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Abstract

Quantitative versions (i.e., taking into account a suitable “distance” of a set from
being a sphere) of the isoperimetric inequality are obtained, in the spirit of [17, 18],
for a class of not necessarily convex sets called ϕ-convex sets. Our work is based
on geometrical results on ϕ-convex sets, obtained using methods of both nonsmooth
analysis and geometric measure theory.
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1 Introduction

The well known isoperimetric inequality (we make reference to the original paper by De
Giorgi [12]) states that if K is a Borel set in R

n, n ≥ 2, with finite measure |K| and
finite perimeter P (K), the ball with the same volume has smaller perimeter, i.e.,

nω
1

n
n |K|n−1

n ≤ P (K). (1.1)

Moreover equality holds in (1.1) if and only if K is a sphere.
Several authors, starting from Bonnesen [2], have given quantitative versions of the

isoperimetric inequality, in the sense that they have improved (1.1) by introducing a
further term which is zero if and only if the inequality is an equality. This term is a
kind of measure of the “distance” of K from being a sphere. For example, (1.1) may be
refined to

nω
1

n
n |K|n−1

n (1 + a) ≤ P (K),

a being a nonnegative number, zero if and only if K is a sphere, with a clear geometrical
meaning.
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Among authors studying quantitative versions of (1.1) we quote [2, 21, 17, 19, 18].
Related results appear in [13, 7, 8, 16]. In particular, [17, 18] deal with sharp estimates of
the correction term a. In [17], a is given using the spherical deviation d(K) of K, which is
actually the Hausdorff distance between a suitable normalization of K and the unit ball.
The result in [17] is very precise, but requires strong assumptions on K. In particular,
K needs to be “nearly spherical”, in the sense that both its Hausdorff distance from
the unit ball and the norm of the gradient of a suitable representation of the boundary
must be small. The result in [17] applies mainly to the class of compact convex sets
K with nonempty interior having “isoperimetric deficiency” ∆(K) (see Definition 2.2
below) small enough. The paper [18], instead, deals with general Borel sets with finite
n-dimensional measure and finite perimeter. Of course the term a needs to be modified,
as there is no geometric assumption on K. Yet, the authors succeed to give a sharp
estimate of a in terms of the so called Fraenkel asymmetry of K (see Definition 2.4
below), which is essentially the Lebesgue measure of the symmetric difference between
K and a suitable sphere. This solves a conjecture appearing in [19], which was the first
paper considering quantitative isoperimetric inequalities for general sets in R

n.
The research in geometric inequalities, in particular for convex bodies in R

n, is very
active (see, e.g., [20, 24, 25] and references therein). In this paper we try to make a
step towards a relaxation of the strong assumption of convexity, yet keeping the main
features of the results. We deal mainly with results on the line of [17] for a class of
nonconvex sets called ϕ-convex sets. The concept of ϕ-convexity appears, for example,
in connection with curvature measures (see [15]), with control theory (see [9, 10]), or with
variational problems (see [5]), and shares several properties with convex set. ϕ-convex
sets are defined (see Definition 2.5 below) through a suitable external sphere condition
with locally uniform radius, proportional to 1/ϕ. One of our isoperimetric inequality
reads as follows (see Theorem 6.1 below for a more precise statement):

Theorem. Let ϕ ≥ 0 be given and let K ⊂ R
n be a compact ϕ-convex set with nonempty

interior. Then there exist d = d(|K|, ϕ0, n), with 0 < d < 1, η = η(n) > 0, and a
continuous strictly increasing function f (with f(0) = 0) such that if d(K) ≤ d and
∆(K) ≤ η, then

d(K) ≤ f(∆(K)).

Explicit estimates for d, η are given; f is explicit as well, depends only on n, and is the
same as in [17].

A more detailed summary of the ideas and the results now follows.

By observing that convex sets satisfy an external sphere condition with arbitrarily large
radius, one may imagine that several features of convexity have a good counterpart for
ϕ-convexity. For example, the smoothness of the distance function and – equivalently
– the uniqueness of the metric projection hold locally for such sets, while hold globally
for convex sets. Our results are based on several new geometric estimates a on compact
ϕ-convex set K with nonempty interior, which give simple conditions guaranteeing that
K is “nearly spherical”. This permits to apply the general result of [17], proving a
quantitative version of (1.1) of the same type of [17]. Following [17], we deal with a
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compact set K with nonempty interior, containing a ball of radius ρ and contained in
a concentric ball of radius R. The techniques of convex analysis used in [17] of course
cannot be used. However, suitable modifications for the ϕ-convex case are possible,
and our results yield exactly those given in [17] if K is convex. More precisely, some
compatibility conditions involving only ϕ, ρ and R are assumed. Such conditions vanish
if the parameter ϕ is identically zero, i.e., if K is convex and the estimates become the
convex ones. We ask, essentially, the parameter ϕ to be small enough, and ensure in
turn that

1. K satisfies an internal cone condition with uniform width;

2. the barycentre of K belongs to K;

3. the convex hull of K is contained in the neighborhood of K where the distance to
K is smooth.

Such results will be proved mainly in Section 3. Furthermore, in our proof of the isoperi-
metric inequality we make essential use of the extension of the classical Brunn-Minkowski
theory to ϕ-convex sets. This is one of the main results in the seminal paper [15], where
ϕ-convex sets appear for the first time (under the name of sets with positive reach) and
are intensively studied.

Section 4 contains an estimate of the isoperimetric deficiency and of the spherical
deviation of the convex hull of K in terms of the same quantities for K. Section 5 contains
an upper bound for the spherical deviation of K involving its Fraenkel asymmetry. In
general, spherical deviation and Fraenkel asymmetry are unrelated concepts, in the sense
that for the same set one can be very large and the other very small. Under some
conditions involving only ρ, R, and ϕ, we estimate the spherical deviation in terms of
Fraenkel asymmetry. This result seems new also for convex sets.

Our isoperimetric inequalities are proved in Section 6. We prove first a result involv-
ing the spherical deficiency of K which generalizes [17]. Next, we compare our result
with the estimate given in [18]. We show that results of the same type of ours can be
deduced from [18] and conversely, for a class of ϕ-convex sets, but with less sharp ex-
ponents. Finally we deduce from the main result in [18] another inequality, valid for a
different class of ϕ-convex sets. A

Finally, we remark that we do not write explicit formulas for the case n = 2, making
reference for this case to [2, 17].

2 Preliminaries

2.1 Notations and basic results

In R
n the canonical basis will be denoted by ei, i = 1, . . . , n, and the unit ball will be

denoted by Ω, with boundary Σ. With A△B we mean the symmetric difference between
the sets A and B. The n-dimensional Lebesgue measure of a set E will be denoted by
|E|, while Hd(E) will indicate its d-dimensional Hausdorff measure.
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Let K ⊆ R
n be closed. We denote by ∂K the topological boundary of K, and, for

x ∈ R
n,

dK(x) = inf{‖y − x‖ : y ∈ K} (the distance of x from K)
πK(x) = {y ∈ K : ‖y − x‖ = dK(x)} (the metric projections of x into K).

