈K
‖y‖. Then, for all

Carathéodory solutions γ : [0, T ]→ Rd of (2.5) we have

(i) forward estimate: if γ(0) ∈ K then |γ(t)| ≤ (‖K‖ + L2T ) eL1T for all t ∈
[0, T ];

(ii) backward estimate: if γ(T ) ∈ K then |γ(t)| ≤ (‖K‖ + L2T ) eL1T for all
t ∈ [0, T ].
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where L1, L2 are the constants in (F1).

Proof. Recalling that γ̇(s) ∈ F (γ(s)) for a.e. s ∈ [0, T ] and that F (γ(s)) ⊆
B(0, L1|γ(s)|+ L2), we have

|γ(t)| ≤ |γ(0)|+
∫ t

0

|γ̇(s)| ds ≤ ‖K‖+ L2T + L1

∫ t

0

|γ(s)| ds .

According to Gronwall's inequality, we then have |γ(t)| ≤ (‖K‖+L2T )eL1t, whence
(i) follows.
Next, we de�ne w(t) = γ(T−t) and observe that w is a solution of ẇ(t) ∈ −F (w(t)).
Since −F (·) still satis�es (F0) and (F1) and w(0) ∈ K, the previous analysis implies

|γ(t)| = |w(T − t)| ≤ (‖K‖+ L2T )eL1(T−t),

whence (ii) follows. �

De�nition 2.18 (Weak invariance). We say that S ⊆ Rd is weakly invariant for
F (·) if for every x ∈ S there exists a Carathéodory solution x(·) of (2.5), de�ned in
[0,+∞[, such that x(0) = x and x(t) ∈ S for every t ≥ 0.

For conditions on S and F ensuring weak invariance, we refer to Theorem 2.10 in
Chapter 4 of [14].

De�nition 2.19 (Minimum time function). Let F (·) be a set-valued function sat-
isfying (F0), S be a nonempty closed subset of Rd. We de�ne the minimum time
function T : Rd → [0,+∞] by setting

T (x0) = inf

{
τ > 0 : ∃x(·) ∈ AC([0, τ ];Rd) s.t.

ẋ(t) ∈ F (x(t)) for a.e. t ∈ [0, τ ],
x(0) = x0, x(τ) ∈ S

}
,

where by convention inf ∅ = +∞.

De�nition 2.20. Let X be a set, A ⊆ X. The indicator function of A is the
function IA : X → {0,+∞} de�ned as IA(x) = 0 for all x ∈ A and IA(x) = +∞ for
all x /∈ A. The characteristic function of A is the function χA : X → {0, 1} de�ned
as χA(x) = 1 for all x ∈ A and χA(x) = 0 for all x /∈ A.

De�nition 2.21 (Support function). LetX be a Banach space, X ′ be its topological
dual, A ⊆ X be nonempty. We de�ne the support function to A at x∗ ∈ X ′ by setting

(2.6) σA(x∗) := sup
x∈A
〈x∗, x〉X′,X .

It turns out that σA(x∗) = σco(A)(x
∗) for every x∗ ∈ X ′ and that σA : X ′ → R∪{+∞}

is convex and lower semicontinuous.

3. Generalized targets

In this section we propose some suitable generalizations of the classical target set
that can be used in our framework.

De�nition 3.1 (Generalized targets). Let p ≥ 1, Φ ⊆ C0(Rd,R) such that the
following property holds

(TE) there exists x0 ∈ Rd with φ(x0) ≤ 0 for all φ ∈ Φ.
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We de�ne the generalized targets S̃Φ and S̃Φ
p as follows

S̃Φ :=

{
µ ∈P(Rd) :

∫
Rd
φ+(x) dµ(x) ≤

∫
Rd
φ−(x) dµ(x) for all φ ∈ Φ

}
,

S̃Φ
p :=S̃Φ ∩Pp(Rd),

where φ+(x) := max{0, φ(x)}, φ−(x) := max{0,−φ(x)} for all x ∈ Rd, thus φ =
φ+ − φ− and φ+, φ− ≥ 0.

We de�ne also the generalized distance from S̃Φ
p as

d̃S̃Φ
p

(·) := inf
µ∈S̃Φ

p

Wp(·, µ).

Notice that S̃Φ
p 6= ∅ because δx0 ∈ S̃Φ

p , hence S̃
Φ 6= ∅. The 1-Lipschitz continuity

of d̃S̃Φ
p

(·) follows from the structure of metric space: indeed let µ, ν ∈Pp(Rd), and

�x ε > 0. Choose σν ∈ S̃Φ
p such that d̃S̃Φ

p
(ν) ≥ Wp(ν, σν) − ε. Then we have by

triangular inequality

d̃S̃Φ
p

(µ)− d̃S̃Φ
p

(ν) ≤ Wp(µ, σν)−Wp(ν, σν) + ε ≤ Wp(µ, ν) + ε.

By switching the role of µ, ν and letting ε → 0+, we obtain the desired Lipschitz
continuity property.

For further use, we will say that Φ satis�es property (Tp) with p ≥ 0 if the
following holds true

(Tp) for all φ ∈ Φ there exist Aφ, Cφ > 0 such that φ(x) ≥ Aφ|x|p − Cφ.

Remark 3.2. Given µ ∈P(Rd), observe that if φ+ ∈ L1
µ we have∫

Rd
φ(x) dµ(x) ≤ 0 if and only if

∫
Rd
φ+(x) dµ(x) ≤

∫
Rd
φ−(x) dµ(x),

but in general only the last inequality make sense. Thus, de�ned S̃Φ (and S̃Φ
p ) as

above, if φ+ ∈ L1
µ for all µ ∈ S̃Φ (resp. µ ∈ S̃Φ

p ), then

S̃Φ =

{
µ ∈P(Rd) :

∫
Rd
φ(x) dµ(x) ≤ 0 for all φ ∈ Φ

}
.

In this case, roughly speaking, a physical interpretation of the generalized target
can be given as follows: to describe the state of the system, an observer chooses
to measure some quantities φ. The results of the measurements are the average
of the quantities φ with respect to the measure µt representing the state of the
system at time t. Our aim is to steer the system to states where the result of such
measurements is below a �xed threshold (that without loss of generality we assume
to be 0).

Remark 3.3. Given a nonempty and closed S ⊆ Rd and α ∈]0, 1], a natural choice
for Φ can be for example Φ = {dS(·)− α}. In this case, a measure belonging to S̃Φ

corresponds to the state of a particle which is on S with probability 1−α. If α = 0,
i.e. Φ = {dS(·)}, then S̃Φ reduces to the set of all probability measures supported
on S.

The following proposition establishes some straightforward properties of the gen-
eralized targets.
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Proposition 3.4 (Properties of the generalized targets). Let p ≥ 1 and Φ ⊆
C0(Rd,R) be such that (TE) holds. Then:

(1) S̃Φ and S̃Φ
p are convex;

(2) S̃Φ is w∗-closed in P(Rd);
(3) S̃Φ

p is closed in Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·);
(4) for every µ ∈Pp(Rd) we have d̃S̃Φ

p
(µ) = 0 if and only if µ ∈ S̃Φ

p ;

(5) if there exists φ̄ ∈ Φ, A,C ∈ R and p ≥ 1 such that φ̄(x) ≥ A|x|p − C, then
S̃Φ = S̃Φ

p is compact in the w∗-topology and in theWp-topology. In particular,
this holds if Φ satis�es property (Tp).

Proof.
(1) The convexity property is trivial from the de�nition.
(2) Let {µn}n∈N be a sequence in S̃Φ, and µ ∈ P(Rd) be such that µn ⇀

∗ µ.
Take a sequence {ϕk}k∈N ⊆ C0(Rd; [0, 1]) of maps such that ϕk(x) = 1 for

x ∈ B(0, k) and ϕk(x) = 0 for x ∈ B(0, k + 1).
Since µn ∈ S̃Φ, we have∫

Rd
φ+(x) dµn ≤

∫
Rd
φ−(x) dµn, ∀φ ∈ Φ.

Fix ε > 0. By Monotone Convergence Theorem, we have that there exists
kε ∈ N such that for all k ≥ kε∫

Rd
φ−(x) dµn ≤

∫
Rd
ϕk(x)φ−(x) dµn + ε,

thus ∫
Rd
ϕk(x)φ+(x) dµn ≤

∫
Rd
ϕk(x)φ−(x) dµn + ε,

and by letting n→ +∞, recalling the weak∗ convergence of µn to µ, we have∫
Rd
ϕk(x)φ+(x) dµ ≤

∫
Rd
ϕk(x)φ−(x) dµ+ ε,

hence, by letting ε→ 0+ we have∫
Rd
φ+(x) dµ ≤

∫
Rd
φ−(x) dµ,

and so µ ∈ S̃Φ.
(3) It follows from the fact that convergence in Wp(·, ·) implies w∗-convergence,

and that Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·) is a com-
plete separable metric space according to Proposition 2.9.

(4) It is obvious that if µ ∈ S̃Φ
p then d̃S̃Φ

p
(µ) = 0. Conversely, if d̃S̃Φ

p
(µ) = 0 there

exists a sequence {µn}n∈N ⊆ S̃Φ
p such that lim

n→∞
Wp(µn, µ) = 0, and, by the

closedness of S̃Φ
p , we conclude that µ ∈ S̃Φ

p .

(5) Given p ≥ 1, trivially we have that S̃Φ
p ⊆ S̃Φ. Conversely, given µ ∈ S̃Φ, we

have that φ̄− is bounded, thus the integral of φ̄ w.r.t. µ is well de�ned. So∫
Rd

(A|x|p − C) dµ ≤
∫
Rd
φ̄(x) dµ ≤ 0,
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where φ̄, A, C, p, are as in the assumptions. Thus for all µ ∈ S̃Φ we have∫
Rd
|x|p dµ ≤ C

A
< +∞,

hence µ ∈ S̃Φ
p . So all the measures in S̃Φ

p = S̃Φ have uniformly bounded

p-moments. Hence, if {µn}n∈N ⊆ S̃Φ and µn ⇀
∗ µ, by the w∗-closure of S̃Φ

we have that µ ∈ S̃Φ = S̃Φ
p and it has �nite p-moment. Thus, the family

{µn}n∈N has equiuniformly integrable p-moments, and Wp(µn, µ) → 0 by
Proposition 2.9. This means that the w∗-topology and Wp-topology coincide

on S̃Φ = S̃Φ
p , which turns out to be tight, according to Remark 5.1.5 in [3],

and w∗-closed, hence w∗-compact and Wp-compact.
�

Given a nonempty closed set S ⊆ Rd, and set Φ = {dS(·)}, a natural problem is

to express the generalized distance d̃S̃Φ
p

(·) in terms of dS(·). More generally, we give

the following de�nition.

De�nition 3.5 (Classical counterpart of generalized target). Let p ≥ 1 and Φ ⊆
C0(Rd;R) satisfying assumptions of De�nition 3.1. Given a set S ⊆ Rd, we say that

(1) S is a classical counterpart of the generalized target S̃Φ if the following equal-
ity holds

S̃Φ = {µ ∈P(Rd) : suppµ ⊆ S}.
(2) S is a classical counterpart of the generalized target S̃Φ

p if the following equal-
ity holds

S̃Φ
p = {µ ∈Pp(Rd) : suppµ ⊆ S}.

