
Solutions to a system of first order H-J equations

related to a debt management problem

Antonio Marigonda(1) and Khai T. Nguyen(2)

(1) Department of Computer Science, University of Verona, ITALY
(2) Department of Mathematics, North Carolina State University, USA

E-mails: antonio.marigonda@univr.it, khai@math.ncsu.edu

February 7, 2021

Abstract

The paper studies a system of first order Hamilton-Jacobi equations with discontinuous
coefficients, arising from a model of deterministic optimal debt management in infinite
time horizon, with exponential discount and currency devaluation. The existence of an
equilibrium solution is obtained by a suitable concatenation of backward solutions to the
system of Hamilton-Jacobi equations. A detailed analysis of the behavior of the solution
as the debt-ratio-income x∗ → +∞ is also provided.
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1 Introduction

Consider a system of Hamilton-Jacobi equation

rV = H(x, V ′, p) +
σ2x2

2
· V ′′,

(r + λ+ v(x)) · p− (r + λ) = Hξ(x, V
′, p) · p′ + σ2x2

2
· p′′,

v(x) = argminw≥0 {c(v)− wxV ′(x)} ,

(1.1)

with the boundary conditions

V (0) = 0, V (x∗) = B and p(0) = 1, p(x∗) = θ(x∗),

motivated by an optimal debt management problem in infinite time horizon with exponential
discount. As in [4, 6, 5, 8, 12, 13], this modeled as a noncooperative interaction between a
borrower and a pool of risk-neutral lenders. Here, the independent variable x is the debt-to-
income ratio, x∗ is a threshold of the debt-to-income ratio where the borrower must declare
bankruptcy, the salvage function θ ∈ [0, 1] determines the fraction of capital that can be
recovered by lenders when bankruptcy occurs, and
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• V is the value function for the borrower who is a sovereign state that can decide the
devaluation rate of its currency v and the fraction of its income u which is used to repay
the debt,

• p is the discounted rate at which the lenders buy bonds to offset the possible loss of part
of their investment.

Since p is determined by the expected evolution of the debt-to-income ratio at all future times,
it depends globally on the entire feedback controls u and v. This leads to a highly nonstandard
optimal control problem, and a “solution” must be understood as a Nash equilibrium, where
the strategy implemented by the borrower represents the best reply to the strategy adopted
by the lenders, and conversely.

For the stochastic model (σ > 0), the authors proved in [12] the existence of an equilibrium
solution (Vσ, pσ) as a steady state of an auxiliary parabolic system. The proof requires a
careful analysis to construct an invariant domain and apply a fixed-point result to derive the
existence of a steady state for the auxiliary parabolic system. Moreover, they also established
the upper (lower) bound of discounted bond price pσ and the expected total optimal cost for
servicing the debt Vσ. Here, a natural question is trying to understand whether a solution
exists and its structure remains unchanged in the deterministic case (σ = 0). A classical
approach for a solution in this case is the vanishing viscosity method. More precisely, one
studies the limit (Vσ, pσ)→ (V, p) as the diffusion coefficient σ → 0+ and show that this limit
the limits (Vσ, pσ) yields a solution to (1.1) with σ = 0. However, this is a highly nontrivial
problem and still remains open.

The present paper aims to provide a direct study to the deterministic case of the system (1.1)
by looking at the corresponding system of differential inclusions{

V ′(x) ∈ {F−(x, V (x), p(x)), F+(x, V (x), p(x))}
p′(x) ∈ {G−(x, V (x), p(x)), G+(x, V (x), p(x))}

(1.2)

where F±(x, V (x), p(x)) solves the equation rV (x) = H(x, ξ, p(x)) with variable ξ, and

G±(x, η, p) =
(r + λ+ v∗(x, F±(x, η, p)))p− (r + λ)

Hξ(x, F±(x, η, p), p)
.

In Theorem 3.5, we first construct a solution (V, p) of (1.2) with boundary conditions by a
suitable concatenation of backward solutions, and then determine an equilibrium solution to
the corresponding differential game with deterministic dynamics. Moreover, we show that
there exists a semi-equilibrium point x1 ∈ [0, x∗[ such that if the debt-ratio-income less than
x1, then the optimal strategy will reach a steady state, otherwise bankruptcy in finite time is
unavoidable. In our construction, the main technical difficulties in the analysis stem from the
fact that, the system (1.2) is not monotone and F± are just Hölder continuous at points where
Hξ vanishes. Moreover, p(·) may well have many discontinuities xk. At these points, backward
solutions is not necessarily unique and does not a detail analysis. Thereafter, in Proposition
4.1, using the the analysis of sub- and super-solutions, we study in an asymptotic behaviour
of (V, p) as the maximum debt-to-income threshold x∗ is pushed to +∞. Consequently,

• if the salvage rate decay sufficiently slowly, i.e., the lenders can still recover a sufficiently
high fraction of their investment after the bankruptcy, then the best choice for the
borrower is to implement the Ponzi’s scheme;
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• otherwise, if the salvage rate θ(x∗) decays sufficiently fast, then Ponzi’s scheme is no
longer an optimal solution for the borrower;

• for sufficiently large initial debt-to-income and bankruptcy threshold and recovery frac-
tion after bankruptcy, the optimal strategy for the borrower will use currency devaluation
v to deflate the debt-to-income.

The remainder of the paper is organized as follows. In Section 2, we provide a more detailed
description of the model and the system of Hamilton-Jacobi equation satisfied by (V, p), and
study basic properties of H. In Section 3, we construct a solution to (1.1) with σ = 0, and
then derive an equilibrium solutions to the model of optimal debt management. In Section 4,
we perform a detailed analysis of the behavior of the optimal feedback controls as x∗ → ∞.
We close by an appendix which contains some concepts of convex analysis and collect some
further technical results related to the Hamiltonian function.

2 Model derivation and system of Hamilton-Jacobi equations

2.1 A deterministic optimal debt management problem

In this subsection, we shall recall our deterministic optimal debt management problem with
currency devaluation with exponential discount in [12]. Here, the borrower is a sovereign state,
that can decide to devaluate its currency, and its total income Y (t) and total debt X(t) are
governed by the control dynamics

Ẏ (t) = (µ+ v(t))Y (t),

Ẋ(t) = − λX(t) +
(λ+ r)X(t)− U(t)

p(t)
,

(2.1)

where µ is the average growth rate of the economy, λ is the rate at which the borrower pays
back the principal, r is the interest rate paid on bonds, and

• U(t) is the rate of payments that the borrower chooses to make to the lenders at time t;

• v(t) ≥ 0 is the devaluation rate at time t, regarded as an additional control;

We define the debt-to-income ratio x
.
=
X

Y
, and set u

.
=
U

Y
. The system (2.1) yields

ẋ(t) =

(
λ+ r

p(t)
− λ− µ− v(t)

)
x(t)− u(t)

p(t)
. (2.2)

In this model, the borrower is forced to declare bankruptcy when the debt-ratio-income x
reaches threshold x∗. The bankruptcy time is denoted by

Tb
.
= inf{t > 0 : x(t) = x∗} ∈ R ∪ {+∞}. (2.3)

Without the presence of the devaluation of currency (v = 0), when a foreign investor buys a
bond of unit nominal value, he will receive a continuous stream of payments with intensity
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(r + λ)e−λt. If bankruptcy never occurs, the payoff for a foreign investor (exponentially
discounted in time) is

Ψ =

∫ ∞
0

e−rt · (r + λ)e−λtdt = 1.

Otherwise, the lenders recover only a fraction θ(x∗) ∈ [0, 1] of their outstanding capital. In
this case, taking account of the presence of the devaluation of currency, the pay of for a foreign
investor will be

Ψ =

∫ Tb

0
(r + λ) · exp

{
−
∫ t

0
(r + λ+ v(s))ds

}
dt+ exp

{
−
∫ Tb

0
(r + λ+ v(s))ds

}
· θ(x∗).

If the outstanding capital is recovered in full (i.e., θ(x∗) = 1) and v = 0, then again Ψ = 1. In
general, however, θ(x∗) < 1, v 6= 0, and thus Ψ < 1. To offset this possible loss, the investors
buy a bond with unit nominal value at a discounted price

p(t) =

∫ Tb

0
(r + λ) · exp

{
−
∫ t

0
(r + λ+ v(s))ds

}
dt+ exp

{
−
∫ Tb

0
(r + λ+ v(s))ds

}
· θ(x∗).

(2.4)
Given an initial size x0 of the debt-to-income ratio, the borrower wants to find a pair of optimal
controls (u, v) which minimizes his total expected cost, exponentially discounted in time:

minimize J
.
=

∫ Tb

0
e−rt[L(u(t)) + c(v(t))] dt+ e−rTbB (2.5)

where c(v) is the social cost resulting from devaluation, L(u) is the cost to the borrower for
putting income towards paying the debt, and B is the cost of bankruptcy. Throughout the
paper we shall assume the following structural conditions on the cost functions L, c:

(A1) The implementing cost function L is twice continuously differentiable for u ∈ [0, 1[, and
satisfies

L(0) = 0, L′(u) > 0, L′′(u) > 0 and lim
u→1−

L(u) = +∞.

(A2) The social cost c is twice continuously differentiable for v ∈ [0,+∞[,and satisfies

c(0) = 0, c′(v) > 0, c′′(v) > 0 and lim
v→∞

c(v) = +∞.

2.2 System of first order Hamilton-Jacobi equations

The control system (2.2)–(2.4) is not standard. Indeed, the discount price p in (2.4) depends
on the debt-to-income ratio not only at the present time t but also at all future times. Here,
we are mainly interested in construct optimal controls (u∗, v∗) in feedback form:

(u, v) = (u∗(x), v∗(x)) for x ∈ [0, x∗].

Definition 2.1 (Equilibrium solution in feedback form). A couple of piecewise Lipschitz
continuous functions (u∗(·), v∗(·)) and l.s.c. p∗(·) provide an equilibrium solution to the debt
management problem (2.2)-(2.5), with continuous value function V ∗(·), if
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(i) Given the price p∗ = p∗(x), one has that V ∗ is the value function and (u∗(x), v∗(x)) is
the optimal feedback control, in connection with the deterministic control problem

minimize:

∫ Tb

0
e−rt[L(u(t)) + c(v(t))] dt+ e−rTbB, (2.6)

subject to

ẋ(t) =

(
λ+ r

p∗(x)
− λ− µ− v(t)

)
x(t)− u(t)

p∗(x)
, x(0) = x0, (2.7)

where the time Tb is determined by (2.3).