Moreover, we set
Unp(K) = {x ∈ R

n : πK(x) is a singleton}.

Definition 2.1 Let E ⊂ R
n be measurable and let λ > 0. We set

E(λ) = {x ∈ R
n : dE(x) ≤ λ}, V (λ) = |E(λ)|, P (λ) = Hn−1(∂E(λ)).

The excess of a set A over a set B in R
n is defined as

e(A,B) = sup
a∈A

dB(a).

The convex hull of a set E ⊂ R
n is denoted by coE and the closed convex hull by coE.

The following concept of normal vector will be used (see [11, Ch. 1] or [23, Ch. 6] also
for all other definitions and statements of nonsmooth analysis). Let x ∈ K and v ∈ R

n.
We say that v is a proximal normal to K at x (and we write v ∈ NP

K(x)) if there exists
σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ‖y − x‖2 for all y ∈ K;

equivalently v ∈ NP
K(x) iff there exists λ > 0 such that πK(x + λv) = {x}.

We recall here only some basic definitions of geometric measure theory, making reference
for other tools, such as density, reduced boundary and area and coarea formulas, to [14]
or to [1]. The space BV (Rn) of functions with bounded variation is defined as the set of
those f ∈ L1

loc(R
n) for which there exists a sequence {fh} ⊂ C∞

c (Rn) such that fh → f
in Ln′

(Rn) (where 1/n + 1/n′ = 1) and suph

∫

Rn ‖∇fh(x)‖ dx < +∞. In this case the
distributional derivative of f , Df , is a vector-valued Radon measure, and it is possible to
construct fh so that

∫

Rn ‖∇fh(x)‖ dx → |Df |(Rn) := ‖Df‖. A measurable set E ⊂ R
n

is said to have finite perimeter in R
n if χE ∈ BV (Rn). In this case the perimeter of E is

defined as
P (E) = ‖DχE‖.

We now recall three concepts whose mutual relations are going to be analyzed in this
paper.

Definition 2.2 The isoperimetric deficiency of a set K ⊂ R
n with finite n-dimensional

Lebesgue measure V and finite perimeter (in R
n) S, is defined by

∆(K) =
S

nωn

(

V

ωn

)−n−1

n

− 1,

where ωn denotes the n-dimensional Lebesgue measure of the unit ball Ω in R
n.
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The classical isoperimetric inequality states that ∆ ≥ 0, and the equality holds if and
only if K is (equivalent to) a sphere (see [12]).
We introduce now two functions which aim to evaluate the “distance from a sphere” of
a set K. The first one is concerned with a metric estimate.

Definition 2.3 The spherical deviation of a compact set K ⊂ R
n with n-dimensional

Lebesgue measure V > 0 and barycentre b(K) := 1
V

∫

K x dx is defined as

d(K) = min

{

α ≥ 0 : (1 − α)+Ω ⊆
(ωn

V

)1/n
(K − b(K)) ⊆ (1 + α)Ω

}

.

where (1 − α)+ = max{0, 1 − α}.

The following concept is a measure theoretic estimate of the deviation from a sphere. It
is called Fraenkel asymmetry.

Definition 2.4 Let K ⊂ R
n. We set

λ∗(K) = min

{ |K△B(x, r)|
|K| : rnωn = |K|, x ∈ R

n

}

.

Of course, the above concepts are in general unrelated, in the sense that, for the same
set, the second can be small and the first large.

2.2 ϕ-convex sets

We introduce now the class of sets which is the main object of our analysis.

Definition 2.5 Let K ⊂ Rn be closed and let ϕ : K → [0,∞] be continuous. We say
that K is ϕ-convex if for all x, y ∈ K, v ∈ NK(x), the inequality

〈v, y − x〉 ≤ ϕ(x) ‖v‖ ‖x − y‖2

holds. By ϕ0-convexity we mean ϕ-convexity with ϕ ≡ ϕ0.

Some properties of the distance from a ϕ-convex set K and the metric projection onto
K are important features of ϕ-convexity.

Theorem 2.1 Let K ⊂ R
n be a ϕ-convex set. Then there exists an open set U ⊃ K

such that

(1) dK ∈ C1,1(U \ K) and DdK(y) = y−πK(y)
dK(y) for every y ∈ U \ K;

(2) Unp(K) ⊃ U and πK : U → K is locally Lipschitz. In particular, if K is ϕ0-
convex (with ϕ0 > 0), then U ⊃ K 1

2ϕ0

and πK : K 1

4ϕ0

→ K is Lipschitz with

Lipschitz ratio 2. More precisely, if x ∈ K and B(x, r) ⊆ Unp(K) then, for all
0 < s < r, πK is Lipschitz in B(x, r) ∩ Ks with Lipschitz constant r/(r − s).
Moreover, πK : U \ K → ∂K is onto.
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Finally,

(3) K has finite perimeter in R
n (provided it is compact).

Proof. The proof of (1) and (2) can be found in [5, Proposition 2.6, 2.9, Remark 2.10]
or in [15, §4]. The proof of (3) is in [9, §5]. �

Remark 2.1 Conditions (1) and (2) in Theorem 2.1 are actually equivalent to ϕ-convex-
ity, as it is proved, e.g., in [15, §4].

The following theorem is one of the the main results contained in the paper by Federer,
where ϕ-convex sets were introduced and studied under the name of sets with positive
reach (see [15, Theorem 5.6]).

Theorem 2.2 (Federer) Let K ⊂ R
n be ϕ0-convex. There exist unique numbers

W0, . . . , Wn such that, for all λ ≥ 0 such that 2ϕ0λ < 1, one has

V (λ) = |{x ∈ R
n : dK(x) ≤ λ}| =

n
∑

i=0

(

n

i

)

Wiλ
i,

P (λ) = Hn−1({x ∈ R
n : dK(x) = λ}) =

n
∑

i=1

i

(

n

i

)

Wiλ
i−1.

The coefficients Wi are explicitly computable. In particular, W0 = |K|, nW1 = Hn−1(∂K),
n(n − 1)W2 = d

dλHn−1(∂K(λ))|λ=0, and Wn = ωn.

Corollary 2.1 The inequality
W 2

1 ≥ W0W2

holds.

Proof. This is a consequence of the previous Theorem and of the extension of the Brunn-
Minkowski inequality to arbitrary compact subsets of R

n (see [4, Theorem 8.1.1]). The
proof for the convex case (see, e.g., the proof of formula (2), p. 98 in [3]) extends readily
to the ϕ-convex case. �

Finally, we recall a simple estimate on the measure of the boundary of a convex set.

Proposition 2.1 Let E ⊂ R
n be convex and compact, and let U ⊂ R

n be measurable,
bounded, and such that E ⊆ U . Then

Hn−1(∂E) ≤ Hn−1(∂U).

Proof. The metric projection of ∂U into ∂E is Lipschitz with ratio 1 and onto. The
result then follows from the definition of Hausdorff measure. �
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3 Geometric results

The first results concern an estimate of the excess of the convex hull of a ϕ-convex set
K over K.