Proposition 3.6 (Existence, uniqueness and properties of the classical counter-
part). Let p ≥ 1 and Φ ⊆ C0(Rd;R) satisfying assumptions of De�nition 3.1. Then

(1) if S̃Φ admits a classical counterpart S, then S̃Φ
p admits S as a classical coun-

terpart for all p ≥ 1.
(2) if S, S ′, are classical counterparts of the generalized targets S̃Φ, S̃Φ

p , respec-
tively, then S = S ′;

(3) if S is a classical counterpart of S̃Φ or of S̃Φ
p , then S is closed;

(4) if S is the classical counterpart of S̃Φ then φ(x) ≤ 0 for all φ ∈ Φ, x ∈ S;
(5) if φ(x) ≥ 0 for all φ ∈ Φ and x ∈ Rd then the set

S := {x ∈ Rd : φ(x) = 0 for all φ ∈ Φ}

is the classical counterpart of S̃Φ and of S̃Φ
p (uniqueness follows from item

(2) above);
(6) if S is the classical counterpart of S̃Φ, then there exists a representation of

S̃Φ as S̃Φ′
, where φ′(x) ≥ 0 ∀x ∈ Rd, φ′ ∈ Φ′. In particular we can take

Φ′ = {dS} and we have S̃Φ = S̃{dS} and S̃Φ
p = S̃

{dS}
p , i.e., we can replace Φ

with the set {dS};
(7) if for every φ ∈ Φ we have either φ(x) ≥ 0 or φ(x) ≤ 0 for all x ∈ Rd, then

S̃Φ and S̃Φ
p admit as classical counterpart the set

S =
⋂
φ∈Φ

{x ∈ Rd : φ(x) ≤ 0} =
⋂
φ∈Φ+

{x ∈ Rd : φ(x) = 0},
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where Φ+ = {φ ∈ Φ : φ(x) ≥ 0 for all x ∈ Rd}, and if Φ+ = ∅ we set
S = Rd.

Proof.
(1) By de�nition, for all p ≥ 1 we have

S̃Φ
p := S̃Φ ∩Pp(Rd) = {µ ∈P(Rd) : suppµ ⊆ S} ∩Pp(Rd)

= {µ ∈Pp(Rd) : suppµ ⊆ S}.

(2) Let S and S ′ be two classical counterparts of S̃Φ and of S̃Φ
p , respectively. For

every x ∈ S we have that δx ∈ S̃Φ
p ⊆ S̃Φ for all p ≥ 1, hence we must have

also x ∈ S ′ since S ′ is a classical counterpart of the generalized target S̃Φ
p .

So S ⊆ S ′. By reversing the roles of S and S ′ we obtain S = S ′.
(3) Let S be the classical counterpart of S̃Φ (the proof is analoguos for S̃Φ

p ). Let
{xn}n∈N ⊆ S be s.t. xn → x̄ for some x̄ ∈ ∂S. By contradiction, let us
suppose x̄ 6∈ S, thus δx̄ 6∈ S̃Φ. Then there exists φ̄ ∈ Φ s.t. φ̄(x̄) > 0, and
thus for n su�ciently large we have φ̄(xn) > 0 by continuity of φ̄. It follows
that δxn 6∈ S̃Φ for n su�ciently large, thus xn 6∈ S by de�nition of classical
counterpart and we get a contradiction.

(4) Immediate by de�nition of generalized target and of classical counterpart, in
fact we have δx̄ ∈ S̃Φ for all x̄ ∈ S.

(5) Obviously we have

{µ ∈P(Rd) : suppµ ⊆ S} ⊆ S̃Φ.

Let us prove the other inclusion. Note that by hypothesis φ = φ+ and φ− = 0
for every φ ∈ Φ, hence

S̃Φ =

{
µ ∈P(Rd) :

∫
Rd
φ(x) dµ(x) = 0 for all φ ∈ Φ

}
.

Let µ ∈ S̃Φ, then ∫
Rd
φ(x) dµ(x) = 0 ∀φ ∈ Φ,

i.e. φ(x) = 0 for µ-a.e. x ∈ Rd, ∀φ ∈ Φ, i.e. φ(x) = 0 for all x ∈ suppµ,
∀φ ∈ Φ. Thus suppµ ⊆ S. By item (1), S is the classical counterpart also
of S̃Φ

p .

(6) Let us prove that S̃{dS} = S̃Φ. First S̃{dS} ⊆ S̃Φ, in fact if µ ∈ S̃{dS}

then µ(Rd \ S) = 0, and so µ ∈ S̃Φ by de�nition of classical counterpart.
Moreover, S̃{dS} ⊇ S̃Φ, in fact if µ ∈ S̃Φ, then suppµ ⊆ S and it follows that∫
Rd dS(x) dµ(x) = 0, thus µ ∈ S̃{dS}.

(7) By item (1), it is su�cient to prove that S is the classical counterpart of S̃Φ.
Assume that Φ+ = ∅. This means that φ(x) ≤ 0 for all x ∈ Rd and for all
φ ∈ Φ, thus φ = −φ− and φ+ = 0 for all φ ∈ Φ. In this case we have that
S̃Φ = P(Rd) since for every µ ∈P(Rd) we have∫

Rd
φ(x) dµ(x) ≤ 0.

Thus we have trivially S = Rd.
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Suppose now Φ+ 6= ∅. Clearly, every measure supported in S belongs
to S̃Φ, since all the elements of Φ are nonpositive on S, i.e. S̃{dS} ⊆ S̃Φ.
Conversely, let µ ∈ S̃Φ and by contradiction assume that there exists x̄ ∈
suppµ \S. This implies that there exists an open neighborhood A of x̄ such
that µ(A) > 0, and an element φ ∈ Φ+ such that φ(x̄) 6= 0. By continuity of
φ, we can assume that φ > 0 on the whole of A, thus, recalling that φ(x) ≥ 0
for all x ∈ Rd, we obtain∫

Rd
φ(x) dµ(x) ≥

∫
A

φ(x) dµ(x) > 0,

contradicting the fact that µ ∈ S̃Φ.
�

Example 3.7.
(1) In general S̃Φ may fail to possess a classical counterpart: in R, take Φ = {φ}

where φ : R → R, φ(x) := |x + 1| − 1 (notice that φ− is bounded). Then
if S̃Φ or S̃Φ

p admitted a classical counterpart S, we should have S ⊆ [−2, 0]

by item (4) of the Proposition above. De�ne µ0 :=
1

2
(δ−1 + δ1). Thus we

have µ0 ∈ S̃Φ
p , in fact

∫
R
φ(x) dµ0(x) = 0, but suppµ0 = {−1, 1} 6⊆ S for any

possible S. So neither S̃Φ nor S̃Φ
p admit a classical counterpart.

(2) The converse of item (7) of Proposition 3.6 is not true: in R, take Φ =
{φ1, φ2, φ3} where φi : R → R, i = 1, 2, 3 are de�ned to be φ1(x) =
max{x, 0}, φ2(x) = min{−x, 0}, φ3(x) = x. Then both S̃Φ

p and S̃Φ ad-
mits S as their classical counterpart, with S =] −∞, 0], but φ3 can change
its sign.

We are now ready to state some comparison results between the generalized dis-
tance and the classical one.

Proposition 3.8 (Comparison with classical distance). Let p ≥ 1, µ0 ∈ Pp(Rd),
Φ ⊆ C0(Rd;R) satisfying assumptions of De�nition 3.1, and set

C := {x ∈ Rd : φ(x) ≤ 0 for all φ ∈ Φ}.
Then

(1) d̃S̃Φ
p

(µ0) ≤ ‖dC‖Lpµ0
,

(2) if there exists φ̃(·) ∈ Φ such that φ̃(x) ≥ 0 for all x ∈ Rd, then d̃S̃Φ
p

(µ0) ≥
‖dD‖Lpµ0

, where

D := {x ∈ Rd : φ̃(x) = 0}.
(3) if S̃Φ

p admits a classical counterpart S, then C = S and d̃S̃Φ
p

(µ0) = ‖dS‖Lpµ0
,

moreover d̃p
S̃Φ
p

: Pp(Rd)→ [0,+∞[ is convex.

Proof. Clearly, according to assumption of De�nition 3.1 we have C 6= ∅.
(1) If ‖dC‖Lp(µ0) = +∞ then there is nothing to prove. So let us assume that
‖dC‖Lp(µ0) < +∞.
De�ne the multifunction

G(x) := {y ∈ Rd : |x− y| = dC(x)} ∩ C = B(x, dC(x)) ∩ C.
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Since the map f : Rd×Rd → R de�ned by setting f(x, y) := |x−y|−dC(x) is
continuous, we have that G(·) has closed graph in Rd×Rd, and in particular
G(·) is measurable. According to Theorem 8.1.3 in [8], there exists a Borel
map g : Rd → C such that |x − g(x)| = dC(x) for all x ∈ Rd (that is
g(x) ∈ G(x) for all x ∈ Rd).
We de�ne ν0 := g]µ0 and prove now that ν0 ∈ S̃Φ

p . Indeed, since g(x) ∈ C
for all x ∈ Rd, we have (φ ◦ g)+ = 0 for all φ(·) ∈ Φ, thus∫

Rd
φ(x) dg]µ0(x) =

∫
Rd
φ(g(x)) dµ0(x) ≤ 0, for all φ(·) ∈ Φ,

whence ν0 ∈ S̃Φ.
It remains to prove that the p-moment of ν0 is �nite. Owing to(∫

Rd
|x|p dν0

)1/p

=

(∫
Rd
|g(x)|p dµ0

)1/p

= ‖g‖Lp(µ0) ≤ ‖g − Id‖Lp(µ0) + ‖Id‖Lp(µ0) ,

we have to prove that the sum in the right hand side is �nite. But µ0 ∈
Pp(Rd) implies ‖Id‖Lp(µ0) < +∞ and |g(x)− x| = dC(x) holds by construc-
tion, so that ‖g − Id‖Lp(µ0) = ‖dC‖Lp(µ0) < +∞. Therefore, we conclude

ν0 ∈ S̃Φ
p and we have

d̃S̃Φ
p

(µ0) ≤ Wp(µ0, ν0) ≤
(∫∫

Rd×Rd
|x− y|p d(Id× g)]µ0

)1/p

=

(∫
Rd
|x− g(x)|p dµ0

)1/p

=

(∫
Rd
dpC(x) dµ0

)1/p

,

as desired.
(2) Let us now assume that there exists φ̃(·) ∈ Φ such that φ̃(x) ≥ 0 for all

x ∈ Rd (i.e. φ̃− = 0) and prove that d̃S̃Φ
p

(µ0) ≥ ‖dD‖Lpµ0
. Let {ϕn}n∈N ⊂

C0
c (Rd; [0, 1]) be such that

ϕn(x) =


1, if x ∈ B(0, n),

0, if x /∈ B (0, n+ 1) .

Set ψn2 (y) = ϕn(y)φ̃(y) and ψn1 (x) = ϕn(x)dpD(x), hence we have ψn1 , ψ
n
2 ∈

C0
b (Rd). Given θ ∈ S̃Φ

p , we notice that for θ-a.e. y ∈ Rd we must have

φ̃(y) = 0, and so y ∈ D thus for θ-a.e. y ∈ Rd and µ0-a.e. x ∈ Rd it holds

ψn1 (x) + ψn2 (y) = ϕn(x)dpD(x) ≤ dpD(x) ≤ |x− y|p.

So, according to Kantorovich duality (2.2), we have

W p
p (µ0, θ) = sup

ψ1,ψ2∈C0
b (Rd)

ψ1(x)+ψ2(y)≤|x−y|p

{∫
Rd
ψ1(x) dµ0(x) +

∫
Rd
ψ2(y) dθ(y)

}

≥
∫
Rd
ϕn(x)dpD(x) dµ0(x),
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Since {ψn1 (·)}n∈N ⊆ C0
b (Rd) is an increasing sequence of nonnegative func-

tions pointwise convergent to dpD(·), by letting n → +∞ and applying the
Monotone Convergence Theorem we obtain

W p
p (µ0, θ) ≥

∫
Rd
dpD(x) dµ0(x),

for all θ ∈ S̃Φ
p .