(ii) Given the feedback control (u∗(x), v∗(x)) in (2.7), for every x0 ∈ [0, x∗] one has

p∗(x0) =

∫ Tb

0
(r + λ) exp

{
−
∫ t

0

(
λ+ r + v∗(x(s)

)
ds

}
dt+

+ exp

{
−
∫ Tb

0
(r + λ+ v∗(x(t))) dt

}
· θ(x∗). (2.8)

Under the assumptions (A1)-(A2), the Hamiltonian function H : [0, x∗] × R × [0, 1] → R
associated to the dynamics (2.2) and to the cost functions L, c is defined by

H(x, ξ, p) := min
u∈[0,1]

{
L(u)− u ξ

p

}
+ min

v≥0

{
c(v)− vxξ

}
+

(
λ+ r

p
− λ− µ

)
x ξ. (2.9)

The Debt Management Problem leads to the following implicit system of first order ODEs
satisfied by the value function V and the discounted rate p

rV (x) = H(x, V ′(x), p(x))

(r + λ+ v(x))p(x)− (r + λ) = Hξ(x, V
′(x), p(x)) · p′(x)

v(x) = argmin
ω≥0

{c(ω)− ωxV ′(x)}

(2.10)

with the boundary conditions

V (0) = 0, V (x∗) = B and p(0) = 1, p(x∗) = θ(x∗). (2.11)

2.3 Basic properties of H and normal form of the system

In this subsection, we present some basic properties of the Hamiltonian function which will be
used to provide a semi-explicit formula for the optimal feed back strategy (u∗, v∗). Let L◦, c◦

are the convex conjugate of L and c (see in the Appendix for the notation). We have that

−H(x, ξ, p)
.
= L◦

(
ξ

p

)
+ c◦(xξ)−

(
λ+ r

p
− λ− µ

)
x ξ, (2.12)
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and the map ξ 7→ −H(x, ξ, p) is convex and lower semicontinuous. Moreover, given x > 0,
p ∈]0, 1], ξ ≥ 0, we denote by u∗(ξ, p) ∈ [0, 1] and v∗(x, ξ) ∈ [0,+∞[ the unique elements of

∂L◦
(
ξ

p

)
and ∂c◦(xξ), respectively, provided by Lemma 5.3.

u∗(ξ, p)
.
= argmin

u∈[0,1]

{
L(u)− uξ

p

}
=

{
0 if 0 ≤ ξ < pL′(0)

(L′)−1(ξ/p) if ξ ≥ pL′(0) > 0

and

v∗(x, ξ)
.
= argmin

v≥0

{
c(v)− vxξ

}
=

{
0 if 0 ≤ xξ < c′(0)

(c′)−1(xξ) if xξ ≥ c′(0) > 0.

It is clear that

• for every p ∈]0, 1] the map ξ 7→ u∗(ξ, p) is strictly increasing in [pL′(0),+∞[, and
u∗(·, p) ≡ 0 in [0, pL′(0)];

• for every ξ ≥ 0 the map p 7→ u∗(ξ, p) is strictly decreasing in [ξ/L′(0), 1], and u∗(ξ, ·) ≡ 0
in [0, ξ/L′(0)];

• for every ξ > 0 the map x 7→ v∗(x, ξ) is strictly increasing in [c′(0)/ξ,+∞[, and v∗(·, ξ) ≡
0 in [0, c′(0)/ξ];

• for every x > 0 the map ξ 7→ v∗(x, ξ) is strictly increasing in [c′(0)/x,+∞[, and v∗(x, ·) ≡
0 in [0, c′(0)/x].

From Lemma 5.4, the gradient of the Hamiltonian function H(·) can be expressed in terms of
u∗(ξ, p) and v∗(x, ξ) at any point (x, ξ, p) ∈ [0,+∞[×[0,+∞[×]0, 1] by

Hx(x, ξ, p) =
[
(λ+ r)− p(λ+ µ+ v∗(x, ξ))

]
· ξ
p

Hξ(x, ξ, p) =
1

p
·
[
x
(
(λ+ r)− p(λ+ µ+ v∗(x, ξ))

)
− u∗(ξ, p)

]
Hp(x, ξ, p) = (u∗(ξ, p)− x(λ+ r)) · ξ

p2
.

(2.13)

The following Lemma will catch some relevant properties of H(·) needed to study the system
(2.10).

Lemma 2.2. Let x ≥ 0 and 0 < p ≤ 1 be fixed, and set

Hmax(x, p)
.
= max

ξ≥0
H(x, ξ, p).

Then

1. there exists ξ](x, p) > 0 such that, given η > 0, the equation rη = H(x, ξ, p) admits

• no solutions ξ ∈ [0,+∞) if rη > Hmax(x, p),

• ξ](x, p) as unique solution if rη = Hmax(x, p),
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• exactly two distinct solutions {F−(x, η, p), F+(x, η, p)} with

0 < F−(x, η, p) < ξ](x, p) < F+(x, η, p)

if 0 < rη < Hmax(x, p),

2. we extend the definition of η 7→ F±(x, η, p) by setting

F±
(
x,

1

r
Hmax(x, p), p

)
= ξ](x, p),

thus for fixed x > 0 , p ∈]0, 1], the maps η 7→ F−(x, η, p) and η 7→ F+(x, η, p) are

respectively strictly increasing and strictly decreasing in

[
0,
Hmax(x, p)

r

]
.

3. for all 0 < η < Hmax(x, p)/r with x > 0 and p ∈]0, 1], we have

∂

∂η
F±(x, η, p) =

r

Hξ(x, F±(x, η, p), p)
,

4. The map p 7→ Hmax(x, p) is strictly decreasing on ]0, 1] for every fixed x ∈]0, x∗[.

Proof. Since for all fixed x > 0, 0 < p ≤ 1 we have that ξ 7→ H(x, ξ, p) is the minimum of a
family of affine functions of ξ, we have that the map ξ 7→ H(x, ξ, p) is concave down. Recalling
(2.13), and the monotonicity properties of u∗(·, p) and v∗(x, ·), since

• Hξ(x, ξ, p) = Hξ(x, 0, p) > 0, for all ξ ∈ [0,min{pL′(0), c′(0)/x}],

• ξ 7→ Hξ(x, ξ, p), is strictly decreasing for all ξ > min{pL′(0), c′(0)/x},

• lim
ξ→+∞

Hξ(x, ξ, p) = −∞,

we have that ξ 7→ Hξ(x, ξ, p) vanishes in at most one point in [0,+∞), so ξ 7→ H(x, ξ, p)
reaches its maximum value Hmax(x, p) on [0,+∞) at a unique point ξ](x, p), moreover it is
strictly increasing for 0 < ξ < ξ](x, p) and strictly decreasing for ξ > ξ](x, p), with ξ](x, p) ≥
min{pL′(0), c′(0)/x}. We define

• the strictly increasing map η 7→ F−(x, η, p), for 0 < η <
1

r
·Hmax(x, p), to be the inverse

of ξ 7→ 1

r
·H(x, ξ, p) for 0 < ξ < ξ](x, p);

• the strictly decreasing map η 7→ F+(x, η, p), for 0 < η <
1

r
·Hmax(x, p), to be the inverse

of ξ 7→ 1

r
·H(x, ξ, p) for ξ > ξ](x, p).

This proves (1) and (2). Now, set

u](x, p)
.
= u∗(ξ](x, p), p), v](x, p)

.
= v∗(x, ξ](x, p)).

7



From (2.13), it holds

u](x, p) =
[
(λ+ r)− (λ+ µ+ v](x, p))p

]
· x, (2.14)

Hmax(x, p) = L(u](x, p)) + c(v](x, p)). (2.15)

Moreover,

• if ξ](x, p) ≥ pL′(0) then

ξ](x, p) = pL′(u](x, p)) = pL′
([

(λ+ r)− (λ+ µ+ v](x, p))p
]
· x
)
, (2.16)

• if ξ](x, p) ≥ c′(0)

x
then

ξ](x, p) =
c′(v](x, p))

x
. (2.17)

Conversely, for any fixed x ≥ 0 and 0 < p ≤ 1, if

u∗(ξ, p) = x
(
(λ+ r)− p(λ+ µ+ v∗(x, ξ))

)
,

then ξ = ξ](x, p), v∗(x, ξ) = v](x, p) and u∗(ξ, p) = u](x, p). Indeed, this follows from the fact
that Hξ(x, ξ, p) = 0 iff ξ = ξ](x, p).

Consider the equation η = H(x, ξ, p)/r for a given η > 0, and, noticing that, given 0 < ξ <
ξ](x, p) we have

F−(x, η, p) = F−
(
x,

1

r
H(x, ξ, p), p

)
= ξ for all 0 < ξ < ξ](x, p),

F+(x, η, p) = F+

(
x,

1

r
H(x, ξ, p), p

)
= ξ for all ξ](x, p) > ξ,

and so (3) follows from the Inverse Function Theorem. To prove item (4), we notice that

d

dp
Hmax(x, p) =

d

dp
H(x, ξ](x, p), p) = Hp(x, ξ

](x, p), p).

Recalling (2.13), we have

Hp(x, ξ
](x, p), p) =

[
u](x, p)− (r + λ)x

]
· ξ

](x, p)

p

= −(λ+ µ+ v](x, p))xξ](x, p) < 0 ,

since for x, p 6= 0 we have ξ](x, p) > 0.

Definition 2.3 (Normal form of the system). Given (x, p) ∈]0, x∗]×]0, 1] such that 0 < rη ≤
Hmax(x, p) we define the maps

G±(x, η, p) =
(r + λ+ v∗(x, F±(x, η, p)))p− (r + λ)

Hξ(x, F±(x, η, p), p)
. (2.18)
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F−(x, η, p) ξ](x, p) F+(x, η, p)O

rη

Hmax(x, p)

ξ

Figure 1: For x ≥ 0, p ∈]0, 1], the function ξ 7→ H(x, ξ, p) has a unique global maximum
Hmax(x, p) attained at ξ = ξ](x, p). For 0 < rη ≤ Hmax, the values F−(x, η, p) ≤ ξ](x, p) ≤
F+(x, η, p) are well defined. Moreover, F±(x, 1

rH
max(x, p), p) = ξ](x, p).

Notice that if rV (x) > Hmax(x, p), then the first equation of (2.10) has no solution. Otherwise,
if 0 < rV (x) < Hmax(x, p) this equation splits into

V ′(x) = F−(x, V (x), p(x)),

p′(x) = G−(x, V (x), p(x)),

or


V ′(x) = F+(x, V (x), p(x)),

p′(x) = G+(x, V (x), p(x)).