Lemma 3.1 Let K be ϕ0-convex and let x ∈ coK be such that 2ϕ0dK(x) < 1. Then

‖x − πK(x)‖ ≤ ϕ0

n+1
∑

i,j=1

titj ‖xi − xj‖2 ,

where ti ≥ 0,
∑n+1

i=1 ti = 1, xi ∈ K, and x =
∑n+1

i=1 tixi.

Proof. By ϕ0-convexity we have for each i = 1, . . . , n + 1,

< x − πK(x), xi − πK(x) >≤ ϕ0 ‖x − πK(x)‖ ‖xi − πK(x)‖2 ,

so that

< x − πK(x),

n+1
∑

i=1

tixi − πK(x) >≤ ϕ0 ‖x − πK(x)‖
n+1
∑

i=1

ti ‖xi − πK(x)‖2 .

Recalling that x =
∑n=1

i=1 tixi, we thus obtain

‖x − πK(x)‖ ≤ ϕ0

n+1
∑

i=1

ti ‖xi − πK(x)‖2 . (3.1)

Putting I =
∑n+1

i=1 ti ‖xi − x‖2, from an elementary computation taking into account the
condition

∑n+1
i−1 ti(x − xi) = 0, we obtain, for all v ∈ R

n,

n+1
∑

i=1

ti ‖xi − v‖2 = ‖x − v‖2 + I. (3.2)

Now we compute I. Taking v = xj in (3.2), we have

n+1
∑

i=1

ti ‖xi − xj‖2 = ‖x − xj‖2 + I.

Thus we obtain both

tj

n+1
∑

i=1

ti ‖xi − xj‖2 = tj ‖x − xj‖2 + tjI

and
n+1
∑

j=1

n+1
∑

i=1

tjti ‖xi − xj‖2 =

n+1
∑

j=1

tj ‖x − xj‖2 +

n+1
∑

j=1

tjI.
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From
∑n+1

j=1 tj = 1 and I =
∑n+1

j=1 tj ‖x − xj‖2, we obtain

I =
1

2

n+1
∑

j=1

n+1
∑

i=1

tjti ‖xi − xj‖2 .

Using this expression in (3.2) with πK(x) in place of v, we obtain

n+1
∑

i=1

ti ‖xi − πK(x)‖2 = ‖x − πK(x)‖2 +
1

2

n+1
∑

j=1

n+1
∑

i=1

tjti ‖xi − xj‖2 .

Thus, recalling (3.1),

‖x − πK(x)‖ ≤ ϕ0 ‖x − πK(x)‖2 +
ϕ0

2

n+1
∑

j=1

n+1
∑

i=1

tjti ‖xi − xj‖2 .

Since ϕ0 ‖x − πK(x)‖ = ϕ0dK(x) < 1
2 , the proof is concluded. �

Proposition 3.1 Let K ⊂ R
n be ϕ0-convex, and let the diameter of K be not larger

than 2R, R > 0. Assume that

8
n

n + 1
ϕ2

0R
2 < 1. (3.3)

Then
coK ⊆ Unp(K). (3.4)

Assume now that there exist 0 < ρ < R and a point b ∈ K such that

B(b, ρ) ⊂ K ⊂ B(b,R). (3.5)

Then
e(coK,K) < 8ϕ0(R

2 − ρ2) := λ(ϕ0, R, ρ). (3.6)

Consequently, if
16ϕ2

0(R
2 − ρ2) < 1, (3.7)

then (3.4) holds.

Proof. By Lemma 3.1, for every x ∈ co K the distance dK(x) satisfies the inequality

dK(x) ≤ 4ϕ0
n

n + 1
R2. (3.8)

Recalling Theorem 2.1, the above inequality together with (3.3) imply (3.4).
To show (3.6), we take x ∈ coK such that dK(x) = e(coK,K) and write

x =
n+1
∑

i=1

tiyi,

where yi ∈ K, ti > 0 and
∑n+1

i=1 ti = 1. Now, we construct xi, i = 1, . . . , n + 1 such that
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i) xi ∈ K;

ii) ‖x − xi‖ ≤ 2
√

R2 − ρ2;

iii) x =
∑n+1

i=1 sixi, with si > 0 and
∑n+1

i=1 si = 1.

Two cases may occur.
First case. The segment between yi and x does not cut the closed ball B(b, ρ) We know
that this segment is contained in B(b,R), so ‖x − yi‖ ≤ 2

√

R2 − ρ2. In this case,we
choose xi = yi.
Second case. The segment between yi and x cuts the ball B(b, ρ).
Then there exists y′i ∈ K such that ‖x − y′i‖ ≤ R−ρ ≤ 2

√

R2 − ρ2 and x−yi = t′i(x−y′i)
with t′i > 0. In this case, we choose xi = y′i.
By construction, x still belongs to the convex combination of the points {xi : i =
1, . . . , n + 1}, i.e., we can write x =

∑n+1
i=1 sixi, where xi ∈ K, si > 0 and

∑n+1
i=1 si = 1.

From (3.1) and (3.2), with πK(x) in place of v and si in place of ti, we obtain

dK(x) = ‖x − πK(x)‖ ≤ ϕ0 ‖x − πK(x)‖2 + ϕ0

n+1
∑

i=1

si ‖x − xi‖2 .

Since obviously ‖x − πK(x)‖ ≤ R − ρ, we obtain from the previous inequality that
‖x − πK(x)‖ ≤ 2ϕ0

∑n+1
i=1 si ‖x − xi‖2. From condition ii) we get finally that

‖x − πK(x)‖ < 8ϕ0

n+1
∑

i=1

si(R
2 − ρ2),

which concludes the proof of (3.6). The last statement follows again from Theorem 2.1.
�

The next results are concerned with some regularity properties of a compact ϕ0-convex
set K with nonempty interior.

Proposition 3.2 Let K ⊂ R
n be ϕ0-convex and let b ∈ K. Assume there exist ρ,R > 0

such that both (3.5) and
ρ − ϕ0(R

2 − ρ2) ≥ 0 (3.9)

hold. Then K is starshaped with respect to b.
Assume now

ρ − ϕ0(R
2 − ρ2) := δ > 0 (3.10)

and let x ∈ K. Then K contains the circular cone with vertex x, height ‖x − b‖ − ρ,
symmetry axis the segment joining x and b, and base radius

r =

√

‖x − b‖ − ρ

‖x − b‖ + ρ

δ

1 + ϕ0ρ
. (3.11)
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Proof. Without loss of generality we may assume that b = 0. Therefore we wish first
to prove that, for every x ∈ K and all t ∈ [0, 1), tx ∈ K (actually we will prove that
tx ∈ intK). To this aim, assume by contradiction that there exist x̄ and t̄ ∈ (0, 1) such
that t̄x̄ ∈ ∂K. Since K is ϕ0-convex, there exists v ∈ NK(t̄x̄) with ‖v‖ = 1 such that

B(t̄x̄ + rv, r) ∩ K = {t̄x̄} for all r <
1

2ϕ0
,

hence in particular
∥

∥

∥

∥

t̄x̄ +
v

2ϕ0
− x̄

∥

∥

∥

∥

≥ 1

2ϕ0
.