(3) The equality C = S is trivial: from item (4) in Proposition 3.6 we have
S ⊆ C, moreover if µ is a measure supported in C we have that µ ∈ S̃Φ

p ,
since all the functions of Φ are nonpositive on C, thus C ⊆ S, and so equality
holds. By item (1) above we have already d̃S̃Φ

p
(µ0) ≤ ‖dS‖Lpµ0

. By item (6)

in Proposition 3.6, we have S̃Φ
p = S̃

{dC}
p , hence by applying item (2) above

with D = C = S and φ̃ = dS we obtain d̃S̃Φ
p

(µ0) ≥ ‖dS‖Lpµ0
, thus equality

holds. Finally, the last statement is trivial, and it follows from the fact that

d̃p
S̃Φ
p

(µ) =

∫
Rd
dpC(x) dµ,

is linear in µ.

�

Without the assumption of existence of a classical counterpart for S̃Φ
p , the in-

equality d̃S̃Φ
p

(µ0) ≤ ‖dC‖Lpµ0
may be strict.

Example 3.9. In R, take Φ = {φ1, φ2, φ3} where φi : R→ R are de�ned by

φ1(x) = |x− 1| − 1, φ2(x) = |x+ 1| − 1, φ3(x) = |x(x2 − 1)|.

De�ne also µ0 =
1

2
(δ−1 + δ1). For any x ∈ R, we have φi(x) ≥ −1 for i = 1, 2 and

φ3(x) ≥ 0 (thus φ− is uniformly bounded for i = 1, 2, 3), moreover

C :={x ∈ R : φi ≤ 0, for i = 1, 2, 3} = {0}
={x ∈ R : φi = 0, for i = 1, 2, 3},∫

R
φi(x) dµ0(x) = 0, i = 1, 2, 3,

hence, µ0 ∈ S̃Φ
p for all p ≥ 1, thus d̃S̃Φ

p
(µ0) = 0. However, since dpC(x) = |x|p, we

have ∫
R
dpC(x)dµ0(x) = 1 > 0.

We notice that S̃Φ
p does not admit a classical counterpart: indeed if a classical

counterpart would exist, it would be reduced to C = {0}, however µ0 ∈ S̃Φ
p ⊆ S̃Φ

and suppµ0 6⊆ C, thus no classical counterpart may exist.

Without the p-th power, the generalized distance in the case of the Proposition
3.8 above may fail to be convex.

Example 3.10. Let p > 1. In R2, consider P = (0, 0), Q1 = (1, 0), Q2 =
(
0, 21/p

)
.

Set S = {P}, Φ = {dS(·)}, hence S̃Φ
p := {δP}, and de�ne νλ = λδQ1 + (1 − λ)δQ2 ,

λ ∈ [0, 1]. By Proposition 3.8, we have

d̃p
S̃Φ
p

(νλ) = W p
p (δP , νλ) = λ+ 2(1− λ) = 2− λ,
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whence d̃S̃Φ
p

(νλ) = p
√

2− λ, which is not convex.

In the metric space Pp(Rd) endowed with Wp-distance, another concept of con-
vexity can be given, related more to the metric structure rather than to the linear
one.

Given any product space XN (N ≥ 1), in the following we denote with pri : XN →
X the projection on the i�th component, i.e., pri(x1, . . . , xN) = xi.

De�nition 3.11 (Geodesics). Given a curve µ = {µt}t∈[0,1] ⊆Pp(Rd), we say that
it is a (constant speed) geodesic if for all 0 ≤ s ≤ t ≤ 1 we have

Wp(µs, µt) = (t− s)Wp(µ0, µ1).

In this case, we will also say that the curve µ is a geodesic connecting µ0 and µ1.

Theorem 3.12 (Characterization of geodesics). Let µ0, µ1 ∈ Pp(Rd) and let π ∈
Πp
o(µ0, µ1) be an optimal transport plan between µ0 and µ1, i.e.

W p
p (µ0, µ1) =

∫∫
Rd×Rd

|x1 − x2|p dπ(x1, x2) .

Then the curve µ = {µt}t∈[0,1] de�ned by

(3.1) µt :=
(
(1− t) pr1 + t pr2

)
]π ∈ Pp(Rd)

is a (constant speed) geodesic connecting µ0 and µ1.
Conversely, any (constant speed) geodesic µ = {µt}t∈[0,1] connecting µ0 and µ1

admits the representation (3.1) for a suitable plan π ∈ Πp
o(µ0, µ1).

Proof. See Theorem 7.2.2 in [3]. �

De�nition 3.13 (Geodesically and strongly geodesically convex sets). A subset
A ⊆Pp(Rd) is said to be

(1) geodesically convex if for every pair of measures µ0, µ1 in A, there exists a
geodesic connecting µ0 and µ1 which is contained in A.

(2) strongly geodesically convex if for every pair of measures µ0, µ1 in A and for
every admissible transport plan π ∈ Π(µ0, µ1), the curve t 7→ µt de�ned
by (3.1) is contained in A.

The interest in this alternative concept of convexity comes from the fact that,
in many problems, functionals de�ned on probability measures are convex along
geodesics (a notion related to geodesically convex sets) and not convex with respect
to the linear structure in the usual sense. We refer to Section 9.1 in [3] for further
details.

Remark 3.14. Notice that, even if the notations does not highlight this fact, the
notions of geodesic and geodesical convexity depend on the exponent p which has
been �xed.

Proposition 3.15 (Strong geodesic convexity of S̃Φ
p ). Let p ≥ 1. Assume that all

the elements of Φ are continuous and convex and satisfy

∫
Rd
φ+(x) dµ(x) < +∞ for

all µ ∈ S̃Φ
p , Then the generalized target S̃Φ

p is strongly geodesically convex.
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Proof. We notice that the assumptions implies that

∫
Rd
φ(x) dµ(x) < +∞ is well

de�ned and nonpositive for all µ ∈ S̃Φ
p and φ ∈ Φ. Let µ0, µ1 ∈ S̃Φ

p and let
π ∈ Π(µ0, µ1) be an admissible transport plan between µ0 and µ1. Consider the
corresponding curve µ = {µt}t∈[0,1] de�ned by (3.1), and �x t ∈ [0, 1]. We have for
every φ(·) ∈ Φ∫

Rd
φ(x) dµt(x) ≤

≤ t

∫
Rd×Rd

φ
(
pr1(ξ, η)

)
dπ(ξ, η) + (1− t)

∫
Rd×Rd

φ
(
pr2(ξ, η)

)
dπ(ξ, η)

= t

∫
Rd
φ(x) dµ0(x) + (1− t)

∫
Rd
φ(y) dµ1(y) ≤ 0 ,

since pri]π are the marginal measures of π, which belong to S̃Φ
p . The conclusion

follows from the arbitrariness of φ(·) ∈ Φ. �

Remark 3.16. In particular, the above result holds for Φ := {dS(·) − α} when S is
nonempty, closed and convex, and α ∈ [0, 1]. In this case, since in the above proof
we use only the convexity property of dS(·), the statement holds also if we equip Rd

with a di�erent norm than the Euclidean one.

We conclude this section by investigating the semiconcavity properties of the
generalized distance along geodesics. The case p = 2 is particularly easy thanks to
the geometric structure of the metric space P2(Rd).

Proposition 3.17 (Semiconcavity of d̃ 2
S̃Φ

2

). Let S̃Φ
2 be the generalized target in

P2(Rd) corresponding to Φ ⊆ C0(Rd;R). Then the square of the generalized distance
satis�es the following global semiconcavity inequality for every µ0, µ1 ∈P2(Rd) and
every t ∈ [0, 1]

d̃ 2
S̃Φ

2
(µt) ≥ (1− t) d̃ 2

S̃Φ
2

(µ0) + t d̃ 2
S̃Φ

2
(µ1)− t(1− t)W 2

2 (µ0, µ1),

where µ = {µt}t∈[0,1] is any constant speed geodesic for W2 joining µ0 and µ1.

Proof. Owing to Theorem 7.3.2 in [3], we have that for any measure σ ∈P2(Rd) the
function µ 7→ W 2

2 (µ, σ) is semiconcave along geodesics, with semiconcavity constant
independent by σ, i.e. it satis�es for every t ∈ [0, 1]

W 2
2 (µt, σ) + t(1− t)W 2

2 (µ0, µ1) ≥ (1− t)W 2
2 (µ0, σ) + tW 2

2 (µ1, σ).

By passing to the in�mum on σ ∈ S̃Φ
2 , we have

d̃ 2
S̃Φ

2
(µt) + t(1− t)W 2

2 (µ0, µ1) ≥ (1− t) d̃ 2
S̃Φ

2
(µ0) + t d̃ 2

S̃Φ
2

(µ1) ,

whence the conclusion follows. �

4. Generalized minimum time problem

In this section we de�ne a suitable notion of minimum time function, modeled on
the �nite-dimensional case.

De�nition 4.1 (Admissible curves). Let F : Rd ⇒ Rd be a set-valued function,
I = [a, b] a compact interval of R, α, β ∈ P(Rd). We say that a Borel family of
probability measures µ = {µt}t∈I is an admissible trajectory (curve) de�ned in I
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for the system ΣF joining α and β, if there exists a family of Borel vector-valued
measures ν = {νt}t∈I ⊆M (Rd;Rd) such that

(1) µ is a narrowly continuous solution in the distributional sense of

∂tµt + divνt = 0,

with µ|t=a = α and µ|t=b = β.

(2) JF (µ,ν) < +∞, where JF (·) is de�ned as

(4.1) JF (µ,ν) :=


∫
I

∫
Rd

(
1 + IF (x)

(
νt
µt

(x)

))
dµt(x) dt, if |νt| � µt for a.e. t ∈ I,

+∞, otherwise.

where IF (x) is the indicator function of the set F (x), i.e., IF (x)(ξ) = 0 for all
ξ ∈ F (x) and IF (x)(ξ) = +∞ for all ξ /∈ F (x).

In this case, we will also shortly say that µ is driven by ν.

Remark 4.2. The �niteness of J(µ,ν) forces the elements of ν to have the form
νt = vtµt for a vector �eld vt ∈ L1

µt for a.e. t ∈ I, and moreover we have vt(x) ∈ F (x)

for µt�a.e. x ∈ Rd and a.e. t ∈ I. When JF (·) is �nite, this value expresses the
time needed by the system ΣF to steer α to β along the trajectory µ with family of
velocity vector �elds v = {vt}t∈I .

In view of the superposition principle stated at Theorem 2.14, we can give the
following alternative de�nition.

De�nition 4.3 (Admissible curves (alternative de�nition)). Let F : Rd ⇒ Rd be a
set-valued function satisfying (F1), I = [a, b] a compact interval of R, α, β ∈P(Rd).
We say that a Borel family of probability measures µ = {µt}t∈I is an admissible
trajectory (curve) de�ned in I for the system ΣF joining α and β, if there exist a
probability measure η ∈P(Rd × ΓI) and a Borel vector �eld v : I ×Rd → Rd such
that:

(1) η is concentrated on the pairs (x, γ) such that γ is an absolutely continuous
solution of ẋ(t) = vt(x(t)) with initial condition γ(a) = x;

(2) for every ϕ ∈ C0
b (Rd), t ∈ I we have∫
Rd
ϕ(x) dµt(x) =

∫
Rd×ΓI

ϕ(γ(t)) dη(x, γ),

(3) γ(a)]η = α, γ(b)]η = β,
(4) vt(x) ∈ F (x) for µt-a.e. x ∈ Rd and a.e. t ∈ I and vt ∈ L1

µt for a.e. t ∈ I.
In this case, we can de�ne νt = vtµt thus we have simply JF (µ,ν) = b− a.

In the following, we will mainly focus our attention on admissible curves de�ned
in [0, T ], for some suitable T > 0. For later use we state the following technical
lemma.