Remark 2.4. Recalling (2.2) and (2.14), we observe that

• The value V ′(x) = F+(x, V (x), p) ≥ ξ](x, p) corresponds to the choice of an optimal
control such that ẋ(t) < 0. The total debt-to-ratio is decreasing.

• The value V ′(x) = F−(x, V (x), p) ≤ ξ](x, p) corresponds to the choice of an optimal
control such that ẋ(x) > 0. The total debt-to-ratio is increasing.

• When rV (x) = Hmax(x, p), then the value

V ′(x) = F+(x, V (x), p) = F−(x, V ′(x), p) = ξ](x, p)

corresponds to the unique control strategy such that ẋ(t) = 0.

Remark 2.5. We notice that if 0 ≤ xξ < min{xpL′(0), c′(0)}, since u∗ = v∗ = 0, we have

ξ = F−(x, η, p) =
prη

(λ+ r − p(λ+ µ))x
,

in particular, if 0 ≤ xξ < min{xpL′(0), c′(0)} we have that η 7→ F−(x, η, p) is Lipschitz
continuous, uniformly for (x, p) ∈ [x1, x

∗] × [p1, 1], for all x1 ∈]0, x∗], p1 ∈]0, 1]. If xξ >
min{xpL′(0), c′(0)}, we have instead

Hξξ(x, ξ, p) ≤ − 1

p
·min

{
1

pL′′(u∗(ξ, p))
,

x2p

c′′(v∗(x, ξ))

}
.
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Lemma 2.6. Given x1 ∈]0, x∗], p1 ∈]0, 1], there exists a constant C = C(x1, p1) such that

|F−(x, η1, p)− F−(x, η2, p)| ≤ C · |η1 − η2|1/2,

for all x ∈ [x1, x
∗], p ∈ [p1, 1], 0 < η1, η2 ≤

1

r
Hmax(x, p).

Proof. We distinguish two cases:

1. if 0 ≤ xξ < min{xpL′(0), c′(0)}, since u∗ = v∗ = 0, we have

ξ = F−(x, η, p) =
prη

(λ+ r − p(λ+ µ))x
,

and so

|F−(x, η1, p)− F−(x, η2, p)| ≤
pr

(λ+ r − p(λ+ µ))x
|η1 − η2|

≤
√

2Br

(r − µ)x1
|η1 − η2|1/2.

for all x ∈ [x1, x
∗], p ∈ [p1, 1], 0 < η1, η2 ≤

1

r
Hmax(x, p).

2. If xξ > min{xpL′(0), c′(0)}, we have instead

Hξξ(x, ξ, p) ≤ − 1

p
min

{
1

pL′′(u∗(x, ξ, p))
,

x2p

c′′(v∗(x, ξ))

}
,

thus, recalling that by assumption we have L′′(u) ≥ δ0 and c′′(v) ≥ δ0 for 0 < u < 1 and
v ≥ 0, we obtain

−Hξξ(x, ξ, p) ≥
min{1, x2

1p1}
δ0

.

By applying Lemma 5.6 to f(·) = −1

r
H(x, ·, p), we have

|F−(x, η1, p)− F−(x, η2, p)| ≤

√
2rδ0

min{1, x2
1p1}
|η2 − η1|1/2.

The proof is complete by choosing C(x1, p1)
.
=

√
2rδ0

min{1, x2
1p1}

+

√
2Br

(r − µ)x1
.

3 An equilibrium solution to the Debt Management Problem

In this section, we will provide a detail analysis on the existence of a solution to the system of
Hamilton-Jacobi equation (2.10) with boundary conditions (2.11) which yields an equilibrium
solution to the Debt Management Problem (2.2)-(2.5). A solution to will be constructed in
the next following subsections.
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3.1 Constant strategies

We begin our analysis from the control strategies keeping the DTI constant in time, i.e., such
that the corresponding solution x(·) of (2.2) is constant. In this case, there is no bankruptcy
risk, i.e., Tb = +∞.

Definition 3.1 (Constant strategies). Let x̄ > 0 be given. We say that a pair (ū, v̄) ∈
[0, 1[×[0,+∞[ is a constant strategy for x̄ if

[(
λ+ r

p̄
− λ− µ− v̄

)
x̄− ū

p̄

]
= 0,

p̄ =
r + λ

r + λ+ v̄
,

where the second relation comes from taking Tb = +∞ in (2.3).

From these equations, if a couple (ū, v̄) ∈ [0, 1[×[0,+∞[ is a constant strategy then it holds
(r+λ)(r−µ)x̄ = (r+λ+ v̄)ū. In this case, the borrower will never go bankrupt and thus the
cost of this strategy in (2.5) is computed by

1

r
·
[
L(ū) + c(v̄)

]
=

1

r
·
[
L

(
(r + λ)(r − µ)x̄

r + λ+ v̄

)
+ c (v̄)

]
=

1

r
·
[
L ((r − µ)x̄ · p̄) + c

((
1− 1

p̄

)
(r + λ)

)]
.

Notice that if x̄(r − µ) > 1, since 0 ≤ ū < 1 we must have v̄ > 1 and p̄ < 1, in particular if
DTI is sufficiently large, every constant strategy needs to implement currency devaluation. A
more precise estimate will be provided in Proposition 3.4.

We are now interested in the minimum cost of a strategy keeping the debt constant. To this
aim, we first characterize the cost of a constant strategy in terms of the variables x, p.

Lemma 3.2. Given any (x, p) ∈]0,+∞[×]0, 1], we have

Hmax(x, p) = min
{
L(u) + c(v) : u ∈ [0, 1], v ≥ 0, u =

[
(λ+ r)− (λ+ µ+ v)p

]
· x
}
. (3.19)

Moreover, (û, v̂) realizes the minimum in the right hand side of (3.19) if and only if
c(v̂) + pxv̂ξ](x, p) = min

ζ≥0

{
pxξ](x, p)ζ + c(ζ)

}
,

L(û) + ûξ](x, p) = min
u∈[0,1]

{
ξ](x, p)u+ L(u)

}
.

Proof. Set F (v) := f(v) + g(Λv) where f(ζ) = c(ζ) for ζ ≥ 0 and f(ζ) = +∞ if ζ < 0,
C(x, p) =

[
(λ+ r)− (λ+µ)p

]
·x, g(ζ) = L(C(x, p)+ ζ) if C(x, p)+ ζ ∈ [0, 1] and g(ζ) = +∞ if

C(x, p)+ζ /∈ [0, 1], and Λ = −xp. By standard argument in convex analysis (see e.g. Theorem
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4.2 and Remark 4.2 p. 60 of [9]), denoted by f◦, g◦ the convex conjugates of f, g respectively,
we have

inf
v∈R

F (v) = sup
ν∈R

[−f◦(Λν)− g◦(−ν)]

= sup
ν∈R

[
min
ζ≥0

{
c(ζ) + xpνζ

}
+ min
C(x,p)+ζ∈[0,1]

{
L(C + ζ) + νζ

}]
= sup

ν∈R

[
min
ζ≥0

{
c(ζ) + xpνζ

}
+ min
u∈[0,1]

{
L(u) + νu

}
− Cν

]
= sup

ξ∈R

[
min
ζ≥0

{
c(ζ)− xξζ

}
+ min
u∈[0,1]

{
L(u)− u · ξ

p

}
+
C(x, p)

p
· ξ
]

= sup
ξ∈R

H(x, ξ, p) = Hmax(x, p).

Moreover, since sup
ξ∈R

H(x, ξ, p) is attained only at ξ = ξ](x, p) according to the strict concavity

of ξ 7→ H(x, ξ, p), (û, v̂) realizes the minimum in the right hand side of (3.19) if and only if
f(v̂) + f◦(Λξ](x, p))− Λv̂ξ](x, p) = 0,

g(Λv̂) + g◦(−ξ](x, p)) + Λv̂ξ](x, p) = 0,

which implies v̂ ≥ 0, C(x, p)− pxv̂ ∈ [0, 1], and
c(v̂) + pxv̂ξ](x, p) = min

ζ≥0
{pxξ](x, p)ζ + c(ζ)},

L(C(x, p)− pxv̂)− pxv̂ξ](x, p) = min
ν∈R

{
ξ](x, p)ν + L(C(x, p) + ν)

}
.

The second relation can be rewritten as

L(û) + ûξ](x, p) = min
u∈[0,1]

{
ξ](x, p)u+ L(u)

}
,

and this complete the proof.

Formula (3.19) allows us to give a simpler characterization of the minimum cost of a strat-
egy keeping the debt-to-income ratio constant in time. Indeed, given x ∈ [0, x∗], we select
(u(x), v(x)) keeping the debt-to-income ratio constant in time. This defines uniquely a value
p = p(x) by Definition 3.1 and impose a relation between u(x) and v(x). Then we take the
minimum over all the costs of such strategies, i.e., the right hand side of formula (3.19). This
naturally leads to the following definition.

Definition 3.3 (Optimal cost for constant strategies). Given x ∈ [0, x∗], we define

W (x) =
1

r
·Hmax (x, pc(x))

where 
pc(x) =

r + λ

r + λ+ vc(x)
,

vc(x) = argmin
v≥0

[
L

(
(r + λ)(r − µ)x

r + λ+ v

)
+ c(v)

]
.

(3.20)
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For every x ∈ [0, x∗], W (x) denotes the minimum cost of a strategy keeping the DTI ratio
constant in time.

The next results proves that if the debt-to-income ratio is sufficiently small, the optimal
strategy keeping it constant does not use the devaluation of currency.

Proposition 3.4 (Non-devaluating regime for optimal constant strategies). Let xc ≥ 0 be the
unique solution of the following equation in x

(r + λ)c′(0) = (r − µ)xL′ ((r − µ)x) .

Then

• for all x ∈ [0,min{xc, x∗}] we have W (x) =
1

r
· L((r − µ)x) and pc(x) = 1,

• for all x ∈] min{xc, x∗}, x∗] we have

W (x) =
1

r

[
L

(
(r + λ)(r − µ)x

r + λ+ vc(x)

)
+ c(vc(x))

]
,

pc(x) =
r + λ

r + λ+ vc(x)
< 1,

where vc(x) > 0 solves the following equation in v

c′(v) =
(r + λ)(r − µ)x

(r + λ+ v)2
· L′

(
(r + λ)(r − µ)x

r + λ+ v

)
.