Recalling assumption (3.5) we get also
∥

∥

∥

∥

t̄x̄ +
v

2ϕ0

∥

∥

∥

∥

≥ 1

2ϕ0
+ ρ.

Therefore,

t̄

∥

∥

∥

∥

v

2ϕ0
− (1 − t̄)x̄

∥

∥

∥

∥

2

+ (1 − t̄)

∥

∥

∥

∥

v

2ϕ0
+ t̄x̄

∥

∥

∥

∥

2

≥ t̄

(

1

2ϕ0

)2

+ (1 − t̄)

(

1

2ϕ0
+ ρ

)2

,

from which it follows
t̄ ‖x̄‖2 ≥ ρ

ϕ0
+ ρ2. (3.12)

Recalling that ‖x̄‖ ≤ R and t̄ < 1, we obtain from (3.12) that

ρ < ϕ0(R
2 − ρ2),

contradicting (3.9).
To prove the second part of the statement, set ρ1 = ρ − δ and take a point y in the
segment joining the origin with a tangent from x to the ball B(0, ρ) such that ‖y‖ = δ
and set R1 = ‖x − y‖. Observe that R2

1 = ‖x‖2 − ρ2 + ρ2
1, so that by (3.10)

ρ1 ≥ ϕ0(‖x‖2 − ρ2) = ϕ0(R
2
1 − ρ2

1). (3.13)

Assume by contradiction that the segment joining x and y is not contained in the interior
of K, i.e., there exists 0 < t0 < 1 such that x0 := (1 − t0)y + t0x belongs to ∂K. Let
v ∈ NK(x0), ‖v‖ = 1. Arguing as in the proof of the starshapedness we obtain the
inequality

ϕ0R
2
1 > ϕ0ρ

2
1 + ρ1,

which contradicts (3.13). Formula (3.11) can be obtained by elementary geometric cal-
culations. �

Remark 1. If ‖x‖ = R and b = 0, then the base radius r of the above cone is

r =

√

R − ρ

R + ρ

ρ − ϕ0(R
2 − ρ2)

1 + ϕ0ρ
.
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Corollary 3.1 Let K ⊂ R
n be ϕ0-convex and satisfy (3.5) and (3.10). Then

(i) the reduced boundary ∂∗K coincides Hn−1-a.e. with the topological boundary ∂K,
so that P (K) = Hn−1(∂K);

(ii) ∂K admits a global Lipschitz parametrization w : Σ −→ ∂K, ξ 7→ b + w(ξ), where
Σ is the boundary of the unit ball and w(ξ) = ξu(ξ), u : Σ → [ρ,R].

Proof. (i) By Proposition 3.2, at every point x ∈ ∂K, the n-dimensional density of x
with respect to K is positive. Consequently (see [9, Theorem 4.3]), the reduced bound-
ary coincides Hn−1-a.e. with the topological boundary.
(ii) Thanks to the starshapedness of K, the boundary of K admits a global parametriza-
tion, which, by the uniform internal cone condition proved in Proposition 3.2, is obviously
Lipschitz. �

We give now a condition ensuring that the barycentre of a ϕ0-convex set K belongs to K
(Lemma 3.3 below). Of course the condition is automatically satisfied when K is convex.
This result is motivated by the assumptions of Theorem 6.1 below, which require that
the inscribed and circumscribed balls for K be centered at the barycentre of K. It will
turn out that if ϕ0 is small enough, this assumption is not restrictive.

Proposition 3.3 Let K be ϕ0-convex and such that |K| > 0. Then K has nonempty
interior. Assume now that K satisfies (3.5), with b = 0. Then, if furthermore

ϕ0(R − ρ) < 1 and
n − 1

n

ωn−1

ωn

(

(

R

ρ

)2

− 1

)
n+3

2 ϕ2
0ρ

2

(1 + ϕ0ρ)2 − ϕ2
0R

2
< 1, (3.14)

the barycentre b(K) of K belongs to the interior of K.

Proof. To prove the first statement, assume by contradiction that intK = ∅. Then a.e.
point of K is on one hand a point with density 1, on the other hand a boundary point.
But, thanks to the external sphere condition, every point in ∂K has density not larger
than 1/2, a contradiction.
Assume now that K satisfies (3.5) with b = 0 and let by contradiction b(K) 6∈ intK.
Choose y ∈ πK(b(K)) ⊂ ∂K. Then, since by assumption B(0, ρ) ⊆ K, by ϕ0-convexity
we have

B

(

y +
v

2ϕ0
,

1

2ϕ0

)

∩ B(0, ρ) = ∅, (3.15)

where v = (b(K) − y)/‖b(K) − y‖ if b(K) 6∈ K, and v is any unit vector in NK(y) if
b(K) ∈ ∂K.

Let P be intersection of the ball B
(

y + v
2ϕ0

, 1
2ϕ0

)

with the segment between 0 and

y + v
2ϕ0

. Take the hyperplane H passing through the point P and perpendicular to the
vector y + v

2ϕ0
. Recalling (3.15), this hyperplane splits the space into the half space H1,

which contains B(0, ρ), and H2, which contains B(y + v
2ϕ0

, 1
2ϕ0

).
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Putting ρ1 = ‖P‖ and v0 =
y+ v

2ϕ0
‚

‚

‚
y+ v

2ϕ0

‚

‚

‚

, one can easily check that

H = ρ1v0 + {x ∈ R
n| < x, v0 >= 0},

H1 = {x ∈ R
n| < x, v0 >< ρ1},

H2 = {x ∈ R
n| < x, v0 >≥ ρ1}.

Dividing the set K into three parts, K1 = B(0, ρ), K2 = (H1 ∩ K) \ B(0, ρ), and
K3 = H2 ∩ K, we obtain

< b(K), v0 >=
1

|K|

(
∫

K1

< x, v0 > dx +

∫

K2

< x, v0 > dx +

∫

K3

< x, v0 > dx

)

Observing that
∫

K1
< x, v0 > dx = 0 and

∫

K2
< x, v0 > dx ≤ ρ1|K2|, we obtain also

< b(K), v0 >≤ 1

|K|

(

ρ1|K2| +
∫

K3

< x, v0 > dx

)

. (3.16)

Since K ⊆ B(0, R), we see that K ∩ H2 ⊆ (B(0, R) ∩ H2) \ B(y + v
2ϕ0

, 1
2ϕ0

). Now

observe that the set (B(0, R) ∩ H2) \ B(y + v
2ϕ0

, 1
2ϕ0

) is contained in the set C obtained
by making a 2π-rotation around the axis through 0 and P of the triangle PQ1Q2 (see
fig. 3). Observe that the base length of this triangle is

√

R2 − ρ2
1, while its height is

h :=
ϕ0(R2−ρ2

1)√
(1+ϕ0ρ1)2−ϕ2

0
R2

. Observe also that C is contained in H2. Thus,

|K ∩ H2| < |C| =
(n − 1)ωn−1

n

(

R2 − ρ2
1

)
n+1

2
ϕ0

√

(1 + ϕ0ρ1)2 − ϕ2
0R

2
.