Lemma 4.4 (Estimates on admissible curves). Assume (F0) and (F1). Let µ =
{µt}t∈[0,T ] be an admissible curve driven by ν = {νt}t∈[0,T ]. Then if µ0 ∈Pp(Rd) we
have µt ∈Pp(Rd) and mp−1(|νt|) < +∞ for all t ∈ [0, T ] and p ≥ 1, more precisely
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there are A,B > 0 such that for all t ∈ [0, T ]

mp(µt) ≤eApt
(

mp(µ0) +
B

A

)
,

mp−1(|νt|) ≤eApt
(
Amp(µ0) +

(
mp−1(µ0) +

B

A

)
Be−At +B

)
.

Proof. We have that
νt
µt

(x) ∈ F (x) for µt-a.e. x ∈ Rd, thus there exist A,B > 0

such that

∣∣∣∣ νtµt (x)

∣∣∣∣ ≤ r(|x|) := A|x|+B. Take a family {ϕεn}n∈N ⊆ C1
c (Rd) such that

a. 0 ≤ ϕεn(x) ≤ 1 for all x ∈ Rd;
b. {ϕεn(x)}n∈N is a monotone increasing sequence converging to 1 for all x ∈ Rd;
c. |∇ϕεn(x)| · |x|pr(|x|) ≤ pε for all x ∈ Rd and ε > 0.

We have
d

dt
mp(ϕ

ε
nµt) =

∫
Rd
|x|p∇ϕεn(x)dνt(x) + p

∫
Rd
ϕεn(x)|x|p−1 x

|x|
dνt(x)

=

∫
Rd
|x|p∇ϕεn(x)

νt
µt

(x) dµt(x) + p

∫
Rd
ϕεn(x)|x|p−1 x

|x|
νt
µt

(x) dµt(x)

≤
∫
Rd
|x|p|∇ϕεn(x)|r(|x|) dµt(x) + p

∫
Rd
r(|x|)ϕεn(x)|x|p−1 dµt(x)

≤ εp+ p

∫
Rd

(A|x|+B)ϕεn(x)|x|p−1 dµt(x)

≤ Ap mp(ϕ
ε
nµt) + p(B + ε)

This implies that

mp(ϕ
ε
nµt) ≤ eApt

(
mp(ϕ

ε
nµ0) +

B + ε

A

)
≤ eApt

(
mp(µ0) +

B + ε

A

)
,

thus by Monotone Convergence Theorem by letting n→ +∞ and ε→ 0

mp(µt) ≤ eApt
(

mp(µ0) +
B

A

)
.

Moreover,

mp−1(|νt|) =

∫
Rd
|x|p−1

∣∣∣∣ νtµt (x)

∣∣∣∣ dµt(x)

≤
∫
Rd
|x|p−1(A|x|+B)dµt(x) = Amp(µt) +Bmp−1(µt)

≤ eApt
(
Amp(µ0) +

(
mp−1(µ0) +

B

A

)
Be−At +B

)
,

which concludes the proof. �

The following de�nitions are the natural counterpart of the classical case.

De�nition 4.5 (Reachable set). Let µ0 ∈ P(Rd), and T > 0. De�ne the set of
admissible curves de�ned on [0, T ] and starting from µ0 by setting

AT (µ0) := {µ = {µt}t∈[0,T ] ⊆P(Rd) : µ is an admissible trajectory with µ|t=0 = µ0}.
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The reachable set from µ0 in time T is

RT (µ0) := {µ ∈P(Rd) : there exists µ = {µt}t∈[0,T ] ∈ AT (µ0) with µ = µT}.

De�nition 4.6 (Generalized minimum time). Let p ≥ 1, Φ ∈ C0(Rd;R) and S̃Φ, S̃Φ
p

be the corresponding generalized targets de�ned in De�nition 3.1. In analogy with
the classical case, we de�ne the generalized minimum time function T̃Φ : P(Rd)→
[0,+∞] by setting

T̃Φ(µ0) := inf
{
JF (µ,ν) : µ ∈ AT (µ0), µ is driven by ν, µ|t=T ∈ S̃Φ

}
,(4.2)

where, by convention, inf ∅ = +∞.
Given µ0 ∈P(Rd) with TΦ(µ0) < +∞, an admissible curve µ = {µt}t∈[0,T̃Φ(µ0)] ⊆

P(Rd), driven by a family of Borel vector-valued measures ν = {νt}t∈[0,T̃Φ(µ0)] and

satisfying µ|t=0 = µ0 and µ|t=T̃Φ(µ0) ∈ S̃Φ is optimal for µ0 if

T̃Φ(µ0) = JF (µ,ν).

Given p ≥ 1, we de�ne also a generalized minimum time function T̃Φ
p : Pp(Rd)→

[0,+∞] by replacing in the above de�nitions S̃Φ by S̃Φ
p and P(Rd) by Pp(Rd).

Since S̃Φ
p ⊆ S̃Φ, it is clear that T̃Φ(µ0) ≤ T̃Φ

p (µ0).

Remark 4.7. In view of the characterization in Theorem 8.3.1 in [3], and of Re-
mark 4.2, one can think to T̃Φ as the minimum time needed by the system to steer
µ0 to a measure in S̃Φ, along absolutely continuous curves in Pp(Rd).

When the generalized target S̃Φ admits a classical counterpart S, it is natural
to ask for a comparison between the generalized minimum time function and the
classical minimum time needed to reach S.

Proposition 4.8 (First comparison between T̃Φ and T ). Consider the generalized
minimum time problem for ΣF as in De�nition 4.6 assuming (F0), (F1), and suppose
that the corresponding generalized target S̃Φ admits S as classical counterpart. Then
for all µ0 ∈P(Rd) we have

T̃Φ(µ0) ≥ ‖T‖L∞
µ0
,

where T : Rd → [0,+∞] is the classical minimum time function for system ẋ(t) ∈
F (x(t)) with target S.

Proof. For sake of clarity, in this proof we will simply write T̃ and S̃, thus omitting
Φ, since we can always replace the set Φ by {dS} by assumption of existence of the
classical counterpart S of S̃Φ.
If T̃ (µ0) = +∞ there is nothing to prove, so assume T̃ (µ0) < +∞. Fix ε > 0

and let µ = {µt}t∈[0,T ] ⊆ P(Rd) be an admissible curve starting from µ0, driven
by a family of Borel vector-valued measures ν = {νt}t∈I such that T = JF (µ,ν) <

T̃ (µ0) + ε and µ|t=T ∈ S̃. In particular, we have that vt(x) :=
νt
µt

(x) ∈ F (x) for

µt-a.e. x ∈ Rd and a.e. t ∈ [0, T ], hence |vt(x)| ≤ (L1 + L2)(1 + |x|) for µt-a.e
x ∈ Rd. Accordingly,∫ T

0

∫
Rd

|vt(x)|
1 + |x|

dµt dt ≤ T (L1 + L2) < +∞.

By the superposition principle 2.14, we have that there exists a probability measure
η ∈P(Rd × ΓT ) satisfying
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(1) η is concentrated on the pairs (x, γ) ∈ Rd × ΓT such that γ is absolutely
continuous and

γ(t) = x+

∫ t

0

vt(γ(s)) ds

(2) for all t ∈ [0, T ] and all ϕ ∈ C0
b (Rd)∫

Rd
ϕ(x)dµt(x) =

∫∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ).

Evaluating the above formula at t = 0, we have that if x /∈ suppµ0 or γ(0) 6= x,
then (x, γ) /∈ suppη.

Let {ψn}n∈N ∈ C∞c (Rd; [0, 1]) with ψn(x) = 0 if x 6∈ B(0, n + 1) and ψn(x) = 1 if

x ∈ B(0, n). By Monotone Convergent Theorem, since {ψn(·)dS(·)}n∈N ⊆ C0
b (Rd) is

an increasing sequence of nonnegative functions pointwise convergent to dS(·), we
have for every t ∈ [0, T ]∫∫

Rd×ΓT

dS(γ(t)) dη(x, γ) = lim
n→∞

∫∫
Rd×ΓT

ψn(γ(t))dS(γ(t)) dη(x, γ)

= lim
n→∞

∫
Rd
ψn(x)dS(x) dµt(x)

By taking t = T , we have that the last term vanishes because µ|t=T ∈ S̃ and so
suppµ|t=T ⊆ S, therefore ∫∫

Rd×ΓT

dS(γ(T )) dη(x, γ) = 0.

In particular, we necessarily have that γ(T ) ∈ S and γ(0) = x for η-a.e. (x, γ) ∈
P(Rd × ΓT ), whence T ≥ T (x) for µ0-a.e. x ∈ Rd, since T (x) is the in�mum of the
times needed to steer x to S along trajectories of the system. Thus, T̃ (µ0)+ε ≥ T (x)
for µ0-a.e. x ∈ Rd and, by letting ε→ 0, we conclude that T̃ (µ0) ≥ ‖T‖L∞

µ0
. �

We notice that the inequality appearing in Proposition 4.8 may be strict without
further assumptions.

Example 4.9. In R, let F (x) = {1} for all x ∈ R and set Φ = {| · |}, thus S =
{0} is the classical counterpart of S̃Φ = {δ0}. Moreover, we have T (x) = |x|
for x ≤ 0 and T (x) = +∞ for x > 0. De�ne µ0 =

1

2
(δ−2 + δ−1). We have

‖T‖L∞
µ0

= max{T (−1), T (−2)} = 2. However there are no solutions of ẋ(t) = 1
steering any two di�erent points to the origin in the same time, thus the set of
admissible trajectories joining µ0 and δ0 is empty, hence T̃Φ(µ0) = +∞.

De�nition 4.10 (Convergence of curves in P(Rd)). We say that a family of curves
µn = {µnt }t∈[0,T ] in P(Rd)

(1) pointwise converges to a curve µ = {µt}t∈[0,T ] in P(Rd) if and only if µnt ⇀
∗

µt for all t ∈ [0, T ]. In this case we will write µn ⇀∗ µ.
(2) pointwise converges to a curve µ = {µt}t∈[0,T ] in Pp(Rd) if and only if

µn = {µnt }t∈[0,T ] ⊆Pp(Rd) and limn→+∞Wp(µ
n
t , µt) = 0 for all t ∈ [0, T ]. In

this case we will write µn →p µ.
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(3) uniformly converges to a curve µ = {µt}t∈[0,T ] in Pp(Rd) if and only if
µn = {µnt }t∈[0,T ] ⊆Pp(Rd) and

lim
n→+∞

sup
t∈[0,T ]

Wp(µ
n
t , µt) = 0.

In this case we will write µn ⇒p µ.

Proposition 4.11 (Convergence of admissible trajectories). Assume (F0) and (F1).
Let µn = {µnt }t∈[0,T ] be a sequence of admissible curves de�ned on [0, T ] such that µn

is driven by νn = {νnt }t∈[0,T ] and suppose that there exist µ = {µt}t∈[0,T ] ⊆ P(Rd)
and ν = {νt}t∈[0,T ] ⊆ M (Rd;Rd) such that for a.e. t ∈ [0, T ] it holds (µnt , ν

n
t ) ⇀∗

(µt, νt). Then µ is an admissible trajectory driven by ν.

Proof. By assumption (F0), for every x̄ ∈ Rd and ε > 0 there exists 0 < δx̄,ε ≤ ε such
that if x ∈ B(x̄, δx̄,ε) we have F (x) ⊆ F (x̄) +B(0, ε) and F (x̄) ⊆ F (x) +B(0, ε).

De�ne now by induction a countable covering {Ωε
n}n∈N of Rd in the following way.

Let {yj}n∈N be an enumeration of Qd. Set Ωε
0 = B (y0, δy0,ε) and xε0 = y0. Suppose

to have de�ned Ωε
i and x

ε
i for all 0 ≤ i ≤ n. Set

kεn+1 = min

{
j ∈ N : B

(
yj, δyj ,ε

)
6⊆

n⋃
i=0

Ωε
i

}
,

and de�ne xεn+1 = ykεn+1
and Ωε

n+1 = B
(
xεn+1, δxεn+1,ε

)
\

n⋃
i=0

Ωε
i .