• for every x ∈]0, x∗[ we have

W ′(x) =
r − µ
r

pc(x)L′(pc(x)(r − µ)x) < ξ](x, pc(x)). (3.21)

Proof. Given x ∈]0, x∗[, we define the convex function

F x(v)
.
=


1

r
·
[
L

(
(r + λ)(r − µ)x

r + λ+ v

)
+ c(v)

]
, if v ≥ 0,

(r + λ)(r − µ)x

r + λ+ v
∈ [0, 1],

+∞, otherwise.

We compute

d

dv
F x(v) =

1

r
·
[
c′(v)− L′

(
(r + λ)(r − µ)x

r + λ+ v

)
(r + λ)(r − µ)x

(r + λ+ v)2

]
,

which is monotone increasing and satisfies lim
v→+∞

d

dv
F x(v) = +∞,

d

dv
F x(v) ≥ d

dv
F x(0) =

1

r
·
[
c′(0)− L′ ((r − µ)x)

(r − µ)x

r + λ

]
.

Two cases may occur:
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• If
d

dv
F x(0) ≥ 0, we have that v = 0 realizes the minimum of F on [0,+∞[. This occours

when x ∈ [0,min{xc, x∗}] where xc is the unique solution of

(r + λ)c′(0) = (r − µ)xL′
(

(r + λ)(r − µ)x

r + λ

)
,

and it implies W (x) =
1

r
· L((r − µ)x) and pc(x) = 1.

• If we have min{xc, x∗} < x ≤ x∗, then there exists a unique point vc(x) > 0 such that
F ′(vc(x)) = 0, and this point is characterized by

c′(vc(x)) =
(r + λ)(r − µ)x

(r + λ+ vc(x))2
· L′

(
(r + λ)(r − µ)x

r + λ+ vc(x)

)
.

The remaining statements follows noticing that for min{xc, x∗} < x ≤ x∗ we have

W ′(x) =
∂F x

∂x
(vc(x)) +

∂

∂v
F x(vc(x)) · v′c(x) =

∂F x

∂x
(vc(x))

=
r − µ
r

pc(x)L′(pc(x)(r − µ)x),

and deriving the explicit expression of W (x) for [0,min{xc, x∗}] yields the same formula.
Notice that, by (2.16), we have

ξ](x, pc(x)) = pc(x)L′
([

(λ+ r)− (λ+ µ+ v](x, pc(x)))pc(x)
]
· x
)

= pc(x)L′
([

(λ+ r)− (λ+ µ+ v](x, pc(x))) · λ+ r

λ+ r + v](x, pc(x))

]
· x
)

= pc(x)L′(pc(x)(r − µ) · x) > W ′(x),

where we used the fact that L′ is strictly increasing and, since the argument of L′ must
be nonnegative, we have

λ+ r

λ+ µ+ v](x, pc(x))
≥ pc(x),

and the proof is complete.

3.2 Existence of an equilibrium solution.

We are now ready to establish an existence result of a equilibrium solution to the debt manage-
ment problem (2.2) - (2.5). Before going to state our main theorem, we recall from Proposition
3.4 that vc is the unique solution to

c′(v) =
(r + λ)(r − µ)x

(r + λ+ v)2
· L′

(
(r + λ)(r − µ)x

r + λ+ v

)
,

and

pc(x
∗) =

r + λ

r + λ+ vc(x∗)
< 1 ,

W (x∗) =
1

r

[
L

(
(r + λ)(r − µ)x∗

r + λ+ vc(x∗)

)
+ c(vc(x

∗))

]
. (3.22)
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Theorem 3.5. Assume that the cost functions L and c satisfies the assumptions (A1)-(A2),
and moreover

W (x∗) > B and θ(x∗) ≤ pc(x
∗). (3.23)

Then the debt management problem (2.2) - (2.5) admits an equilibrium solution (u∗, v∗, p∗) as-
sociated to Lipschitz continuous value functions V ∗ in feedback form such that p∗ is decreasing,
V ∗ is strictly increasing and

V ∗(x) ≤ W ∗(x) for all x ∈ [0, x∗].

Toward the proof of this theorem, we first study basic properties of the backward solutions of
the system of implicit ODEs (2.10). In fact, an equilibrium solution will be constructed by a
suitable concatenation of backward solutions.

3.2.1 Backward solutions

We first define the backward solution to the system (2.10) starting from x∗.

Definition 3.6 (Backward solution for x∗). Let x 7→ (Z(x, x∗), q(x, x∗)) be the backward
solution of the system of ODEs

Z ′(x) = F−(x, Z(x), q(x)),

q′(x) = G−(x, Z(x), q(x)),

with


Z(x∗) = B ,

q(x∗) = θ(x∗).

(3.24)

with Hξ(x, F
−(x, Z(x), q(x)), q(x)) 6= 0.

The following Lemma states some basic properties of the backward solution. In particular,
the backward solution Z(·, x∗), starting from B at x∗ with W (x∗) < B, survives backward at
least until the first intersection with the graph of W (·). Moreover, in this interval is monotone
increasing and positive. In the same way, q(·, x∗) is always in ]0, 1].

Proposition 3.7. [Basic properties of the backward solution] Set

x∗W :=


0, if Z(x, x∗) < W (x) for all x ∈]0, x∗[,

sup{x ∈]0, x∗[: Z(x, x∗) ≥W (x)}, otherwise .

Assume that

W (x∗) > B and θ(x∗) <
r + λ

r + λ+ v∗(x∗, F−(x∗, B, θ(x∗)))
. (3.25)

Denote by Ix∗ ⊆ [0, x∗] the maximal domain of the backward equation (3.24), define y(x) to be
the maximal solution of 

dy

dx
(x) =

1

Hξ (x, Z ′(x, x∗), q(x, x∗))
,

y(x∗) = 0,

and let Jx∗ the intersection of its domain with [0, x∗]. Then
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1. Ix∗ ⊇ Jx∗ ⊇]x∗W , x
∗[;

2. Z(·, x∗) is strictly monotone increasing in ]x∗W , x
∗[, and Z(x, x∗) > 0 for all x ∈]x∗W , x

∗];

3. q(x, x∗) ∈]0, 1] for all x ∈]x∗W , x
∗].

Proof. 1. We first claim that q(·, x∗) is non-increasing on Jx∗
⋂

]x∗W , x
∗[ and thus

q′(x, x∗) =
[r + λ+ v∗(x, Z ′(x, x∗))] · q(x, x∗)− (r + λ)

Hξ(x, Z ′(x, x∗), q(x, x∗))
≤ 0 for all x ∈ Jx∗∩]x∗W , x

∗[ .

(3.26)
By contradiction, assume that there exists x1 ∈ JB∩]xBW , x

∗[ such that

q′(x1, x
∗) =

[r + λ+ v∗(x1, Z
′(x1, x

∗))] · q(x1, x
∗)− (r + λ)

Hξ(x1, Z ′(x, x∗), q(x, x∗))
= 0, q′′(x1, x

∗) < 0 . (3.27)

This yields

r + λ = [r + λ+ v∗(x1, Z
′(x1, x

∗))] · q(x1, x
∗), q(x1, x

∗) > 0.

Two cases are considered:

• if x1Z
′(x1, x

∗) ≤ c′(0) then, recalling the monotonicity of Z ′(·, x∗), we have that
xV ′(x, x∗) ≤ c′(0) for all x ∈ Jx∗∩]x∗W , x

∗[ satisfying x ≤ x1, and so

v∗(x, Z ′(x, x∗)) = 0 for all x ∈ Jx∗∩]x∗W , x
∗[ with x ≤ x1.

Thus, q(x1, x
∗) = 1 and

q′(x, x∗) =
[r + λ] · [q(x, x∗)− 1]

Hξ(x, Z ′(x, x∗), q(x, x∗))
for all x ∈ Jx∗∩]x∗W , x

∗[ with x ≤ x1.

This implies that q(x, x∗) = 1 for all x ∈ Jx∗∩]x∗W , x
∗[ with x ≤ x1. In particular, we

have q′′(x1, x
∗) = 0, which yields a contradiction.

• If x1Z
′(x1, x

∗) > c′(0) then

d

dx
(v∗(x1, Z

′(x1, x
∗))) =

Z ′′(x1, x
∗)x1 + Z ′(x1, x

∗)

c′′(x1Z ′(x1, x∗))
> 0.

From the first equation of (2.10) and (2.13), it holds

rZ ′(x1, x
∗) = Hx(x1, Z

′, q) +Hξ(x1, Z
′, q) · Z ′′(x1, x

∗) +Hp(x1, Z, q) · q′(x1, x
∗)

=
[
(λ+ r)− q(x1, x

∗)(λ+ µ+ v∗(x, Z ′)
]
· Z
′

q
+Hξ(x1, Z

′, q) · Z ′′(x1, x
∗)

= (r − µ) · Z ′(x1, x
∗) +Hξ(x1, Z

′, q) · Z ′′(x1, x
∗).

Observe that Z ′(x1, x
∗) > 0 and Hξ(x1, Z

′(x1, x
∗), q(x1, x

∗)) > 0, one obtains that

Z ′′(x1, x
∗) =

µZ ′(x1, x
∗)

Hξ(x1, Z ′(x1, x∗), q(x1, x∗))
> 0 .
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Taking the derivative respect to x in both sides of the second equation of (2.10), we have

[
r + λ+ (v∗(x, Z ′(x, x∗))

]
· q′(x, x∗) + q(x, x∗) · d

dx
v∗(x, Z ′(x, x∗))

= q′′(x, x∗)Hξ(x, Z
′(x, x∗), q(x, x∗)) + q′(x, x∗)

d

dx
Hξ(x, Z

′(x, x∗), q(x, x∗)) .

Recalling (3.27), we obtain that

q′′(x1, x
∗) =

q(x1, x
∗)

Hξ(x1, Z ′, q)
· d
dx
v∗(x1, Z

′(x1, x
∗)) > 0. (3.28)

and it yields a contradiction.

Assume that there exists x2 ∈ Jx∗∩]x∗W , x
∗[ such that Hξ(x2, Z

′(x2, x
∗), q(x2, x

∗)) = 0. Then

ξ](x2, q(x2, x
∗)) = Z ′(x2, x

∗), Z(x2, x
∗) =

1

r
·Hmax(x2, q(x2, x

∗)),

and
u](x2, q(x2, x

∗)) =
[
(λ+ r)− (λ+ µ+ v](x2, q(x2, x

∗)))q(x2, x
∗)
]
· x2 .