Moreover, ‖x − πH(x)‖ ≤ h for all x ∈ C, whence < x, v0 >≤ ρ1 + h. Therefore

∫

K3

< x, v0 > dx ≤ (ρ1 + h)|H2 ∩ K| ≤ ρ1|H2 ∩ K| + h|C|.

Combining with (3.16) we obtain

< b(K), v0 >≤ 1

|K| (ρ1|K2| + ρ1|K3| + h|C|) .

Thus

< b(K), v0 >≤ 1

|K|

(

ρ1|K2| + ρ1|K3| +
(n − 1)ωn−1

n

(

R2 − ρ2
1

)
n+3

2
ϕ2

0

(1 + ϕ0ρ1)2 − ϕ2
0R

2

)

By construction ρ ≤ ρ1. Using (3.14) we therefore obtain

(n − 1)ωn−1

n

(

R2 − ρ2
1

)
n+3

2
ϕ2

0

(1 + ϕ0ρ1)2 − ϕ2
0R

2
< ωnρn+1 ≤ ρ1|K1|.

12



ρ1

O

H

H1 H2

P

Q1 Q2

R

h

1/2ϕ0 y + v
2ϕ0

Figure 1: Construction of the set C.

Therefore,

< b(K), v0 ><
1

|K|(ρ1|K2| + ρ1|K3| + ρ1|K1|) = ρ1,

which is absurd because b(K) belongs to H2 by construction. The proof is concluded.�

We are now ready to state a result concerning the relations between the shape of K and
ρ, R and ϕ0.

Lemma 3.2 Let K ⊂ R
n be a ϕ0-convex set satisfying (3.5) and (3.10). Let u be the

map defined in (ii) of Corollary 3.1. Then, for Hn−1-a.e. ξ ∈ Σ,

‖∇u(ξ)‖ ≤ R
√

(R2 − ρ2)(1 + ϕ0(R + ρ))(1 − ϕ0(R − ρ))

ρ + ϕ0(ρ2 − R2)
. (3.17)

Proof. Without loss of generality assume b = 0. Let x ∈ ∂K and let v ∈ NK(x),
‖v‖ = 1. Denote by ϑ the angle between x and v. By the starshapedness, |ϑ| ≤ π/2. We
claim that |ϑ| is bounded away from π/2, uniformly with respect to x.
By our assumptions, ρ ≤ ‖x‖ ≤ R, and

∥

∥

∥

∥

x +
v

2ϕ0

∥

∥

∥

∥

≥ 1

2ϕ0
+ ρ.

Therefore we have

cos ϑ ≥ ρ + ϕ0(ρ
2 − ‖x‖2)

‖x‖ ≥ ρ + ϕ0(ρ
2 − R2)

R
=

δ

R
,

13



hence completing the proof of the claim. It then follows that

tan ϑ ≤
√

(R2 − ρ2)(1 + ϕ0(R + ρ))(1 − ϕ0(R − ρ))

ρ + ϕ0(ρ2 − R2)
. (3.18)

In order to estimate ‖∇w(ξ)‖ for a.e. ξ ∈ Σ, let ξ be such that ∇w(ξ) exists and let
s 7→ y(s) be a C1-curve in Σ such that y(0) = ξ, ‖ẏ(0)‖ = 1. Set w(ξ) = ξu(ξ), with
u : Σ → [ρ,R] a Lipschitz function. Since ‖w(y(s))‖2 = u(y(s))2, we obtain that

〈w(ξ),
d

ds
w(y(s))|s=0〉 = u(ξ)

d

ds
u(y(s))|s=0. (3.19)

Moreover,
d

ds
w(y(s))|s=0 = ẏ(0)u(ξ) + y(0)

d

ds
u(y(s))|s=0,

so that, recalling that ẏ(0) is orthogonal to y(0), we obtain
∥

∥

∥

∥

d

ds
w(y(s))|s=0

∥

∥

∥

∥

=

√

u2(ξ) +
d

ds
u(y(s))2|s=0

.

Set ϑ1 to be the angle between w(ξ) and d
dsw(y(s))|s=0. Recalling (3.19),

| d
dsu(y(s))|s=0|

u(ξ)
= cot ϑ1 ≤ tan ϑ.

We therefore obtain that for Hn−1-a.e. ξ ∈ ∂K

‖∇u(ξ)‖
u(ξ)

≤ tan ϑ,

which, by (3.18), proves (3.17). �

Remark. Under the normalization condition used in [17], i.e., with ρ = 1 − d(K) and
R = 1 + d(K), formula (3.17) becomes

‖∇u‖∞ ≤ 2
√

d(K)
(1 + d(K))

√

(1 + 2ϕ0)(1 − 2ϕ0d(K))

1 − (1 + 4ϕ0)d(K)
. (3.20)

The above inequality reduces to the main estimate in Lemma 2.2 of [17] when ϕ0 = 0,
i.e., K is convex.
Observe moreover that the right-hand side g = g(ϕ0, d(K)) of (3.20) is strictly increasing
as a function of d(K) ∈ [0, 1/(1 + 4ϕ0)).
Finally, observe that g is increasing also with respect to ϕ0. Therefore we have

g(ϕ0, d) ≤ g(1, d) := g0(d) = 2
√

d
(1 + d)

√

3(1 − 2d)

1 − 5d
.

For future use, let a be such that

d ≤ a

2
implies g0(d) ≤ 1/2, (3.21)

and observe that

a <
1

24
. (3.22)
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4 Estimates for the convex hull

The main result of this section is Proposition 4.1, where the isoperimetric deficiency and
the spherical deviation of the convex hull of a ϕ0-convex set K, are estimated using the
corresponding quantities for K. This will permit in the next section to prove one of our
main results using an adaptation of the argument of Theorem 2.3 in [17]. Some estimates
can be improved (in particular, the upper bound on ∆ can be avoided).
We begin with a technical lemma.

Lemma 4.1 Let K ⊂ R
n be compact, ϕ0-convex, and such that there exist b ∈ K and

ρ > 0 with
B(b, ρ) ⊆ K.

Then ∆(K(λ)) is nonincreasing with respect to λ belonging to the interval [0, t], provided
2ϕ0t < 1. Assume furthermore that

∆(K) ≤ 1

and set, for λ ≥ 0, T (λ) := V (λ)
V (0) , where V (0) = |K|. Then, for all 0 ≤ λ ≤ min{ ρ

2n , 1
2ϕ0

}
the estimate

T (λ) ≤ ρ

ρ − 2nλ
(4.1)

holds true.

Proof. We begin with some preliminary estimates on T (λ).
According to Theorem 2.2, the function V (λ) is continuously differentiable with respect
to λ. So we can apply the mean value theorem and find λ1 ∈ (0, λ) such that

T (λ) = 1 +
V (λ) − V (0)

V (0)
= 1 + λ

P (λ1)

V (0)
.

Observe now that it is possible to write the above expression as

T (λ) = 1 + nλ
ω

1/n
n

V (0)1/n

P (λ1)

nω
1/n
n V (λ)

n−1

n

T (λ)
n−1

n .