We notice that for every ε > 0 we have that {Ωε
n}n∈N is a countable covering made

of Borel pairwise disjoint sets, moreover, recalling that Ωε
n ⊆ B(xεn, δxεn,ε), we have

sup
y∈Ωεn

dF (xεn)(F (y)) < ε for all n ∈ N.

Given ε > 0, de�ne the following functional Gε : P(Rd)×M (Rd;Rd)→ [0,+∞]

Gε(µ,E) :=


∞∑
i=1

∫
Ωεi

IF (xεi )+B(0,ε)

(
E

µ
(x)

)
dµ(x), if |E| � µ,

+∞, otherwise,

where M (Rd;Rd) is the set of vector-valued measures from Rd to Rd, and
E

µ
denotes

the derivation of the vector-valued measure E with respect to µ.
Notice that, since all the terms in the series can assume either the values 0 or

+∞, then we have

Gε(µ,E) =


sup
i∈N

∫
Ωεi

IF (xεi )+B(0,ε)

(
E

µ
(x)

)
dµ(x), if |E| � µ,

+∞, otherwise.

For every ε > 0, the map (µ,E) 7→ Gε(µ,E) is lower semicontinuous, since the
function IF (x̄)+B(0,δ)(·) is convex, lower semicontinuous and with superlinear growth,

thus, according to Theorem 2.34 in [6], the functional is the supremum of l.s.c. maps,
hence it is l.s.c.
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We notice that

Gε(µ,E) < +∞⇐⇒ Gε(µ,E) = 0⇐⇒ dF (xεi )

(
E

µ
(x)

)
≤ ε for µ-a.e. x ∈ Ωε

i .

Let now µn = {µnt }t∈[0,T ], ν
n = {νnt = vnt µ

n
t }t∈[0,T ], µ = {µt}t∈[0,T ], ν = {νt}t∈[0,T ]

as in the statement. Recall that vnt (x) :=
νnt
µnt

(x) ∈ F (x) for µt-a.e. x ∈ Rd and a.e.

t ∈ I, and that by assumption νnt ⇀
∗ νt and µ

n
t ⇀

∗ µt for a.e. t ∈ [0, T ].

Since Gε is l.s.c., for a.e. t ∈ [0, T ] we have that

0 ≤ Gε(µt, νt) ≤ lim inf
n→∞

Gε(µnt , ν
n
t ) = 0,

in particular νt � µt, thus we have νt = vtµt for a suitable vt(·) ∈ L1
µt , moreover

vt(x) ∈ F (xεi ) +B(0, ε) for µt-a.e. x ∈ Ωε
i and all i ∈ N.

Let {εi}i∈N be a sequence of positive numbers such that εi → 0+. Set

Nt =
⋃
i∈N

⋃
k∈N

{x ∈ Ωεi
k : vt(x) /∈ F (xεik ) +B(0, εi)},

clearly µt(Nt) = 0 for a.e. t ∈ [0, T ].
We recall that for every x ∈ Rd and ε > 0 there exists a unique j(x, ε) ∈ N such

that x ∈ Ωε
j(x,ε), since the covering {Ωε

n}n∈N is a covering made by pairwise disjoint
sets for every ε > 0.
Fix t ∈ [0, T ] such that µt(Nt) = 0 and take x ∈ Rd \ Nt. Thus we have x ∈

Ωεi
j(x,εi)

⊆ B(xεij(x,εi), δx
εi
j(x,εi)

,εi
), in particular vt(x) ∈ F (xεij(x,εi)) + B(0, εi), moreover

since δxεi
j(x,εi)

,εi
≤ εi, we have that x

εi
j(x,εi)

→ x. Thus by letting i → +∞ we obtain

that vt(x) ∈ F (x) for all x ∈ Rd \ Nt, hence vt(x) ∈ F (x) for a.e. t ∈ [0, T ] and
µt-a.e. x ∈ Rd.
Since for every ϕ ∈ C1

c (Rd) we have in the sense of distributions on [0, T ],

d

dt

∫
Rd
ϕ(x)dµnt (x) =

∫
Rd
∇ϕ(x) vnt (x) dµnt (x),

and for the last term we have

lim
n→∞

∫
Rd
∇ϕ(x) vnt (x) dµnt (x) =

∫
Rd
∇ϕ(x) vt(x) dµt(x),

due to the w∗-convergence of νnt to νt, thanks to Lemma 8.1.2 in [3], we deduce that,
up to changing µt and νt for all t belonging to a L 1-negligible set of [0, T ], we have
that µ is an admissible curve driven by ν. �

The previous Proposition is the key ingredient to prove the following theorem
which, in analogy with the classical case, establish a su�cient condition to have
relative compactness of a set of admissible trajectories.

Theorem 4.12. Assume (F0), (F1). Let A be a set of admissible trajectories de�ned
on [0, T ] and C > 0, p > 1 be constants such that for all µ = {µt}t∈[0,T ] ∈ A it
holds mp(µt) ≤ C for a.e. t ∈ [0, T ]. Then the pointwise w∗-closure of A is a set of
admissible trajectories.
In particular, this holds if {mp(µ0) : there exists µ ∈ A with µ|t=0 = µ0} is

bounded, and, in particular, it holds for AT (µ0) when µ0 ∈Pp(Rd).
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Proof. Let {µn}n∈N be a sequence in A . Since µn is an admissible trajectory, it is
driven by νn = {vnt µnt }t∈[0,T ] with v

n
t ∈ L1

µnt
and vnt (x) ∈ F (x) for a.e. t ∈ [0, T ] and

µnt -a.e. x ∈ Rd. Since for a.e. t ∈ [0, T ]∫
Rd
|x|p dµnt (x) ≤ C,

according to Remark 5.1.5 in [3], we have that for a.e. t ∈ [0, T ] there exists
µt ∈P(Rd) such that µnt ⇀

∗ µt. Similarly,∫
Rd
|x|p−1|dνnt (x)| =

∫
Rd
|x|p−1|vnt (x)| dµnt (x) ≤ LC + 1,

thus there exists νt ∈M (Rd;Rd) such that νnt ⇀
∗ νt. By Proposition 4.11, we have

that µ = {µt}t∈[0,T ] is an admissible trajectory de�ned on [0, T ] driven by ν. The
last assertion comes from Lemma 4.4, which allows to estimate the moments of µt
and νt in terms of the moments of µ0. �

Theorem 4.13 (L.s.c. of the generalized minimum time). Assume (F0) and (F1).
Then T̃Φ

p : Pp(Rd)→ [0,+∞] is l.s.c. for all p > 1.

Proof. Let µ0 ∈Pp(Rd), we have to prove that T̃Φ
p (µ0) ≤ lim inf

Wp(µ,µ0)→0
T̃Φ
p (µ). Taken a

sequence {µn0}n∈N ⊆Pp(Rd) s.t. Wp(µ
n
0 , µ0)→ 0 for n→ +∞, and lim inf

Wp(µ,µ0)→0
T̃Φ
p (µ) =

lim
n→+∞

T̃Φ
p (µn0 ) =: T , we want to prove that T̃Φ

p (µ0) ≤ T .

If T = +∞ there is nothing to prove, so let us assume T < +∞. Then there exists
a sequence {Tn}n∈N such that Tn → T , and a sequence of admissible trajectories
{µn}n∈N, with µn = {µnt }t∈[0,Tn] ⊆Pp(Rd), such that µn|t=Tn ∈ S̃

Φ
p for all n ∈ N.

Fix ε > 0, then there exists nε ∈ N such that Tnε ≤ T + ε for all n ≥ nε. For now
on we will consider n ≥ nε.
Our aim now is to extend the trajectories {µn}n∈N to be all de�ned in the same

time interval [0, T + ε] so that we can use a result of compactness.
By (F0) we have that F (·) is continuous, thus by Theorem 8.1.3 in [8] there exists

a Borel function v̄ : Rd → Rd such that v̄(x) ∈ F (x) for all x ∈ Rd, and so we can
consider the admissible trajectory µ̄n := {µ̄nt }t∈[Tn,T+ε] ⊆Pp(Rd) solution of

∂tµt + div(v̄µt) = 0, for t > Tn,

µ|t=Tn = µn|t=Tn .

Using Lemma 2.13, we can de�ne an admissible trajectory µ̃n = {µ̃nt }t∈[0,T+ε] ⊆
Pp(Rd), with

µ̃nt :=


µnt , for t ∈ [0, Tn],

µ̄nt , for t ∈ [Tn, T + ε].

Observe also that, by de�nition, Wp(µ̃
n
|t=0, µ0)→ 0, n→ +∞.

Now we can apply Theorem 4.12 to say that there exists µ := {µt}t∈[0,T+ε] ⊆
Pp(Rd) such that µ̃n →p µ, n→ +∞, with µ an admissible trajectory and µ|t=0 =
µ0.
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To conclude we have to prove that there exists t ∈ [0, T + ε] s.t. µt ∈ S̃Φ
p , in fact

in this way we obtain T̃Φ
p (µ0) ≤ T + ε, for all ε > 0, thus by letting ε→ 0+ we have

T̃Φ
p (µ0) ≤ T .

To prove this, suppose by contradiction that ∃δ > 0 s.t. d̃S̃Φ
p

(µt) > δ for all

t ∈ [0, T + ε] and observe that µ̃n|t=Tn ∈ S̃
Φ
p , ∀n ∈ N. In particular, for t = Tn we

have

0 < δ < d̃S̃Φ
p

(µ|t=Tn) ≤ Wp(µ|t=Tn , µ̃
n
|t=Tn)

≤ Wp(µ|t=Tn , µ|t=T ) +Wp(µ|t=T , µ̃
n
|t=T ) +Wp(µ̃

n
|t=T , µ̃

n
|t=Tn).

Observing that

lim
n→+∞

Wp(µ|t=Tn , µ|t=T ) = lim
n→∞

Wp(µ̃
n
|t=Tn , µ̃

n
|t=T ) = 0,

by the continuity of the admissible curves w.r.t. t, and that

lim
n→+∞

Wp(µ|t=T , µ̃
n
|t=T ) = 0,

byWp−convergence of µ̃nt towards µt for all t ∈ [0, T+ε], we have a contradiction. �

Theorem 4.14 (Existence of minimizers). Assume (F0), (F1) and p > 1. Let
µ0 ∈ Pp(Rd), Φ ∈ C0(Rd;R) satisfying assumptions of De�nition 3.1, and let S̃Φ

be the corresponding generalized target. Let T̃Φ(µ0) < ∞. Then there exists an
admissible curve µ = {µt}t∈[0,T ] driven by ν = {νt}t∈[0,T ] which is optimal for µ0,

that is T̃Φ(µ0) = JF (µ,ν). Moreover, we have also T̃Φ(µ0) = T̃Φ
p (µ0).

Proof. By the hypothesis of �niteness of T̃Φ(µ0) and by de�nition of in�mum we
have that there exist {tn}n∈N ⊂ R and a sequence of admissible trajectories µn =
{µnt }t∈[0,tn], such that µn|t=0 = µ0, µ

n|t=tn =: σn ∈ S̃Φ, tn → T̃Φ(µ0)+. Moreover, by

Lemma 4.4, we have that σn ∈ S̃Φ
p for all n ∈ N. We restrict all µn to be de�ned on

[0, T̃Φ(µ0)].
By Theorem 4.12, µn w∗-converges up to subsequences to an admissible trajectory

µ = {µt}t∈[0,T̃Φ(µ0)] starting from µ0 driven by ν = {νt}t∈[0,T ], and by w∗-closure of

S̃Φ we have σn ⇀∗ µ|t=T̃Φ(µ0) ∈ S̃Φ. Applying again Lemma 4.4, we have that

µ|t=T̃Φ(µ0) ∈ S̃Φ
p . Thus T̃

Φ(µ0) = T̃Φ
p (µ0) = JF (µ,ν). �

The following result allows us to justify the name of generalized minimum time
given to functions T̃Φ(·) and T̃Φ

p (·).