Since q(x2, x
∗) ≤ r + λ

r + λ+ v](x, Z ′(x2, x∗))
, we estimate

Hmax(x2, q(x2, x
∗)) = L(u](x2, q(x2, x

∗))) + c(v](x2, q(x2, x
∗)))

= L
([

(λ+ r)− (λ+ µ+ v](x2, q(x2, x
∗)))q(x2, x

∗)
]
· x2

)
+ c(v](x2, q(x2, x

∗)))

≥ L

(
r + λ(r − µ)x2

λ+ µ+ v](x2, q(x2, x∗))

)
+ c(v](x2, q(x2, x

∗)))

≥ Hmax(x1, pc(x2)).

Thus,

Z(x2, x
∗) =

1

r
·Hmax(x2, q(x2, x

∗)) ≥ 1

r
·Hmax(x2, pc(x2)) = W (x2),

and this yields a contradiction.

2. By construction, y(·) is strictly monotone and invertible in ]x∗W , x
∗], let x = x(y) be its

inverse, from the inverse function theorem we get
d

dy
Z(x(y), x∗) = Z ′(x(y), x∗) ·Hξ (x(y), Z ′(x(y), x∗), q(x(y), x∗)) ,

d

dy
q(x(y), x∗) = q′(x(y), x∗) ·Hξ (x(y), Z ′(x(y), x∗), q(x(y), x∗)) .

Since the map ξ 7→ H(x, ξ, q) is concave, it holds

Hξ(x, 0, q(x, x
∗)) ≥ Hξ(x, ξ, q(x, x

∗)) ≥ Hξ

(
x, Z ′(x, x∗), q(x, x∗)

)
,
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for all ξ ∈ [0, Z ′(x, x∗)]. Thus,

rZ(x(y), x∗) = H
(
x(y), Z ′(x(y), x∗), q(x(y), x∗)

)
=

∫ Z′(x(y),x∗)

0
Hξ(x, ξ, q(x(y), x∗)) dξ

≥ Z ′(x(y), x∗) ·Hξ(x, Z(x(y), x∗), q(x(y), x∗)) =
d

dy
Z(x(y), x∗),

and this implies that

Z(x, x∗) ≥ Bery(x) > 0 for all x ∈]x∗W , x
∗].

With a similar argument for q(·, x∗), we obtain

[
r + λ+ v∗(x(y), Z ′(x(y), x∗)

]
· q(x(y), x∗)− (r + λ) =

d

dy
q(x(y), x∗)).

Hence,

(r + λ)(q(x(y), x∗)− 1) ≤ d

dy
q(x(y), x∗) ≤

[
r + λ+ v∗(x(y), Z ′(x(y), x∗)

]
· q(x(y), x∗),

and this yields

q(x, x∗) ≤ 1 and q(x, x∗) ≥ θ(x∗) · e(r+λ+v∗(x,Z′(x,x∗))y(x) > 0

for all x ∈ Ix∗ ∩ [0, x∗]. In particular, q(x, x∗) ∈]0, 1] for all x ∈]x∗W , x
∗].

As far as the graph of Z(·, x∗) intersects the graph of W (·), Z(·, x∗) is no longer optimal. The
following lemma is to investigate the local behavior of Z(·, x∗) and W (·) near to an intersection
of their graphs.

Lemma 3.8 (Comparison between optimal constant strategy and backward solution). Let
I ⊆]0, x∗[ be an open interval, (Z, q) : I → [0,+∞[×]0, 1[ be a backward solution, and x̄ ∈ Ī.
If

lim
x→x̄
x∈I

Z(x) = W (x̄)

then pc(x̄) ≥ lim sup
I3x→x̄

q(x) and W ′(x) < F−(x,W (x), pc(x)).

Proof. Let {xj}j∈N ⊆ I be a sequence converging to x̄ and qx̄ ∈ [0, 1] be such that qx̄ =
lim sup
x→x̄+

q(x) = lim
j→∞

q(xj). We have

Hmax(x, pc(x)) = lim
j→+∞

H
(
xj , Z

′(xj), q(xj)
)
≤ lim

j→+∞
Hmax(xj , q(xj)) = Hmax(x̄, qx̄).

From 2.2 (4), it holds that pc(x̄) ≥ qx̄. By Proposition 3.4, we have W ′(x̄) < ξ](x̄, pc(x̄)), and
so

H(x̄,W ′(x̄), pc(x̄)) < Hmax(x̄, pc(x̄)) = rW (x̄).

Thus, by applying the strictly increasing map F−(x̄, ·, pc(x)) on both sides, we obtain W ′(x) <
F−(x,W (x), pc(x)).
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Since the functions F−(x, Z, q) and G−(x, Z, q) are smooth for Hξ(x, Z, q) 6= 0 but not only
Hölder continuous with respect to Z near to the surface

Σ =
{

(x, Z, q) ∈ R3 : Hξ(x, Z, q) = 0
}
.

Given any x0 ∈ [0, x∗), the definition of the solution of the Cauchy problem
Z ′(x) = F−(x, Z(x), q(x)),

q′(x) = G−(x, Z(x), q(x)),

with


Z(x0) = W (x0) ,

q(x0) = pc(x0).

(3.29)

requires some care. For any ε > 0, we denote by Zε(·, x0), qε(·, x0) the backward solution to
(3.29) with the terminal data

Zε(x0, x0) = W (y0)− ε and qε(x0, x0) = pc(x0).

With the same argument in the proof of Proposition 3.7, the solution is uniquely defined on
a maximal interval [aε(x0), x0] such that Zε(·, x0) is increasing, qε(·, x0) is decreasing and

Zε(aε(x0), x0) = W (aε(x0)), qε(aε(x0), x0) ≤ pc(aε(x0)).

Let x[ be the unique solution to the equation

c′(0) = x · L′((r − µ)x) . (3.30)

It is clear that 0 < x[ < xc where xc is defined in Proposition 3.4 as the unique solution to
the equation

(r + λ)c′(0) = (r − µ)xL′ ((r − µ)x) .

Two cases are considered:

CASE 1: For any x0 ∈]0, x[], we claim that

aε(x0) = 0, qε(x, x0) = 1 for all x ∈ [0, x0] ,

and Zε(·, x0) solves backward the following ODE

Z ′(x) = F−(x, Z(x), 1), Z(x0) = W (x0)− ε (3.31)

for ε > 0 sufficiently small. Indeed, let Z1 be the unique backward solution of (3.31). From
(2.16), it holds

F−(x,W (x), 1) = ξ](x, 1) = L′((r − µ)x) >
r − µ
r
· L′((r − µ)x) = W ′(x)

for all x ∈]0, x[]. As in [5], a contradiction argument yields

0 < Z1(x) < W (x) for all x ∈]0, x0] .

Thus, Z1 is well-defined on [0, x0] and Z1(0) = 0. On the other hand, it holds

Z ′(x1) = F−(x, Z(x), 1) ≤ ξ](x, 1) = L′((r − µ)x) ≤ L′((r − µ)x[)
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for all x ≤ x[ and (3.30) implies that

v∗(x, Z ′1(x)) = 0 for all x ∈ [0, x[] .

Therefore, (Z1(x), 1) solves (3.29) and the uniqueness yields

Zε(x, x0) = Z1(x) and qε(x, x0) = 1 for all x ∈ [0, x0] .

Thanks to the monotone increasing property of the map ξ → F−(x, ξ, 1), a pair
(Z(·, x0), q(·, x0)) denoted by

q(x, x0) = 1 and Z(x, x0) = sup
ε>0

Zε(x, x0) for all x ∈ [0, x0]

is the unique solution of (3.29). If the initial size of the debt is x̄ ∈ [0, x0] we think of Z(x̄, x0)
is as the expected cost of (2.6)-(2.7) with p(·, x0) = 1, x(0) = x0 achieved by the feedback
strategies

u(x, x0) = argmin
w∈[0,1]

{
L(w)− Z ′(x, x0) · w

}
, v(x, x0) = 0 (3.32)

for all x ∈ [0, x0]. With this strategy, the debt has the asymptotic behavior x(t) → x0 as
t→∞.

CASE 2: For x0 ∈ (x[, x∗W ], system of ODEs (3.29) does not admit a unique solution in
general since it is not monotone. The following lemma will provide the existence result of
(3.29) for all x0 ∈ (x[, x∗W ].

Lemma 3.9. There exists a constant δ[ > 0 depending only on x[ such that for any x0 ∈(
x[, x∗W

)
, it holds

x0 − aε(x0) ≥ δx[ for all ε ∈ (0, ε0)

for some ε0 > 0 sufficiently small.

Proof. From (3.21) and (2.16), it holds

inf
x∈[x[,x∗W ]

{
ξ](x, pc(x))−W ′(x)

}
= δ1,[ > 0.

In particular, we have

F−(x0,W (x0), pc(x0))−W ′(x0) = δ1,[.

By continuity of the map η 7→ F−(x0, η, pc(x0)) on [0,W (x)], we can find a constant ε1 > 0
sufficiently small such that

F−(x0, η, pc(x0)) ≥ W ′(x0) +
δ1,[

2
for all ξ ∈ [W (x0)− ε1,W (x0)].

On the other hand, the continuity of W ′ yields

δ2,[ = sup

{
s ≥ 0

∣∣∣ W ′(x0 − τ) < W ′(x0) +
δ1,[

4
for all τ ∈ [0, s]

}
> 0.
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For a fixed ε ∈ (0, ε1), denote by

x1 := inf
{
s ∈ (0, x0]

∣∣∣ F−(x, Zε(x, x0), qε(x, x0)
)
> W ′(x) for all x ∈ (s, x0]

}
.

If x1 > x0 − δ2,x̄ then it holds

F−
(
x1, Zε(x1, x0), qε(x1, x0)

)
= W ′(x1) ≤ W ′(x0) +

δ1,[

4
(3.33)

and there exists x2 ∈ (x1, x0] such that

F−
(
x2, Zε(x2, x0), qε(x2, x0)

)
= W ′(x0) +

δ1,[

2
(3.34)

and

F− (x, Zε(x, x0), qε(x, x0)) ≤ W ′(x0) +
δ1,[

2
for all x ∈ [x1, x2]. (3.35)

Recalling that (x, η, p) 7→ F−(x, η, p) is defined by H(x, F−(x, η, p), p) = rη, by the implicit
function theorem, set ξ = F−(x, η, p), we have

∂

∂p
F−(x, η, p) = − Hp(x, ξ, p)

Hξ(x, ξ, p)

=
ξ

p
· u∗(x, ξ, p)− x(λ+ r)

u∗(x, ξ, p)− x(λ+ r) + xp(λ+ µ+ v∗(x, ξ))

=

(
1 +

x(λ+ µ+ v∗(x, ξ)

Hξ(x, ξ, p)

)
ξ

p
>

F−(x, η, p)

p
> 0.