From V (λ) ≥ V (λ1) ≥ V (0) and
(

ωn
V (0)

)1/n
≤ 1

ρ , one can easily deduce from the previous

expression that

T (λ) ≤ 1 + nλ
1

ρ
(∆(K(λ1)) + 1)T (λ)

n−1

n . (4.2)

We now observe that the function ∆(K(·)) is nonincreasing in the interval [0, t], provided
2ϕ0t < 1. In fact, the logarithmic derivative of (1 + ∆(λ))n at λ = 0 is (see [17, proof of
Lemma 2.5] and Corollary 2.1)

n(n − 1)
W0W2 − W 2

1

W0W1
≤ 0.
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Observe that K(λ + µ) = K(λ)(µ) for all µ ≥ 0 and K(λ) is ϕ′
0-convex for a suitable

ϕ′
0, provided 2ϕ0λ < 1 (see [15, Corollary 4.9]). Thus the derivative of the isoperimetric

deficiency is nonpositive for all λ ≥ 0 such that 2ϕ0λ < 1. Therefore, for such λ,
∆(K(λ1)) is bounded from above by ∆(K). If ∆(K) ≤ 1, (4.2) becomes (4.1). �

The following estimate is crucial in order to obtain a sharp quantitative isoperimetric
inequality valid for a small isoperimetric deficiency ∆(K). Therefore, although a more
general statement can be obtained, for simplicity we prove it only for ∆(K) ≤ 1.

Proposition 4.1 Let K be a ϕ0-convex set satisfying (3.5) with b = b(K), the barycentre
of K, and assume that

ρ − 16nϕ0(R
2 − ρ2) > 0. (4.3)

Then

(i) ∆(coK) ≤ ∆(K) + ϕ0
32n(R2 − ρ2)

ρ − 16nϕ0(R2 − ρ2)
, provided ∆(K) ≤ 1;

(ii) d(K) ≤ d(coK)+ϕ0
16n(R2 − ρ2)

ρ − 16nϕ0(R2 − ρ2)

(

2R

ρ
+

1 + d(coK)

n

)

, provided d(K) ≤ 1.

Proof of part (i). Set Hn−1(∂ coK) := P (coK). By definition we have both

∆(K) =
1

nω
1/n
n

P (K)

|K|n−1

n

− 1 and ∆(coK) =
1

nω
1/n
n

P (coK)

|coK|n−1

n

− 1.

From Propositions 3.1 and 2.1 we obtain that P (coK) ≤ P (λ(ϕ0, R, ρ)), with λ(ϕ0, R, ρ) =
8ϕ0(R

2 − ρ2).
Since |coK| ≥ |K|, we have

∆(coK) ≤ 1

nω
1/n
n

P (λ(ϕ0, R, ρ)) − P (K)

|K|n−1

n

+ ∆(K). (4.4)

Now, observing that K(λ) is ϕ1-convex, with 1
2ϕ1

= 1
2ϕ0

−λ, for λ small enough, we apply
Theorem 2.2 and develop P (λ) around λ(ϕ0, R, ρ). For a suitable 0 < λ1 < λ(ϕ0, R, ρ),
we obtain therefore from (4.4) the inequality

∆(coK) ≤ λ(ϕ0, R, ρ)

nω
1/n
n

P ′(λ1)

|K|n−1

n

+ ∆(K),

where P ′ denotes the derivative of P (λ). Using the Minkowski inequality (i.e., Corollary

2.1) we have P ′(λ1) ≤ n−1
n

P 2(λ1)
V (λ1) , from which it follows

∆(coK) ≤ λ(ϕ0, R, ρ)(n − 1)

n2ω
1/n
n

P 2(λ1)

V (λ1)

1

|K|n−1

n

+ ∆(K).

Thus

∆(coK) ≤ λ(ϕ0, R, ρ)(n − 1)ω1/n
n

(

1

nω
1/n
n

P (λ1)

V (λ1)
n−1

n

)2
V (λ1)

n−2

n

|K|n−1

n

+ ∆(K),
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which is equivalent to

∆(coK) ≤ λ(ϕ0, R, ρ)(n − 1)ω1/n
n (∆(K(λ1)) + 1)2

V (λ1)
n−2

n

|K|n−1

n

+ ∆(K).

From Lemma 4.1, ∆(K) ≥ ∆(K(λ1)). Therefore we obtain

∆(coK) ≤ λ(ϕ0, R, ρ)(n − 1)ω1/n
n (∆(K) + 1)2

V (λ1)
n−2

n

|K|n−1

n

+ ∆(K).

Assuming ∆(K) ≤ 1 it then follows that

∆(coK) ≤ 4λ(ϕ0, R, ρ)(n − 1)
ω

1/n
n

|K|1/n

(

V (λ1)

|K|

)
n−2

n

+ ∆(K).

Since B(b, ρ) ⊆ K, we obtain ω
1/n
n

|K|1/n ≤ 1
ρ , so that

∆(coK) ≤ 4λ(ϕ0, R, ρ)(n − 1)

ρ

(

V (K(λ1))

|K|

)
n−2

n

+ ∆(K),

which implies

∆(coK) ≤ 4λ(ϕ0, R, ρ)(n − 1)

ρ

V (λ(ϕ0, R, ρ))

|K| + ∆(K). (4.5)

Set now T := V (λ(ϕ0,R,ρ))
|K| . Recalling Lemma 4.1, we have

T ≤ ρ

ρ − 2nλ(ϕ0, R, ρ)
. (4.6)

Combining with (4.5) we obtain

∆(coK) ≤ ∆(K) + 4(n − 1)λ(ϕ0, R, ρ)
1

ρ − 2nλ(ϕ0, R, ρ)
. (4.7)

Recalling that λ(ϕ0, R, ρ) = 8ϕ0(R
2 − ρ2), (4.7) implies

∆(coK) ≤ ∆(K) + ϕ0
32n(R2 − ρ2)

ρ − 16nϕ0(R2 − ρ2)
,

which concludes the proof of (i).
Proof of part (ii). Denoting by b(K) (resp. b(coK)) the barycentre of K (resp. of
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coK), we compute

‖b(coK) − b(K)‖ =

∥

∥

∥

∥

1

|coK|

∫

coK
x dx − 1

|K|

∫

K
x dx

∥

∥

∥

∥

=

∥

∥

∥

∥

1

|coK|

∫

coK
(x − b(K)) dx − 1

|K|

∫

K
(x − b(K)) dx

∥

∥

∥

∥

≤ 1

|coK|

∥

∥

∥

∥

∥

∫

coK\K
(x − b(K)) dx

∥

∥

∥

∥

∥

+
|coK| − |K|
|coK||K|

∥

∥

∥

∥

∫

K
(x − b(K)) dx

∥

∥

∥

∥

≤ 2R
|coK| − |K|

|coK| ≤ 2R
V (λ(ϕ0, R, ρ)) − |K|

|K|
= 2R(T − 1). (4.8)

Consequently, recalling (4.6) we obtain

‖b(coK) − b(K)‖ ≤ 32nRϕ0(R
2 − ρ2)

ρ − 16nϕ0(R2 − ρ2)
. (4.9)

By definition of spherical deviation, we have

(

ωn

|coK|

)− 1

n

(1 − d(coK))+Ω ⊆ coK − b(coK) ⊆
(

ωn

|coK|

)− 1

n

(1 + d(coK))Ω,

from which it follows
[

(

ωn

|coK|

)− 1

n

(1 − d(coK))+ − ‖b(coK) − b(K)‖
]

+

Ω

⊆ coK − b(K) ⊆
[

(

ωn

|coK|

)− 1

n

(1 + d(coK)) + ‖b(coK) − b(K)‖
]

Ω.