Lemma 4.15 (Convexity property of the embedding of classical trajectories). Let
N ∈ N\{0}, T > 0 be given. Assume (F0) and (F1). Consider a family of continuous
curves and real numbers {(γi, λi)}i=1,...,N ⊆ ΓT × [0, 1] such that γi(·) is a trajectory

of ẋ(t) ∈ F (x(t)) for i = 1, . . . , N , and
N∑
i=1

λi = 1.
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For all i = 1, . . . , N and t ∈ [0, T ], de�ne the measures µ
(i)
t = δγi(t), µt =

N∑
i=1

λiµ
(i)
t ,

ν
(i)
t =


γ̇i(t)δγi(t), if γ̇i(t) exists,

0, otherwise,

and νt =
N∑
i=1

λiν
(i)
t . Then µ = {µt}t∈[0,T ] is an admissible trajectory driven by

ν = {νt}t∈[0,T ].

Proof. By linearity, clearly we have that

∂tµt + div νt = 0

is satis�ed in the sense of distribution, moreover µt(B) = 0 implies νt(B) = 0 for
every Borel set B ⊆ Rd, thus |νt| � µt. It remains only to prove that for a.e.
t ∈ [0, T ] we have νt = vtµt for a vector-valued function vt ∈ L1(Rd;Rd) satisfying
vt(x) ∈ F (x) for µt-a.e. x ∈ Rd. Set

τ = {t ∈ [0, T ] : γ̇i(t) exists for all i = 1, . . . , N and γ̇i(t) ∈ F (γi(t))},
and notice that τ has full measure in [0, T ].

Fix t ∈ τ , x ∈ suppµt. By de�nition of µt, we have that there exists I ⊆
{1, . . . , N} such that µ

(i)
t = δx if and only if i ∈ I. So it is possible to �nd δ > 0

such that for all 0 < ρ < δ we have

µt(B(x, ρ)) =
∑
j∈I

λj, νt(B(x, ρ)) =
∑
i∈I

λi

∫
B(x,ρ)

ν
(i)
t

µ
(i)
t

(y)dµ
(i)
t (y) =

∑
i∈I

λi
ν

(i)
t

µ
(i)
t

(x).

Thus for every t ∈ τ and x ∈ suppµt we have

vt(x) := lim
ρ→0+

νt(B(x, ρ))

µt(B(x, ρ))
=
∑
i∈I

λi∑
j∈I λj

ν
(i)
t

µ
(i)
t

(x),

i.e., a convex combination of γ̇i(t) =
ν

(i)
t

µ
(i)
t

(x) ∈ F (x) for µt-a.e. x ∈ Rd. Thus

νt
µt

(x) = vt(x) ∈ F (x), and so µ = {µt}t∈[0,T ] is an admissible trajectory driven by

ν = {νt}t∈[0,T ]. �

Corollary 4.16. Assume (F0) and (F1) and that the generalized target S̃Φ admits
a classical counterpart S ⊆ Rd which is weakly invariant for the dynamics ẋ(t) ∈
F (x(t)). Let µ0 ∈Pp(Rd) with p > 1. Then T̃Φ

p (µ0) = T̃Φ(µ0) = ‖T (·)‖L∞
µ0
.

Proof. Since S̃Φ admits classical counterpart S, we have that S is closed and we can
always take Φ = {dS(·)}. Thus in this proof we will simply write T̃p and S̃p in place

of T̃Φ
p and S̃Φ

p , respectively.

By Proposition 4.8, we have only to prove that T̃p(µ0) ≤ T := ‖T (·)‖L∞
µ0
. Assume

that T < +∞, otherwise there is nothing to prove. For µ0-a.e. point x ∈ Rd we
have T (x) ≤ T , thus there exists a trajectory γx(·) such that γx(T (x)) ∈ S. By the
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weak invariance of S, we can extend this trajectory to be de�ned on [0, T ] with the
constraint γx(t) ∈ S for all T (x) ≤ t ≤ T , thus in particular γx(T ) ∈ S. Fix ε > 0,
then there exists N = Nε ∈ N \ {0}, and {(xi, λi) : i = 1, . . . , Nε} ⊆ suppµ0 × [0, 1]
such that:

(1)
Nε∑
i=1

λi = 1;

(2) Wp

(
µ0,

Nε∑
i=1

λiδxi

)
< ε;

(3) there exist classical admissible trajectories {γi : [0, T ]→ Rd : i = 1, . . . , Nε}
satisfying γi(0) = xi and γi(T ) ∈ S for all i = 1, . . . , Nε.

It is possible to �nd an admissible trajectory µ(ε) =
{
µ

(ε)
t

}
t∈[0,T ]

⊆Pp(Rd) such

that µ
(ε)
0 =

∑Nε
i=1 λiδxi and µ

(ε)
T ∈ S̃p, indeed, we can set

µ
(ε)
t =

Nε∑
i=1

λiδγi(t), ν
(ε)
t =


Nε∑
i=1

λiγ̇i(t)δγi(t), if γ̇i(t) exists for all i = 1, . . . , Nε,

0, otherwise,

and then apply Lemma 4.15.

Since µ
(ε)
0 converges in Wp to µ0, we have that there exists ε̄ > 0 such that the

set
{

mp

(
µ

(ε)
0

)
: 0 < ε < ε̄

}
is uniformly bounded by mp(µ0) + 1. In particular,

by taking a sequence εk → 0+, and the corresponding admissible trajectories µ(εk)

driven by ν(εk), we can extract by Theorem 4.12 a subsequence converging to an

admissible trajectory µ̄ driven by ν̄ satisfying µ̄0 = µ0. Since µ
(ε)
T ∈ S̃p for all ε > 0,

by the closure of S̃p we have µ̄T ∈ S̃p, thus T̃p(µ0) ≤ T . �

Corollary 4.17 (Second comparison result). Assume (F0) and (F1) and that the
generalized target S̃Φ admits a classical counterpart S. Then, for every x0 ∈ Rd we
have T̃Φ(δx0) = T̃Φ

p (δx0) = T (x0) for all p ≥ 1, where T (·) is the classical minimum
time function for ẋ(t) ∈ F (x(t)) with target S.

Proof. Apply Lemma 4.15 to the family {(γ, 1)}, where γ(·) is an admissible trajec-
tory of ẋ(t) ∈ F (x(t)) satisfying γ(0) = x0 and γ(T (x0)) ∈ S. We obtain an admis-
sible trajectory steering δx0 to S̃p for all p ≥ 1 in time T (x0), thus T̃p(δx0) ≤ T (x0).
By Proposition 4.8, since ‖T (·)‖Lpδx0

= T (x0), equality holds. �

Theorem 4.18 (Dynamic programming principle). Let 0 ≤ s ≤ τ , let F : Rd ⇒ Rd

be a set-valued function, let µ = {µt}t∈[0,τ ] be an admissible curve for ΣF . Then we
have

T̃Φ(µ0) ≤ s+ T̃Φ(µs).

Moreover, if T̃Φ(µ0) < +∞, equality holds for all s ∈ [0, T̃Φ(µ0)] if and only if µ is
optimal for µ0 = µ|t=0. The same result holds for T̃Φ

p in place of T̃Φ, p ≥ 1.

Proof. Let ν = {νt}t∈[0,τ ] ⊆M (Rd;Rd) be such that µ is driven by ν. Fix s ∈ [0, τ ],

ε > 0. If T̃Φ(µs) = +∞ there is nothing to prove. Otherwise there exists an
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admissible curve µε := {µεt}t∈[0,T̃Φ(µs)+ε]
⊆P(Rd) driven by νε = {νεt }t∈[0,T̃Φ(µs)+ε]

⊆
M (Rd;Rd) such that µε|t=0 = µs and µ

ε
|t=T̃Φ(µs)+ε

∈ S̃Φ. We consider

ṽεt (x) :=


νt
µt

(x), for 0 ≤ t ≤ s,

νεt−s
µεt−s

(x), for s < t ≤ T̃Φ(µs) + s+ ε.

µ̃εt :=


µt, for 0 ≤ t ≤ s,

µεt−s, for s < t ≤ T̃Φ(µs) + s+ ε.

It is clear that µ̃ε|t=0 = µ0, that µ̃
ε
|t=T̃Φ(µs)+s+ε

∈ S̃Φ, and that ṽεt (x) ∈ F (x) for µ̃εt�a.e.

x ∈ Rd and a.e. t ∈ [0, T̃Φ(µs) + ε]. Moreover, t 7→ µ̃εt is narrowly continuous. Since
Lemma 2.13 ensures that µ̃ε := {µ̃εt}t∈[0,T̃Φ(µs)+s+ε]

is a solution of the continuity

equation driven by ν̃ε = {ν̃εt = ṽεt µ̃
ε
t}t∈T̃Φ(µs)+s+ε

, thus an admissible trajectory, we
have that

T̃Φ(µ0) ≤ JF (µ̃ε, ν̃ε) = T̃Φ(µs) + s+ ε .

By arbitrariness of ε > 0, we conclude that T̃Φ(µ0) ≤ s+ T̃Φ(µs).

Assume now that T̃Φ(µ0) < +∞ and equality holds for all s ∈ [0, T̃Φ(µ0)]. Then,
in particular, when s = T̃Φ(µ0) we get

T̃Φ(µ0) = T̃Φ(µ0) + T̃Φ(µT̃Φ(µ0)) ⇒ T̃Φ(µT̃Φ(µ0)) = 0 .

In turn, this implies µT̃Φ(µ0) = µs+T̃Φ(µs)
∈ S̃Φ, and so µ = {µt}t∈[0,T̃Φ(µ0)] joins

µ0 with the generalized target. To prove optimality, it remains to be shown that
T̃Φ(µ0) = JF (µ,ν). For all s ∈ [0, T̃Φ(µ0)] we have

T̃Φ(µ0) =s+ T̃Φ(µs) = s+ JF

(
µ|[s,T̃Φ(µs)+s]

,ν |[s,T̃Φ(µs)+s]

)
=s+ JF

(
µ|[s,T̃Φ(µ0)],ν |[s,T̃Φ(µ0)]

)
.

In particular, for s = 0 this yields exactly T̃Φ(µ0) = JF (µ,ν), i.e., µ is optimal for
µ0.

Finally, assume that µ is optimal for µ0 and T̃Φ(µ0) < +∞. To have equality
T̃Φ(µ0) = s + T̃Φ(µs), it is enough to show that T̃Φ(µ0) ≥ s + T̃Φ(µs). If we de�ne
ν ′t := νt+s, we have that µ

′ = {µ′t}t∈[0,T̃Φ(µ0)−s] := {µt+s}t∈[0,T̃Φ(µ0)−s] is a solution of

the continuity equation driven by ν′ = {ν ′t}t∈[0,T̃Φ(µ0)−s]. This implies that

T̃Φ(µ0) = JF (µ,ν) = s+

∫ T̃Φ(µ0)

s

∫
Rd

(
1 + IF (x)

(
νt
µt

(x)

))
dµt(x) dt

= s+

∫ T̃Φ(µ0)−s

0

∫
Rd

(
1 + IF (x)

(
ν ′t
µ′t

(x)

))
dµ′t(x) dt ≥ s+ T̃Φ(µs),

which concludes the proof. �

We are now interested in proving su�cient conditions on the set-valued function
F (·) in order to have attainability of the generalized control system, i.e. to steer a
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probability measure on the generalized target by following an admissible trajectory
in �nite time.

Representation formula for the generalized minimum time provided in Theorem
4.14 allows us to recover many results valid for the classical minimum time function
also in the framework of generalized systems.