Since qε(·, x0) is decreasing, it holds

F−
(
x1, Zε(x1, x0), qε(x1, x0)

)
≥ F−

(
x1, Zε(x1, x0), qε(x2, x0)

)
,

and (3.33)-(3.34) yield

F−
(
x2, Zε(x2, x0), qε(x2, x0)

)
− F−

(
x1, Zε(x1, x0), qε(x2, x0)

)
≥

δ1,[

4
.

On the other hand, from (2.13) it follows that the map x→ F−(x, η, p) is monotone decreasing
and thus

F−
(
x2, Zε(x2, x0), qε(x2, x0)

)
− F−

(
x2, Zε(x1, x0), qε(x2, x0)

)
≥

δ1,[

4
. (3.36)

Observe that the map η → F−(x, η, p) is Hölder continuous due to Lemma 2.6. More precisely,
there exist a constant Cx[ > 0 such that∣∣F−(x, η2, p)− F−(x, η1, p)

∣∣ ≤ Cx[ ·
∣∣η2 − η1

∣∣ 12
for all η1, η2 ∈ (0,W (x)], x ∈ [x̄, x∗], p ∈ [θ(x∗), 1]. Thus, (3.36) implies that

|Zε(x2, x0)− Zε(x1, x0)| ≥
δ2

1,[

16C2
x[

.
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Recalling (3.35), we have

Z ′ε(x, x0) = F− (x, Zε(x, x0), qε(x, x0)) ≤ W ′(x0) +
δ1,x[

2
for all x ∈ [x1, x2],

and this yields

|x2 − x1| ≥
δ2

1,x[

8C2
x[

[2W ′(x0) + δ1,x[ ]
.

Therefore,

x0 − aε(x0) ≥ δx[ := min

{
δ1,x[ ,

δ2
1,x[

8C2
x[

[2W ′(x0) + δ1,x[ ]

}
> 0,

and the proof is complete.

Remark 3.10. In general, the backward Cauchy problem (3.29) may admit more than one
solution.

As a consequence of Lemma 3.9, there exists a sequence {εn}n≥0 → 0+ such that the sequence
of backwards solutions {(Zεn(·, x0), qεn(·, x0))}n≥1 converges to (Z(·, x0), q(·, x0)) which is a
solution of (3.29). With the same argument in the proof of Proposition 3.7, we can extend
backward the solution (Z(·, x0), q(·, x0)) until a(x0) such that

lim
x→a(x0)+

Z(a(x0), x0) = W (a(x0)),

and Lemma 3.8 yields limx→a(x0)+ q(a(x0), x0) ≤ pc(a(x0)). If the initial size of the debt is
x̄ ∈ [a(x0), x0] we think of Z(x̄, x0) is as the expected cost of (2.6)-(2.7) with p(·, x0), x(0) = x0

achieved by the feedback strategies
u(x, x0) = argmin

w∈[0,1]

{
L(w)− Z ′(x, x0)

p(x, x0)
· w
}
,

v(x, x0) = argmin
v≥0

{
c(v)− vxZ ′(x, x0)

}
.

(3.37)

With this strategy, the debt has the asymptotic behavior x(t)→ x0 as t→∞.

3.2.2 Construction of an equilibrium solution.

We are now ready to construct an solution to the system of Hamilton-Jacobi equation (2.10)
with boundary conditions (2.11). By induction, we define a family of back solutions as follows:

x1 := x∗W , (Z1(x), q1(x)) = (Z(x, x∗), q(x, x∗)) for all x ∈ [x1, x
∗]

and
xn+1 := a(xn), (Z(x, xn), q(x, xn)) for all x ∈ [xn+1, xn] .
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O x3 x2 x1 x∗

B

x[

W (x)

Z(x)

Z1(x)

Z2(x)

Z3(x)

Figure 2: Construction of a solution: starting from (x∗, B) we solve backward the system until
the first touch with the graph of W at (x1,W (x1)). Then we restart by solving backward the
system with the new terminal conditions (W (x1), pc(x1)), until the next touch with the graph
of W at (x2,W (x2)) and so on. In a finite number of steps we reach the origin. If a touch
occurs at xn0 < x[ then the backward solution from xn0 reaches the origin with q ≡ 1. Given
an initial value x̄ of the DTI, if 0 ≤ xn+1 < x̄ < xn < x1 the the optimal strategy let the DTI
increase asymptotically to xn (no banktuptcy), while if x1 < x̄ < x∗ then the optimal strategy
let the DTI increase to x∗, thus providing bankruptcy in finite time.

From Case 1 and Lemma 3.9, there exists a natural number N0 < 1 +
x∗ − x[

δx[
such that our

construction will be stop in N0 step, i.e.,

xN0 > 0, a(xN0) = 0 and lim
x→a(xN0

)
Z(x, xN0) = 0 .

We will show that a feedback equilibrium solution to the debt management problem is obtained
as follows

(V ∗(x), p∗(x)) =


(Z(x, x∗), q(x, x∗)) for all x ∈ (xW , x

∗],

(Z(x, xk), q(x, xk)) for all x ∈ (a(xk), xk], k ∈ {1, 2, . . . , N0},
,

(3.38)

and 
u∗(x) = argmin

w∈[0,1]

{
L(w)− (V ∗)′(x)

p∗(x)
· w
}
,

v∗(x) = argmin
v≥0

{c(v)− vx(V ∗)′(x)} .

(3.39)
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Proof of Theorem 3.5. From the monotone increasing property of the maps ξ 7→ v∗(x∗, ξ),
η 7→ F−(x∗, η, θ(x∗)) and p 7→ F−(x∗,W (x∗), p), we have

θ(x∗) · (r + λ+ v∗(x∗, F−(x∗, B, θ(x∗)))

< pc(x
∗) · (r + λ+ v∗(x∗, F−(x∗,W (x∗), pc(x

∗))) = r + λ

and it yields (3.25). By Proposition 3.7 and Lemma 3.9, a pair V ∗(·), p∗(·) in (3.38) is well-
defined on [0, x∗]. In the remaining steps, we show that V ∗, p∗, u∗, v∗ provide an equilibrium
solution. Namely, they satisfy the properties (i)-(ii) in Definition 2.1.

1. To prove (i) in Definition 2.1, let V (·) be the value function for the optimal control problem
(2.6)-(2.7). For any initial value, x(0) = x0 ∈ [0, x∗], the feedback controls u∗ and v∗ in (3.39)
yield the cost V ∗(x0). This implies

V (x0) ≤ V ∗(x0).

To prove the converse inequality we need to show that, for any measurable control u :
[0,+∞[ 7→ [0, 1] and v : [0,+∞[→ [0,+∞[, calling t 7→ x(t) the solution to

ẋ(t) =

(
λ+ r

p∗(x(t))
− λ− µ− v(t)

)
x(t)− u(t)

p∗(x(t))
, x(0) = x0, (3.40)

it holds ∫ Tb

0
e−rt[L(u(x(t))) + c(v(x(t)))] dt+ e−rTbB ≥ V ∗(x0) (3.41)

where
Tb = inf

{
t ≥ 0 ; x(t) = x∗

}
is the bankruptcy time (possibly with Tb = +∞).

For t ∈ [0, Tb], consider the absolutely continuous function

φu,v(t) :=

∫ t

0
e−rs · [L(u(s)) + c(v(s))] ds+ e−rtV ∗(x(t)).

At any Lebesgue point t of u(·) and v(·), recalling that (V ∗, p∗) solves the system (2.10), we
compute

d

dt
φu,v(t) = e−rt ·

[
L(u(t)) + c(v(t))− rV ∗(x(t)) + (V ∗)′(x(t)) · ẋ(t)

]
= e−rt ·

[
L(u(t)) + c(v(t))− rV ∗(x(t))

+ (V ∗)′(x(t))

((
λ+ r

p∗(x(t))
− λ− µ− v(t)

)
x(t)− u(t)

p∗(x(t))

)]

≥ e−rt ·
[

min
ω∈[0,1]

{
L(ω)− (V ∗)′(x(t))

p∗(x(t))
ω

}
+ min
ζ∈[0+∞[

{
c(ζ)− (V ∗)′(x(t))x(t) ζ

}
+

(
λ+ r

p∗(x(t))
− λ− µ

)
x(t)(V ∗)′(x(t))− rV ∗(x(t))

]
= e−rt ·

[
H
(
x(t), (V ∗)′(x(t)), p∗(x(t))

)
− rV ∗(x(t))

]
= 0.
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Thus,

V ∗(x0) = φu,v(0) ≤ lim
t→Tb−

φu,v(t) =

∫ Tb

0
e−rt · [L(u(t)) + c(v(t))] dt+ e−rTbB,

and this yields (3.41).

2. It remains to check (ii) in Definition 2.1. The case x0 = 0 is trivial. Two remain cases will
be considered.

CASE 1: If x0 ∈]x1, x
∗] then x(t) > x1 for all t ∈ [0, Tb]. This implies

ẋ(t) = Hξ(x(t), Z(x(t), x∗), q(x(t), x∗)) .

From the second equation in (2.10) it follows

d

dt
p(x(t)) = p′(x(t))ẋ(t) = (r + λ+ v∗(x(t)))p(x(t))− (r + λ),

Thus, for every t ∈ [0, Tb] it holds

p(x(0)) = p(x(t)) ·
∫ t

0
e−(r+λ+v∗(x(τ))) dτ +

∫ t

0
(r + λ)

∫ τ

0
e−(r+λ+v∗(x(s))) ds dτ

By letting t→ Tb, we obtain

p(x0) =

∫ Tb

0
(r + λ)

∫ τ

0
e−(r+λ+v∗(x(s))) ds dτ + θ(x∗) ·

∫ Tb

0
e−(r+λ+v∗(x(τ))) dτ

CASE 2: Assume that x0 ∈ [a(xk), xk[ for some k ∈ {1, 2, ..., N0}. In this case, Tb = +∞ and
x(t) ∈ [axk , xk[ such that

lim
t→+∞

x(t) = xk .

With a similar computation, we obtain

p(x0) = θ(x∗) ·
∫ ∞

0
e−(r+λ+v∗(x(τ))) dτ

proving (ii).