Since K ⊆ coK ⊆ K + e(coK,K)Ω the above inclusions imply

(1 − α1)+Ω ⊆ (K − b(K))

(

ωn

|K|

)1/n

⊆ (1 + α2)Ω,

where, recalling (4.8), (3.6)

α1 ≤ d(coK) +
2R(T − 1)

ρ
+ 8ϕ0

R2 − ρ2

ρ
, if d(coK) ≤ 1

α1 = 1 if d(coK) > 1,

α2 ≤ d(coK) +
2R(T − 1)

ρ
+ (1 + d(coK))

(

( |coK|
|K|

)1/n

− 1

)

≤ d(coK) +
2R(T − 1)

ρ
+

16ϕ0(R
2 − ρ2)(1 + d(coK))

ρ − 16nϕ0(R2 − ρ2)
.
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Consequently, recalling (4.9),

d(K) ≤ d(coK) + ϕ0
16n(R2 − ρ2)

ρ − 16nϕ0(R2 − ρ2)

(

2R

ρ
+

1 + d(coK)

n

)

.

The proof is concluded. �

We conclude the section with an estimate of the isoperimetric deficiency involving only
R, ρ, n.

Proposition 4.2 Let K ⊂ R
n be ϕ0-convex and satisfy (3.5) together with (4.3), and

(3.7). Then

∆(K) ≤ 1
(

1 − 16ϕ2
0(R

2 − ρ2)
)n−1

(

R

ρ

)n−1

− 1.

Proof. From (3.6) we have co(K) ⊆ K(λ(ϕ0, R, ρ)), where λ = 8ϕ0(R
2 − ρ2). Re-

calling Proposition 2.1, πK : coK → ∂K is single-valued and Lipschitz with ratio
L = 1

1−2ϕ0λ(ϕ0,R,ρ) . Thus

Hn−1(πK(∂coK)) ≤ Ln−1Hn−1(∂coK).

Using the above considerations, we obtain

Hn−1(∂K) ≤ Ln−1Hn−1(∂coK).

Now, we can estimate the isoperimetric deficiency of K:

∆(K) =
Hn−1(∂K)

nω
1/n
n |K|n−1

n

− 1 ≤ Ln−1Hn−1(∂coK)

nω
1/n
n |K|n−1

n

− 1.

We know that K contains a ball with radius ρ and coK is contained in a ball with radius
R. We therefore obtain, recalling Proposition 2.1,

∆(K) ≤ Ln−1

(

R

ρ

)n−1

− 1.

The proof is concluded. �

5 Comparison between spherical deviation and Fraenkel

asymmetry

It is easy to construct examples, even of compact ϕ-convex sets with nonempty interior,
where Fraenkel asymmetry is small, while spherical deviation is very large (add a suitable
thorn to a ball). However, assuming some compatibility conditions involving ϕ0, ρ,R it
is possible to give an upper bound to the spherical deviation using Fraenkel asymmetry.
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Proposition 5.1 Let K be a ϕ0-convex set such that B(0, ρ) ⊂ K ⊂ B(0, R), where 0 is
the barycenter of K, R is the smallest radius of a ball centered at 0 containing K, and ρ
the largest radius of a concentric ball contained in K. Let σ > 0 and assume ∆(K) ≥ σ.
Let c0 > 0 be given and assume

16ϕ2
0(R

2 − ρ2) ≤ 1 − 1 + c0

(1 + σ)
1

n−1

, (5.1)

ϕ0|K|1/n ≤ ω1/n
n , (5.2)

ρ − ϕ0(R
2 − ρ2) ≥ δR. (5.3)

where δ > 0. Then there exists a positive constant C, depending only on n, c0, δ, such
that

d(K)
n+1

2 ≤ Cλ∗(K).

The proof is based on the following technical lemma.

Lemma 5.1 Let K be a ϕ0-convex set satisfying (3.5), where R is the smallest radius
of a ball containing K and ρ is the largest radius of a ball contained in K (both centered
at b). Assume also that ∆(K) ≥ σ > 0, and let (5.1), (5.2), (5.3) hold. Then there
exist positive real numbers C1, C2, C3, depending only on n, δ, c0, such that the following
properties are satisfied:

(i) r ≥ (1 + C1)ρ;

(ii) R ≥ (1 + C2)r;

(iii) |K \ B(b, r)| ≥ C3r
n.

Proof of Lemma 5.1. Without loss of generality, suppose that b = 0 and let |K| =
rn ωn. From (5.1) and Proposition 4.2 we obtain that

R

ρ
≥ (1 + σ)

1

n−1 (1 − 16ϕ2
0(R

2 − ρ2)) ≥ 1 + c0. (5.4)

Now we are going to prove (i) and (ii). First, we wish to compare r with ρ. To this aim,
we recall that by Proposition 3.2, K contains the cone D of height R−ρ and base radius

r0 =

√
R − ρ(ρ − ϕ0(R

2 − ρ2))√
R + ρ(1 + ϕ0ρ)

= (R − ρ)
ρ − ϕ0(R

2 − ρ2)
√

R2 − ρ2(1 + ϕ0ρ)
.

Recalling (5.2), we obtain that ϕ0ρ < 1. Therefore, by (5.3) we have

r0 ≥ δ

2
(R − ρ), (5.5)

from which we obtain

|K| = rnωn ≥ |B(0, ρ)| + |D| = ρnωn +
ωn−1δ

n−1

n2n−1
(R − ρ)n.
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Now (i) follows from the above inequality and (5.4).
Next, we wish to compare r with R. Since ρ is the largest radius of a ball contained
in K, there exists a point y ∈ ∂B(0, ρ) ∩ ∂K. From the definition of ϕ0-convexity, it
is easy to see that w = y

||y|| is the unique unit outer normal vector of K at y, so that

B(y + w
2ϕ0

, 1
2ϕ0

) ∩ K = ∅. Therefore, recalling (5.3),

|K| ≤ |B(0, R)| −
∣

∣

∣

∣

B(0, R) ∩ B

(

y +
w

2ϕ0
,

1

2ϕ0

)∣

∣

∣

∣

≤ |B(0, R)| −
∣

∣

∣

∣

B

(

y +
R − ρ

2
w,

R − ρ

2

)
∣

∣

∣

∣

,

from which we obtain
ωnrn ≤ ωnRn − ωn

2n
(R − ρ)n. (5.6)

Now, recalling (i), R − ρ ≥ C1

1+C1
r, so that (5.6) yields (ii).

Finally, we prove (iii). From Proposition 3.2 we obtain that K contains a cone E with
(n−1)-spherical base centered at some point b1 such that ‖b1‖ = ρ, radius r0 and height
R − ρ. Thus, the set K \ B(0, r) contains the cone E1 with height R − r and radius
R−r
R−ρr0. Therefore, recalling (5.5),

|K \ B(0, r)| ≥ (R − r)
ωn−1δ

n−1

n2n−1

(

R − r

R − ρ

)n−1

(R − ρ)n−1.