Theorem 4.19 (Attainability in the C1
c case). Assume (F0), (F1). Let Φ ⊆ C1

c (Rd;R)
satisfying assumptions of De�nition 3.1 and let µ0 ∈ Pp(Rd), p ≥ 1. Assume
that there exists a Borel vector �eld v : Rd → Rd and an admissible trajectory
µ := {µt}t∈[0,+∞] ⊆P(Rd) driven by ν = {νt := vµt}t∈[0,+∞[, µ|t=0 = µ0, such that
the following condition holds:

(Cc) for all φ ∈ Φ there exists kφ > 0 s.t.
∫
Rd〈∇φ(x), v(x)〉 dµt(x) ≤ −kφ for a.e.

t > 0.

Then we have

T̃Φ
p (µ0) ≤ sup

φ∈Φ

{
1

kφ

∫
Rd
φ(x) dµ0(x)

}
.

Proof. We assume that the right hand side is �nite, otherwise there is nothing to
prove. We notice that, by the regularity hypothesis on Φ, we can refer to Remark 3.2
for the de�nition of S̃Φ, moreover, by Lemma 4.4, we have µ ⊆Pp(Rd).

Given φ ∈ Φ, we set Lφt :=

∫
Rd
φ(x) dµt(x), and from the continuity equation we

have that in the distributional sense it holds

L̇φt =
d

dt

∫
Rd
φ(x)dµt(x) =

∫
Rd
〈∇φ(x), v(x)〉 dµt(x) ≤ −kφ.

Then Lφt − L
φ
0 ≤ −kφt for t > 0. Thus if t ≥ sup

φ∈Φ

Lφ0
kφ

, we have that Lφt ≤ 0 for all

φ ∈ Φ, hence µt ∈ S̃Φ for t ≥ sup
φ∈Φ

Lφ0
kφ

, which ends the proof. �

5. Hamilton-Jacobi-Bellman Equation

In this section we will prove that under suitable assumptions the generalized mini-
mum time function solves a natural Hamilton-Jacobi-Bellman equation on P2(Rd) in
the viscosity sense. The notion of viscosity sub-/superdi�erential that we are going
to use is di�erent from other currently available in literature (e.g. [3], [13],[18],[17]),
being modeled on this particular problem.

Throughout this section, given T ∈]0,+∞], we will use the evaluation map et :
Rd × ΓT → Rd de�ned as et(x, γ) = γ(t) for all 0 ≤ t < T . Moreover, we set

ΓxT := {γ ∈ ΓT : γ(0) = x},
TF (µ0) := {η ∈P(Rd × ΓT ) : T > 0,η concentrated on trajectories of

γ̇(t) ∈ F (γ(t)) and satis�es γ(0)]η = µ0},

where x ∈ Rd and µ0 ∈P(Rd).

Lemma 5.1 (Properties of the evaluation operator). Assume (F0) and (F1), and let
L1, L2 > 0 be the constants as in (F1). For any µ0 ∈P2(Rd), T ∈]0, 1], η ∈ TF (µ0),
we have:
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(i) |et(x, γ)| ≤ (|e0(x, γ)|+L2) eL1 for all t ∈ [0, T ] and η-a.e. (x, γ) ∈ Rd×ΓT ;

(ii) et ∈ L2
η(Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists C > 0 depending only on L1, L2 such that for all t ∈ [0, T ] we
have ∥∥∥∥et − e0

t

∥∥∥∥2

L2
η

≤ C (m2(µ0) + 1) .

Proof. We set ϕt(x, γ) =
et(x, γ)− e0(x, γ)

t
, notice that for all t ≥ 0 the map

(x, γ) 7→ ϕt(x, γ) does not depend on x-variable.

Item (i) follows from Lemma 2.17. To prove (ii) is enough to show e0 ∈ L2
η(Rd×ΓT )

and then apply item (i). Indeed, we have∫∫
Rd×ΓT

|e0(x, γ)|2 dη(x, γ) =

∫
Rd
|z|2 d(γ(0)]η)(z) = m2(µ0) < +∞,∫∫

Rd×ΓT

|et(x, γ)|2 dη(x, γ) ≤

≤ e2L1T

(∫∫
Rd×ΓT

|e0(x, γ)|2 dη + L2
2T

2 + 2L2T

∫∫
Rd×ΓT

|e0(x, γ)| dη
)

≤ e2L1T
(
(2L2T + 1)m2(µ0) + L2

2T
2
)
,

recalling that by Hölder inequality we have m1(µ0) ≤ m2(µ0).
We prove now (iii). For all t ∈]0, T [ we have

|ϕt(x, γ)| = 1

t
|γ(t)− γ(0)| = 1

t

∫ t

0

|γ̇(s)| ds ≤ L1

t

∫ t

0

|γ(s)| ds+ L2

≤ L1(|e0(x, γ)|+ L2T ) eL1T + L2 ≤ L1(|e0(x, γ)|+ L2) eL1 + L2

By taking the square of this expression and integrating w.r.t. η, we have that

‖ϕt‖2
L2
η
≤ C1(m2(µ0) + 1),

where we can take

C1 = 2 max{e2L1L2
1 + 2e2L1L2L

2
1 + 2eL1L2L1, e

2L1L2
2L

2
1 + 2eL1L2

2L1 + L2
2}.

�

De�nition 5.2 (Averaged speed set). Assume (F0) and (F1), T > 0. For any
µ0 ∈P2(Rd), η ∈ TF (µ0), we set

V (η) :=
{
wη ∈ L2

η(Rd × ΓT ) :∃{ti}i∈N ⊆]0, T [, with ti → 0+ and

eti − e0

ti
⇀ wη weakly in L2

η(Rd × ΓT ;Rd)

}
.

Observe that, indeed, by construction, if wη ∈ V (η), then for every ε > 0 we have
wη ∈ L2

η(Rd × Γε), since all trajectories of the di�erential inclusion ẋ(t) ∈ F (x(t))
are de�ned on [0,+∞[.

We notice that, according to the boundedness result of Lemma 5.1 (iii), for any
sequence {ti}i∈N ⊆]0, T [ with ti → 0+, there exists a subsequence τ = {tik}k∈N
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and wη ∈ L2
η(Rd × ΓT ;Rd) such that

etik − e0

tik
weakly converges to an element of

L2
η(Rd × ΓT ;Rd), thus V (η) 6= ∅.

Lemma 5.3 (Properties of the averaged speed set). Assume (F0) and (F1), T > 0.
For any µ0 ∈P2(Rd), η ∈ TF (µ0) and every wη ∈ V (η) we have that

(i) wη(x, γ) ∈ F (γ(0)) for η-a.e (x, γ) ∈ Rd × ΓT .

(ii) if we denote by {ηx}x∈Rd the disintegration of η w.r.t. the map e0, the map

x 7→
∫

ΓxT

wη(x, γ) dηx(γ),

belongs to L2
µ0

(Rd;Rd).

Proof. We prove (i). Fix ε > 0 and (x, γ) ∈ suppη. Since γ(·) and F (·) are
continuous, there exists t∗ε,γ > 0 such that for all 0 < t < t∗ε,γ we have F (γ(t)) ⊆
F (γ(0)) + εB(0, 1). In particular, for all 0 < t < t∗ε,γ and v ∈ Rd we have

〈v, ϕt(x, γ)〉 = 〈v, γ(t)− γ(0)

t
〉 =

1

t

∫ t

0

〈v, γ̇(s)〉 ds

≤ 1

t

∫ t

0

σF (γ(s))(v) ds ≤ σF (γ(0))+εB(0,1)(v),

where ϕt(x, γ) =
et(x, γ)− e0(x, γ)

t
.

Thus

co{ϕt(x, γ) : 0 < t < t∗ε,γ} ⊆ F (γ(0)) + εB(0, 1)

Given wη ∈ V (η), let {ti}i∈N ⊆]0, 1] be a sequence such that ti → 0+ and ϕti ⇀ wη
weakly in L2

η. In particular, by Mazur's Lemma, there is a sequence in co{ϕti : i ∈
N} strongly convergent to wη. In particular, for (x, γ)-a.e. point of Rd×ΓT we have
pointwise convergence, i.e.

wη(x, γ) ∈ co{ϕti(x, γ) : i ∈ N}.

Given a point (x, γ) where above pointwise convergence occurs, we can consider a
subsequence {tik}k∈N of ti satisfying 0 < tik < t∗ε,γ, obtaining that

wη(x, γ) ∈ co{ϕtik (x, γ) : k ∈ N}) ⊆ co{ϕt(x, γ) : 0 < t < t∗ε,γ}

⊆ F (γ(0)) + εB(0, 1).

By letting ε→ 0+ we have that wη(x, γ) ∈ F (γ(0)) for η-a.e. (x, γ) ∈ Rd × ΓT .

We prove now (ii). By de�nition, the disintegration of η w.r.t. the evaluation
map e0 is a family of measures {ηx}x∈Rd satisfying (recall that e0]η = µ0)∫∫

Rd×ΓT

f(x, γ)wη(x, γ) dη(x, γ) =

∫
Rd

(∫
ΓxT

〈f(x, γ), wη(x, γ)〉 dηx(γ)

)
dµ0(x),

for all Borel map f : Rd × ΓT → Rd. Moreover the family {ηx}x∈Rd is uniquely
determined for µ0-a.e. x ∈ Rd (see e.g. Theorem 5.3.1 in [3]).
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For any ψ ∈ L2
µ0

(Rd;Rd), clearly we have ψ◦e0 ∈ L2
η(Rd×ΓT ;Rd), since e0]η = µ0.

Recalling that wη ∈ L2
η , we obtain∫

Rd
〈ψ(x),

∫
ΓxT

wη(x, γ) dηx(γ)〉 dµ0(x) =

∫
Rd

∫
ΓxT

〈ψ(x), wη(x, γ)〉 dηx(γ) dµ0(x)

=

∫
Rd

∫
ΓxT

〈ψ ◦ e0(x, γ), wη(x, γ)〉 dηx(γ) dµ0(x)

=

∫∫
Rd×ΓT

〈ψ ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ) < +∞.

By the arbitrariness of ψ ∈ L2
µ0

(Rd;Rd), we obtain that the map

x 7→
∫

ΓxT

wη(x, γ) dηx(γ),

belongs to L2
µ0

(Rd;Rd), moreover for µ0-a.e. x ∈ Rd, we have from (i) that∫
ΓxT

wη(γ) dηx(γ) ∈ F (x).

�

Remark 5.4. We can interpret each wη ∈ V (η) as a sort of averaged vector �eld
of initial velocity in the sense of measure (we recall that in general an admissible
trajectory γ may fail to possess a tangent vector at t = 0). The map

x 7→
∫

ΓxT

wη(γ) dηx(γ),

can be interpreted as a initial barycentric speed of all the (weighted) trajectories
emanating from x in the support of η. This approach is quite related to Theorem
5.4.4. in [3].

In the case in which the trajectory t 7→ et]η is driven by a su�cient smooth vector
�eld, we recover exactly as averaged vector �eld and initial barycentric speed the
expected objects, as shown below.

Lemma 5.5 (Regular driving vector �elds). Let µ = {µt}t∈[0,T ] be an absolutely
continuous solution of 

∂tµt + div(vµt) = 0, t ∈]0, T [

µ|t=0 = µ0 ∈P2(Rd),

where v ∈ C0
b (Rd;Rd) satis�es v(x) ∈ F (x) for all x ∈ Rd. Then if η ∈ TF (µ0)

satis�es µt = et]η for all t ∈ [0, T ], we have that

lim
t→0

∥∥∥∥et − e0

t
− v ◦ e0

∥∥∥∥
L2
η

= 0,

and so V (η) = {v ◦ e0}, thus we have{
x 7→

∫
ΓxT

wη(x, γ) dηx : wη ∈ V (η)

}
= {v(·)}.
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Proof. We have∥∥∥∥et − e0

t
− v ◦ e0

∥∥∥∥2

L2
η

=

∫
Rd×ΓT

∣∣∣∣γ(t)− γ(0)

t
− v(γ(0))

∣∣∣∣2 dη(x, γ),

For η-a.e. (x, γ) ∈ Rd×ΓT , recalling the boundedness of v and that we have γ ∈ C1

and γ̇(t) = v(γ(t))∣∣∣∣γ(t)− γ(0)

t
− v(γ(0))

∣∣∣∣ ≤ 1

t

∫ t

0

|γ̇(s)| ds+ |v(γ(0))| ≤ 2‖v‖∞,

lim
t→0+

∣∣∣∣γ(t)− γ(0)

t
− v(γ(0))

∣∣∣∣ = 0.