4 Dependence on x∗

In this section, we study the behavior of the total cost for servicing when the maximum size
x∗ of the debt-ratio-income, at which bankruptcy is declared, becomes very large. It turns
out that a crucial role in the asymptotic behavior of V as x∗ → +∞ is played by the speed of
decay of the salvage rate θ(x∗) as x∗ → +∞, which represents the fraction of the investment
that can be recovered by the investors after the bankruptcy (and the unitary bond discounted
price at the bankruptcy threshold). More precisely, the following proposition show that
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• if the salvage rate decay sufficiently slowly, i.e., the lenders can still recover a sufficiently
high fraction of their investment after the bankruptcy, then the best choice for the
borrower is to implement the Ponzi’s scheme;

• otherwise, if the salvage rate θ(x∗) decays sufficiently fast, then Ponzi’s scheme is no
longer an optimal solution for the borrower.

Proposition 4.1. Let (V (x, x∗), p(x, x∗)) be constructed in Theorem 3.5. The following holds:

(i) if lim sup
s→+∞

θ(s)s = R < +∞ then

lim inf
x∗→+∞

V (x, x∗) ≥ B ·
(

1− R

x

) r
r+λ

(4.42)

for all

x ≥ 1

r − µ
·max

{
4,

4B

L′(0)
,
4C1B

c′(0)
, 2C1c

−1(rB)

}
.

(ii) if lim
s→+∞

θ(s)s = +∞ then

lim sup
x∗→∞

V (x, x∗) = 0 for all x ∈ [0, x∗[. (4.43)

Proof. 1. We first provide an upper bound on v(·, x∗). From (2.10) and (2.9), we estimate

H(x, ξ, p) ≥ min
v≥0
{c(v)− xξv}+ [(r − µ)x− 1] · ξ

p

≥ min
v≥0
{c(v)− xξv}+

(r − µ)x

2
· ξ
p

:= K(x, ξ, p)

for all ξ, p > 0 and x ≥ 2

r − µ
. We compute

Kξ(x, ξ, p) =
(r − µ)x

2p
− xvK

where

vK =


0 if 0 ≤ xξ < c′(0),

(c′)−1(xξ) if xξ ≥ c′(0) > 0.

This implies that the maximum of K is achieved for vK =
r − µ

2p
and its value is

max
ξ≥0

K(x, ξ, p) = K(x, ξK , p) = c

(
r − µ

2p

)
, with ξK =

c′(vK)

x
.

Thus, the monotone increasing property of the map ξ → H(x, ξ, p(x, x∗)) on the interval[
0, ξ](x, p(x, x∗))

]
implies that

F−(x, V (x, x∗), p(x, x∗)) < ξK =⇒ v(x, x∗) ≤ r − µ
2p(x, x∗)

. (4.44)
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provided that c

(
r − µ

2p(x, x∗)

)
≥ rB. From (2.10)) and (2.9), it follows

rB ≥ − xV ′(x, x∗)v(x, x∗) + [(r − µ)x− u(x, x∗)] · V
′(x, x∗)

p(x, x∗)

≥
[

(r − µ)x

2
− 1

]
· V
′(x, x∗)

p(x, x∗)
≥ (r − µ)x

4
· V
′(x, x∗)

p(x, x∗)
.

Thus, if

p(x, x∗) ≤ min

{
r − µ

2c−1(rB)
,
(r − µ)c′(0)

4B

}
and x ≥ max

{
4

r − µ
,

4B

(r − µ)L′(0)

}
(4.45)

then
V ′(x, x∗)

p(x, x∗)
≤ 4B

(r − µ)x
≤ L′(0) =⇒ u(x, x∗) = 0, (4.46)

and

V ′(x, x∗)x ≤ 4B

r − µ
· p(x, x∗) ≤ c′(0) =⇒ v(x, x∗) = 0. (4.47)

In this case, from (2.10), (2.9) and (2.13), it holds

(r + λ)(p(x, x∗)− 1) =

(
λ+ r

p(x, x∗)
− λ− µ

)
xp′(x, x∗) .

Thus,

p(x, x∗) =
θ(x∗)x∗

x
·
(

1− p(x, x∗)
1− θ(x∗)

) r−µ
r+λ

provided that (4.45) holds.

2. Assume that
lim sup
s∈[0,+∞)

θ(s)s = R < +∞,

there exists a constant C1 < +∞ such that sups∈[0,+∞) θ(s)s = C1. Since p(·, x∗) is increasing,
it holds

p(x, x∗) ≤ θ(x∗)x∗

x
≤ C1

x
if (4.45) holds . (4.48)

Denote by

M :=
1

r − µ
·max

{
4,

4B

L′(0)
,
4C1B

c′(0)
, 2C1c

−1(rB)

}
,

we then have

u(x, x∗) = v(x, x∗) = 0 for all x ∈ [M,x∗], x∗ ≥M .

From (2.10), (2.9) and (2.13), (V, p) solves the system of ODEs
V ′(x, x∗) =

rp

[(λ+ r)− (λ+ µ)p(x, x∗)]x
· V

p′(x, x∗) = (λ+ r) · p(x, x∗)(p(x, x∗)− 1)

[(λ+ r)− (λ+ µ)p(x, x∗)]x

(4.49)
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for all x ∈ [M,x∗] with x∗ ≥ M . Solving the above system of ODEs (see in Section 5 of [5]),
we obtain that

V (x, x∗) = B ·
(

1− p(x, x∗)
1− θ(x∗)

) r
r+λ

, p(x, x∗) =
θ(x∗)x∗

x
·
(

1− p(x, x∗)
1− θ(x∗)

) r−µ
r+λ

for all x ≥ [M,x∗]. Thus,

lim inf
x∗→+∞

V (x, x∗) ≥ B ·
(

1− R

x

) r
r+λ

for all x ≥M

and this yields (4.42).

3. We are now going to prove (ii). Assume that

lim sup
s→+∞

θ(s)s = +∞ . (4.50)

Set

γ := min

{
r − µ

2c−1(rB)
,
(r − µ)c′(0)

4B

}
and M2 := max

{
4

r − µ
,

4B

(r − µ)L′(0)

}
.

For any x∗ > M2, denote by

τ(x∗) :=


x∗ if θ(x∗) ≥ γ ,

inf
{
x ≥M2

∣∣∣ p(x, x∗) ≤ γ} if θ(x∗) < γ .

From (4.45)–(4.47), the decreasing property of p yields

p(x, x∗) ≥ γ for all x ∈ [M2, τ(x∗)[ (4.51)

and

p(x, x∗) < γ =⇒ u(x, x∗) = v(x, x∗) for all x ∈ [τ(x∗), x∗] .

As in the step 2, for any x ∈ [τ(x∗), x∗], we have

V (x, x∗) = B ·
(

1− p(x, x∗)
1− θ(x∗)

) r
r+λ

, p(x, x∗) =
θ(x∗)x∗

x
·
(

1− p(x, x∗)
1− θ(x∗)

) r−µ
r+λ

This implies that

V (x, x∗) = B ·
(
p(x, x∗)x

θ(x∗)x∗

) r
r−µ

≤ B ·
(

x

θ(x∗)x∗

) r
r−µ

(4.52)

for all x ∈ [τ(x∗), x∗]. On the other hand, for any x ∈ [M2, τ(x∗)], from (2.10), (2.9) and
(4.51), it holds

rV (x, x∗) ≤ r + λ

p(x, x∗)
xV ′(x, x∗) ≤ (r + λ)x

γ
· V ′(x, x∗) .
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This implies that

V (x, x∗) ≤ V (τ(x∗), x∗) ·
(

x

τ(x∗)

) rγ
r+λ

≤ B ·
(

x

τ(x∗)

) rγ
r+λ

for all x ∈ [M2, τ(x∗)]. (4.53)

For any fix x0 ≥M2, we will prove that

lim sup
x∗→+∞

V (x0, x
∗) = 0. (4.54)

Two cases are considered:

• If lim supx∗→+∞ τ(x∗) = +∞ then (4.53) yields

lim
x∗→+∞

V (x0, x
∗) ≤ lim inf

x∗→+∞
B ·
(

x0

τ(x∗)

) rγ
r+λ

= 0.

• If lim supx∗→+∞ τ(x∗) < +∞ then

τ(x∗) < M3 for all x∗ > 0

for some M3 > 0. Recalling (4.52) and (4.50), we obtain that

lim
x∗→∞

V (x0, x
∗) ≤ lim

x∗→∞
V (x0 +M3, x

∗) ≤ lim
x∗→∞

B ·
(
x0 +M3

θ(x∗)x∗

) r
r−µ

= 0.

Thus, (4.54) holds and the increasing property of V (·, x∗) yields (4.43).

We complete this section by showing that for sufficiently large initial debt-ratio-income and
bankruptcy threshold and recovery fraction after bankruptcy, the optimal strategy for the
borrower will use currency devaluation to deflate the debt-ratio-income. For simplicity, let us
consider x∗ and B∗ sufficiently large such that

x∗ >
L′(0) +Br

L′(0) · (r − µ)
and B ≥ 2(r − µ)c′(0)

r
. (4.55)

In this case, the following holds:

Proposition 4.2 (Devaluating strategies). Let x 7→ (V (x, x∗), p(x, x∗)) be an equilibrium
solution of (2.10) with boundary conditions (2.11). If

θ(x∗)x∗ >
2(r + λ)c′(0)

r − µ
·
(

1

rB
+

1

L′(0)

)
(4.56)

then the function
v∗(x, x∗) = argmin

ω≥0

{
c(ω)− ωxV ′(x, x∗)

}
is not identically zero.
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Proof. Set M :=
L′(0) +Br

L′(0) · (r − µ)
. Assume by a contradiction that v∗(x, x∗) = 0 for all x ∈

[M,x∗]. In particular, we have

0 ≤ xV ′(x, x∗) ≤ c′(0) x ∈ [M,x∗]. (4.57)

The system (2.10) in [M,x∗] reduces to
rV (x) = H̃(x, V ′(x), p(x))

(r + λ)(p(x)− 1) = H̃ξ(x, V
′(x), p(x)) · p′(x)

(4.58)

with

H̃(x, ξ, p) = min
u∈[0,1]

{
L(u)− u

p
ξ

}
+

(
λ+ r

p
− λ− µ

)
x ξ.

Since r > µ and p ∈ [0, 1], it holds

H̃(x, ξ, p) ≥ − ξ

p
+ (λ+ r − p(λ+ µ))x

ξ

p
≥ ((r − µ)x− 1) · ξ

p

and (4.58) yields

rB ≥ rV (x, x∗) ≥ ((r − µ)x− 1) · V
′(x, x∗)

p(x, x∗)
.