Thus applying Lebesgue's Dominated Convergence Theorem we obtain

lim
t→0

∥∥∥∥et − e0

t
− v ◦ e0

∥∥∥∥2

L2
η

= 0,

hence wη = v ◦ e0. The last assertion now follows. �

We have already proved that the set{
x 7→

∫
ΓxT

wη(x, γ) dηx : η ∈ TF (µ0), wη ∈ V (η)

}
is contained in the set of all L2

µ0
(Rd;Rd)-selections of F (·). The next density results

shows that, indeed, equality holds: since allows to approximate every L2
µ0
-selections

by C0
b -selections, and then use Lemma 5.5.

Lemma 5.6 (Approximation). Let µ ∈P(Rd). Assume (F0) and (F3). Then given
any v ∈ L2

µ(Rd;Rd) satisfying v(x) ∈ F (x) for µ-a.e. x ∈ Rd, there exists a sequence

of continuous maps {gn}n∈N ⊆ C0(Rd;Rd) such that

(1) lim
n→∞

‖gn − v‖L2
µ

= 0;

(2) gn(x) ∈ F (x) for all x ∈ Rd.

In particular, given µ0 ∈P2(Rd), we have

{v ∈ L2
µ0

(Rd;Rd) : v(x) ∈ F (x) for µ0-a.e. x ∈ Rd} =

=

{
x 7→

∫
ΓxT

wη(x, γ) dηx : η ∈ TF (µ0), wη ∈ V (η)

}
.

Proof. By Lusin's Theorem (see e.g. Theorem 1.45 in [6]), we can construct a se-
quence of compact sets {Kn}n∈N ⊆ Rd and of continuous maps {vn}n∈N ⊆ C0

c (Rd;Rd)
such that vn = v on Kn and µ(Rd \Kn) ≤ 1/n. For all n ∈ N de�ne the set valued
maps

Gn(x) :=


F (x), for x ∈ Rd \Kn,

{vn(x)}, for x ∈ Kn.

We prove that Gn(·) is lower semicontinuous. If x ∈ Rd\Kn, then in a neighborhood
of x we haveGn = F , thus Gn is lower semicontinuous. Let x ∈ Kn and V be an open
set such that V ∩Gn(x) 6= ∅. In particular, we have that V is an open neighborhood
of vn(x). Without loss of generality, we may assume that V = B(vn(x), ε) for
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ε > 0, thus there exists δ > 0 such that if y ∈ B(x, δ) ∩ Kn we have vn(y) ∈ V ,
and so Gn(y) ∩ V 6= ∅. On the other hand, by continuity of F , there exists an
open neighborhood U of x such that V ∩ F (y) 6= ∅ for all y ∈ U . Thus, if we set
U ′ = U ∩B(x, δ) \Kn, we have that U

′ is an open neighborhood of x satisfying:

(1) for all y ∈ U ′ \Kn we have F (y) = Gn(y) and so Gn(y) ∩ V 6= ∅;
(2) for all y ∈ U ′ ∩Kn we have vn(y) ∈ V , and so Gn(y) ∩ V 6= ∅;

and so given V for all y ∈ U ′ we have Gn(y)∩ V 6= ∅, which proves lower semiconti-
nuity. Since Gn(·) is lower semicontinuous with compact convex values, by Michael's
Selection Theorem (see e.g. Theorem 9.1.2 in [8]) we can �nd a continuous selection
gn ∈ C0(Rd;Rd) which by construction agrees with v and vn on Kn and satis�es
gn(x) ∈ Gn(x) ⊆ F (x) for all x ∈ Rd. Finally, we have∫

Rd
|v(x)− gn(x)|2 dµ(x) =

∫
Rd\Kn

|v(x)− gn(x)|2 dµ(x) ≤ 4M2µ(Rd \Kn) ≤ 4M2

n
,

where M is as in assumption (F3). The last assertion comes from Lemma 5.5. �

We introduce now the following de�nition of viscosity sub-/superdi�erential. For
other concepts of viscosity sub-/superdi�erential, we refer the reader to [3] and [13].

De�nition 5.7 (Sub-/Super-di�erential in P2(Rd)). Let V : P2(Rd) → R be a
function. Fix µ ∈ P2(Rd) and δ > 0. We say that pµ ∈ L2

µ(Rd;Rd) belongs to the

δ-superdi�erential D+
δ V (µ) at µ if for all T > 0 and η ∈ P(Rd × ΓT ) such that

t 7→ et]η is an absolutely continuous curve in P2(Rd) de�ned in [0, T ] with e0]η = µ
we have
(5.1)

lim sup
t→0+

V (et]η)− V (e0]η)−
∫
Rd×ΓT

〈pµ ◦ e0(x, γ), et(x, γ)− e0(x, γ)〉 dη(x, γ)

‖et − e0‖L2
η

≤ δ.

In the same way, qµ ∈ L2
µ(Rd;Rd) belongs to the δ-subdi�erential D−δ V (µ) at µ

if −qµ ∈ D+
δ [−V ](µ). Moreover, D±δ [V ](µ) is the closure in L2

µ of D±δ [V ](µ) ∩
C0
b (Rd;Rd).

De�nition 5.8 (Viscosity solutions). Let V : P2(Rd) → R be a function and
H : P2(Rd)× C0

b (Rd;Rd)→ R. We say that V is a

(1) viscosity supersolution of H (µ,DV (µ)) = 0 if there exists C > 0 depending
only on H such that H (µ, qµ) ≥ −Cδ for all qµ ∈ D−δ V (µ) ∩ C0

b , µ ∈
P2(Rd).

(2) viscosity subsolution of H (µ,DV (µ)) = 0 if there exists C > 0 depending
only on H such that H (µ, pµ) ≤ Cδ for all pµ ∈ D+

δ V (µ)∩C0
b , µ ∈P2(Rd).

(3) viscosity solution of H (µ,DV (µ)) = 0 if it is both a viscosity subsolution
and a viscosity supersolution.

De�nition 5.9 (Hamiltonian Function). Given µ ∈P(Rd), de�ne

D(µ) :=

{
ν ∈M (Rd;Rd) : |ν| � µ and

∫
Rd

(∣∣∣∣νµ
∣∣∣∣2 + IF (x)

(
ν

µ
(x)

))
dµ < +∞

}
.

We de�ne the map HF : P2(Rd)× C0
b (Rd;Rd)→ R by setting

HF (µ, ψ) := −
[
1 + inf

ν∈D(µ)

∫
Rd
〈ψ(x),

ν

µ
(x)〉 dµ

]
.
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Theorem 5.10 (Viscosity solution). Assume (F0) and (F3). Then T̃2(·) it is a
viscosity solution of HF (µ,DT̃2(µ)) = 0, with HF de�ned as in De�nition 5.9.

Proof. The proof is splitted in two claims.

Claim 1 : T̃2(·) is a subsolution of HF (µ,DT̃2(µ)) = 0.

Proof of Claim 1. Given η ∈ TF (µ0) and set µt = et]η for all t by the Dynamic
Programming Principle we have T̃2(µ0) ≤ T̃2(µs)+s for all 0 < s ≤ T̃2(µ0). Without
loss of generality, we can assume 0 < s < 1. Given any pµ0 ∈ D+

δ T̃2(µ0), and set

A(s, pµ0 ,η) :=− s−
∫
Rd×ΓT

〈pµ0 ◦ e0(x, γ), es(x, γ)− e0(x, γ)〉 dη,

B(s, pµ0 ,η) :=T̃2(µs)− T̃2(µ0)−
∫
Rd×ΓT

〈pµ0 ◦ e0(x, γ), es(x, γ)− e0(x, γ)〉dη,

we have A(s, pµ0 ,η) ≤ B(s, pµ0 ,η).
We recall that since by de�nition pµ0 ∈ L2

µ0
, we have that pµ0 ◦ e0 ∈ L2

η. Dividing
by s > 0 the left hand side, we obtain that there exists wη ∈ V (η), for which we
have

lim sup
s→0+

A(s, pµ0 ,η)

s
= −1−

∫
Rd×ΓT

〈pµ0 ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ).

Recalling the choice of pµ0 , we have

lim sup
s→0+

B(s, pµ0 ,η)

s
= lim sup

s→0+

B(s, pµ0 ,η)

‖es − e0‖L2
η

·
∥∥∥∥es − e0

s

∥∥∥∥
L2
η

≤ Cδ,

where C > 0 is a suitable constant (we can take twice the upper bound on F given
by (F3)).

We thus obtain for all η ∈ TF (µ0) that

1 +

∫
Rd×ΓT

〈pµ0 ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ) ≥ −Cδ.

By passing to the in�mum on η ∈ TF (µ0), and recalling Lemma 5.6, we have

−Cδ ≤ 1 + inf
η∈TF (µ0)

∫
Rd×ΓT

〈pµ0 ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ)

= 1 + inf
η∈TF (µ0)

∫
Rd

∫
ΓxT

〈pµ0 ◦ e0(x, γ), wη(x, γ)〉 dηx dµ0

= 1 + inf
η∈TF (µ0)

∫
Rd
〈pµ0 ◦ e0(x, γ),

∫
ΓxT

wη(x, γ) dηx〉 dµ0

= 1 + inf
v∈L2

µ0
(Rd;Rd)

v(x)∈F (x) µ0-a.e

∫
Rd
〈pµ0 , v〉 dµ0 = −HF (µ0, pµ0),

so T̃2(·) is a subsolution, thus con�rming Claim 1. �

Claim 2 : T̃2(·) is a supersolution of HF (µ,DT̃2(µ)) = 0.

Proof of Claim 2. Given η ∈ TF (µ0) and de�ned the admissible trajectory µ =
{µt}t∈[0,T ] = {et]η}t∈[0,T ], and qµ0 ∈ D−δ T̃2(µ0), there is a sequence {si}i∈N ⊆]0, T [
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and wη ∈ V (η) such that si → 0+,
esi − e0

si
weakly converges to wη in L2

η, and for

all i ∈ N ∫
Rd×ΓT

〈qµ0 ◦ e0(x, γ),
esi(x, γ)− e0(x, γ)

si
〉 dη(x, γ)

≤ 2δ

∥∥∥∥esi − e0

si

∥∥∥∥
L2
η

− T̃2(µ0)− T̃2(µsi)

si
.

By taking i su�ciently large we thus obtain∫
Rd×ΓT

〈qµ0 ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ) ≤ 3Cδ − T̃2(µ0)− T̃2(µsi)

si
.

By using Lemma 5.6 and arguing as in Claim 1, we have

inf
η∈TF (µ0)

∫
Rd×ΓT

〈qµ0 ◦ e0(x, γ), wη(x, γ)〉 dη(x, γ) = −HF (µ0, qµ0)− 1,

and so

HF (µ0, qµ0) ≥ −3Cδ +
T̃2(µ0)− T̃2(µsi)

si
− 1.

By the Dynamic Programming Principle, passing to the in�mum on all admissi-

ble curves and recalling that
T̃2(µ0)− T̃ (µs)

s
− 1 ≤ 0 with equality holding if and

only if µ is optimal, we obtain HF (µ0, qµ0) ≥ −C ′δ, which proves that T̃2(·) is a
supersolution, thus con�rming Claim 2. �
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