Thus, for x ∈ [M,x∗] we obtain

V ′(x, x∗)

p(x, x∗)
≤ rB

(r − µ)x− 1
≤ L′(0),

which immediately implies

u∗(x, x∗) := argmin
u∈[0,1]

{
L(u)− u · V

′(x, x∗)

p(x, x∗)

}
= 0.

Hence, (V (·, x∗), p(·, x∗)) solves (2.10) on [M,x∗] and

V (x, x∗) = B ·
(

1− p(x, x∗)
1− θ(x∗)

) r
r+λ

≥ B ·
(

1− r

r + λ
· p(x, x∗)

)
, (4.59)

p(x, x∗) =
θ(x∗)x∗

x
·
(

1− p(x, x∗)
1− θ(x∗)

) r−µ
r+λ

≥ θ(x∗)x∗

x
·
(

1− r − µ
r + λ

· p(x, x∗)
)
,

for all x ∈ [M,x∗]. From the above inequality, we derive

p(x, x∗) ≥ (r + λ)θ(x∗)x∗

(r + λ)x+ (r − µ)θ(x∗)x∗
.

Thus, (4.57) and the first equation in (4.59) imply

c′(0) ≥ xV ′(x, x∗) = rp(x, x∗) · V (x, x∗)

(λ+ r)− (λ+ µ)p(x, x∗)

≥ rp(x, x∗)B

r + λ
· r + λ− rp(x, x∗)

(λ+ r)− (λ+ µ)p(x, x∗)
≥ rp(x, x∗)B

r + λ
≥ rBθ(x∗)x∗

(r + λ)x+ (r − µ)θ(x∗)x∗

for all x ∈ [M,x∗]. In particular, choose x = M and recall (4.55), we get

M ≥ rB − (r − µ)c′(0)

(r + λ)c′(0)
· θ(x∗)x∗ ≥ rB

2(r + λ)c′(0)
· θ(x∗)x∗

and it contradicts (4.56).
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5 Appendix

We first introduce now some concepts of convex analysis, referring the reader to [9] and [14]
for a comprehensive introduction to the subject.

Definition 5.1 (Convex conjugate and subdifferential). We recall that the convex conjugate
F ◦ : Rd → R ∪ {±∞} of a map F : Rd → R ∪ {+∞} is the lower semicontinuous convex
function defined by

F ◦(z∗) = sup
z∈Rd

{
〈z∗, z〉 − F (z)

}
.

Let F : Rd → R ∪ {+∞} be proper (i.e., not identically +∞), convex, lower semicontinuous
functions, x ∈ domF := {x ∈ Rd : F (x) ∈ R}. We define the subdifferential in the sense of
convex analysis of F at x by setting

∂F (x) := {vx ∈ Rd : F (y)− F (x) ≥ 〈vx, y − x〉 for all y ∈ Rd}.

The following result provide a list of some properties of the sub-differential in the sense of
convex analysis.

Lemma 5.2 (Properties of the subdifferential). Let F,G : Rd → R ∪ {+∞} be proper (i.e.,
not identically +∞), convex, lower semicontinuous functions,

1. If F is classically (Fréchet) differentiable at x, then ∂F (x) = {F ′(x)}.

2. z∗ ∈ ∂F (z) if and only if z ∈ ∂F ◦(z∗).

3. F (x0) = min
x∈Rd

F (x) if and only if 0 ∈ ∂F (x0)

4. z∗ ∈ ∂F ◦(z) if and only if F (z) + F ◦(z∗) = 〈z∗, z〉. In this case z∗ ∈ domF ◦;

5. λ ≥ 0 we have ∂(λF )(z) = λ∂F (z);

6. if there exists z ∈ dom(F )∩dom(G) such that F is continuous at z then ∂(F +G)(x) =
∂F (x) + ∂G(x) for all x ∈ dom(F ) ∩ dom(G);

7. let ȳ ∈ Rm, Λ : Rm → Rd be a linear map, G be continuous and finite at Λ(ȳ); Then
∂(G ◦ Λ)(y) = ΛT∂G(Λy) for all y ∈ Rm, where ΛT : Rd → Rm is the adjoint of Λ.

We now collect some technical results related to the Hamiltonian function:

Lemma 5.3. If (A1)-(A2) hold then L◦, c◦ : R→ R are continuously differentiable such that

L◦(ρ) ≤ max{0, ρ}, c◦(ρ) ≤ max{0, vmaxρ},

and

(L◦)′(ρ) =


0, if ρ < L′(0),

(L′)−1(ρ), if ρ ≥ L′(0),

(c◦)′(ρ) =


0, if ρ < c′(0),

(c′)−1(ρ), if ρ ≥ c′(0).
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Proof. Recalling the assumptions (A1)− (A2) on L, c, the equations

L◦(ρ1) + L(u) = uρ1, c◦(ρ2) + c(v) = vρ2,

admits as unique solutions

u(ρ1) =


0, if ρ1 < L′(0),

(L′)−1(ρ1), if ρ1 ≥ L′(0) > 0,

v(ρ2) =


0, if ρ2 < c′(0),

(c′)−1(ρ2), if ρ2 ≥ c′(0) ≥ 0.

The result now follows from Theorem 23.5, Theorem 25.1, and Theorem 26.3 in [14]. For
the second part, set IC(s) = 0 if s ∈ C and 0 otherwise, since L(u) ≥ I[0,1](u) and c(v) ≥
I[0,vmax](v), we have

L◦(ρ) ≤ I◦[0,1](ρ) = max
u∈[0,1]

〈u, ρ〉 = max{0, ρ},

c◦(ρ) ≤ I◦[0,vmax](ρ) = max
v∈[0,vmax]

〈v, ρ〉 = max{0, vmax · ρ}

and this complete the proof.

As a consequence of Lemma 5.3, the following holds:

Lemma 5.4. Assume (A1)-(A2), and let H be defined as in (2.9). Then H is continuous
differentiable and its gradient at points (x, ξ, p) ∈ [0,+∞[×[0,+∞[×]0, 1] can be expressed in
terms of u∗(ξ, p) := (L◦)′(ξ/p) and v∗(x, ξ) := (c◦)′(xξ) by

Hx(x, ξ, p) =
[
(λ+ r)− p(λ+ µ+ v∗(x, ξ))

]
· ξ
p
,

Hξ(x, ξ, p) =
1

p
·
[
x
(
(λ+ r)− p(λ+ µ+ v∗(x, ξ))

)
− u∗(ξ, p)

]
,

Hp(x, ξ, p) = (u∗(ξ, p)− x(λ+ r)) · ξ
p2
,

(5.60)

and 
u∗(ξ, p) = argmin

u∈[0,1]

{
L(u)− u ξ

p

}
,

v∗(x, ξ) = argmin
v≥0

{c(v)− vxξ} .

Moreover, for all x > 0, 0 < p ≤ 1, it holds

∇u∗(ξ, p) =
(1,−L′(u∗(x, ξ, p)))
pL′′(u∗(x, ξ, p))

if ξ > pL′(0), (5.61)

∇v∗(x, ξ) =
(ξ, x)

c′′(v∗(x, ξ))
if xξ > c′(0),

lim
ξ→+∞

v∗(x, ξ) = vmax.

Lemma 5.5. Let the assumptions (A1)-(A2) hold. Then
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1. for all ξ ≥ 0 and p ∈]0, 1], the function H satisfies

H(x, ξ, p) ≤
(
λ+ r

p
− (λ+ µ)

)
xξ;

H(x, ξ, p) ≥
(

(λ+ r)x− 1

p
− (λ+ µ+ v∗(x, ξ))x

)
· ξ

≥
(

(λ+ r)x− 1

p
− (λ+ µ+ vmax)x

)
· ξ;

Hξ(x, ξ, p) ≤
(
λ+ r

p
− (λ+ µ)

)
x;

Hξ(x, ξ, p) ≥
(λ+ r)x− 1

p
− (λ+ µ+ v∗(x, ξ))x

≥ (λ+ r)x− 1

p
− (λ+ µ+ vmax)x;

2. for every x, p > 0 the map ξ 7→ H(x, ξ, p) is concave down and satisfies

H(x, 0, p) = 0, Hξ(x, 0, p) =

(
λ+ r

p
− (λ+ µ)

)
x.

Proof. The concavity of ξ 7→ H(x, ξ, p) for every x, p > 0 is immediate from the definition
of H in (2.9). The equalities in item (2) are immediate from Lemma 5.3. The upper bound
on H(x, ξ, p) follows from the positivity of L◦ and c◦. By concavity, the map ξ 7→ Hξ(x, ξ, p)
is monotone decreasing, thus Hξ(x, ξ, p) ≤ Hξ(x, 0, p), which proves the upper bound on
Hξ(x, ξ, p) together with item (2). The lower estimate for H(x, ξ, p) comes from the second
part of Lemma 5.3, in particular from the upper estimate on L◦(·). The lower estimate for
Hξ(x, ξ, p) comes from Lemma 5.4, noticing that

lim
ξ→+∞

u∗(ξ, p) = lim
ρ→+∞

(L′)−1(ρ) = 1, lim
ξ→+∞

v∗(x, ξ) = lim
ρ→+∞

(c′)−1(ρ) = vmax,

and using the decreasing property of ξ 7→ Hξ(x, ξ, p), i.e., the fact that

lim
ζ→+∞

Hξ(x, ζ, p) ≤ Hξ(x, ξ, p)

for all x ≥ 0, p ∈]0, 1], ξ ∈ R.

Lemma 5.6. Assume that f : I → R is a C2 convex strictly increasing function defined
on a real interval I, and satisfying f ′′ ≥ δ > 0. Then, denoted by g its inverse function,
g : f(I)→ I, we have that g is 1/2-Hölder continuous.

Proof. Indeed, let x1, x2 ∈ f−1(I) with x1 ≤ x2, and set y1 = g(x1) and y2 = g(x2).

f(y2)− f(y1) =

∫ y2

y1

f ′(t) dt =

∫ y2

y1

[f ′(t)− f ′(y1)] dt

= f ′(y1) · (y2 − y1) +

∫ y2

y1

∫ t

y1

f ′′(s) ds dt

≥ f ′(y1) · (y2 − y1) +
δ

2
(y2 − y1)2 ≥ δ

2
(y2 − y1)2,
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since f is strictly increasing, f ′′(s) ≥ δ, and y1 ≤ y2. Thus if x2 ≥ x1 we have

|g(x2)− g(x1)| ≤
√

2

δ
|x2 − x1|1/2.

By switching the roles of x2 and x1, the same holds true if x1 ≥ x2.
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