Using (ii) we obtain (iii). �

Proof of Proposition 5.1. We divide the proof into two cases:
First case, R ≥ 4r.
From Proposition 3.2 we obtain that K contains the cone E with height R− ρ and base

radius r0 =
√

R−ρ(ρ−ϕ0(R2−ρ2))√
R+ρ(1+ϕ0ρ)

. By considering a strip of width 2r and using (5.5) one

can check that
|K△B(x, r)| ≥ |K \ B(x, r)| ≥ |E1|,

where E1 is a cone with height R − ρ − 2r ≥ 1
3 (R − r) and base radius

r3 =
R − ρ − 2r

R − ρ
r0 ≥ δ

6
(R − r).

Therefore,

|K△B(x, r)| ≥ ωn−1δ
n−1

3n6n−1
(R − r)n,

from which it follows

|K△B(x, r)|
|K| ≥ ωn−1δ

n−1

3nωn6n−1

(

R − r

r

)n

.

From R ≥ 4r, we obtain that d(K) = max
{ r−ρ

r , R−r
r

}

= R−r
r . Therefore, we get

|K△B(x, r)|
|K| ≥ ωn−1δ

n−1

3nωn6n−1
d(K)n ≥ ωn−1δ

n−1

3nωn6n−1
d(K)

n+1

2
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for all x ∈ Rn.
Second case, R ≤ 4r.
Observing that d(K) = max

{ r−ρ
r , R−r

r

}

≤ 3, we only need to prove that there exists a
constant C2 satisfying |K△B(x, r)| ≥ C2r

n for all x ∈ R
n.

Let x be in R
n: three cases may occur.

First case. The point x belongs to ∂K. From the definition of ϕ0-convexity, there exists
a unit vector v ∈ NK(x) such that B(x + v

2ϕ0
, 1

2ϕ0
) ∩ K = ∅. Therefore, recalling (5.2),

|B(x, r)△K| ≥ |B(x, r) \ K| ≥
∣

∣

∣

∣

B(x, r) ∩ B

(

x +
v

2ϕ0
,

1

2ϕ0

)∣

∣

∣

∣

≥
∣

∣

∣
B
(

x +
r

2
v,

r

2

)
∣

∣

∣
.

Consequently

|B(x, r)△K| ≥ ωn

2n
rn.

Second case. The point x belongs to the interior of R
n \K. Let ρ1 be the largest radius

ξ such that B(x, ξ) ⊂ R
n \ K. We have two cases:

If ρ1 ≥ r then |B(x, r)△K| ≥ |B(x, r)| = ωnrn.
If ρ1 < r then there exists a point x1 ∈ ∂B(x, ρ1)∩∂K. By the same argument as above,
from the definition of ϕ0-convexity, there exists a unit vector v1 ∈ NK(x1) such that
B(x1 + v1

2ϕ0
, 1

2ϕ0
)∩K = ∅. One can easily check that B(x, r)\K ⊇ B(x, ρ1)∪B(y, r−ρ1

2 ),
where y belongs to the segment between x and x1 + v1

2ϕ0
. Therefore,

|B(x, r) \ K| ≥ 1

2

(

|B(x, ρ1)| +
∣

∣

∣

∣

B

(

x,
r − ρ1

2

)
∣

∣

∣

∣

)

=
ωn

2

(

ρn
1 +

(

r − ρ1

2

)n)

,

from which we obtain
|B(x, r)△K| ≥ ωn

22n
rn.

Third case. The point x belongs to the interior of K. Let ρ2 be the largest radius ξ such
that B(x, ξ) ⊆ K and let R1 be the smallest radius such that B(x, ξ) ⊇ K. We have two
cases:
If ρ2 ≤ ρ then there exists a point x2 ∈ ∂B(x, ρ2) ∩ ∂K. From the definition of ϕ0-
convexity, v2 = x2−x

||x2−x|| ∈ NK(x2) and B(x2 + v2

2ϕ0
, 1

2ϕ0
) ∩ K = ∅. Therefore,

|B(x, r) \ K| ≥
∣

∣

∣

∣

B(x, r) ∩ B

(

x2 +
v2

2ϕ0
,

1

2ϕ0

)
∣

∣

∣

∣

≥
∣

∣

∣

∣

B

(

x2 +
r − ρ2

2
v2,

r − ρ2

2

)
∣

∣

∣

∣

,

whence
|B(x, r)△K| ≥ ωn

2n
(r − ρ2)

n ≥ ωn

2n
(r − ρ)n.

Using (i) in Lemma 5.1, we therefore obtain

|B(x, r)△K| ≥ ωn

2n

(

C1

1 + C1

)n

rn.
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Otherwise, ρ2 ≥ ρ. We have two cases:
First case, R1 ≤ R: since ρ ≤ ρ2 and R1 ≤ R, the assumptions of Lemma 5.1 are
satisfied. Therefore, using (iii) in Lemma 5.1 with x in place of b, we obtain

|B(x, r)△K| ≥ |K \ B(x, r)| ≥ C3r
n.

Second case, R1 ≥ R: then there exists a point z ∈ K such that ‖z−x‖ = R. According
with Proposition 3.2, K contains a cone F with (n− 1)-spherical base centered at some
point x1 satisfying ‖x − x1‖ = ρ, radius r0 ≥ δ

2 (R − ρ) and height R − ρ. Therefore,

|K \ B(x, r)| ≥ ωn−1δ
n−1

n2n−1
(R − r)

(

R − r

R − ρ

)n−1

(R − ρ)n−1.

Using (i) and (ii) in Lemma 5.1 we see that

|B(x, r)△K| ≥ C2r
n.

The proof is concluded. �

The next result provides, for a particular case, sharp inequalities between spherical
deviation and Fraenkel asymmetry. It will be used in Remark 6.2 below.

Proposition 5.2 Let 0 < ρ < R be such that R ≤ 2ρ. Let ϕ0 > 0 be such that
a := 1

2ϕ0
≥ ρ and consider the ϕ0-convex set

K = B(0, R) \ [B((a + ρ)e1, a) ∪ B(−(a + ρ)e1, a))].

Then there exist positive constants C1 = C1(n), C2 = C2(n) such that

C1(n)d(K)
n+1

2 ≤ λ∗(K) ≤ C2(n)d(K)
n+1

2 .

Proof. We make some preliminary remarks and then estimate the measure of the
symmetric difference between K and B(x, r).
The barycenter of K, b(K), is 0. Let r be such that |K| = rnωn. Then, by definition,
the spherical deviation of K satisfies d(K) = max

{ r−ρ
r , R−r

r

}

. Moreover, we have that
|K| ≤ |B(0, R)| − 2|D1|, where D1 is the union of two cones with the same (n − 1)-

spherical basis of radius r1 =

√

R2−ρ2

2(a+ρ)

(

2a − R2−ρ2

2(a+ρ)

)

, one opposite to the other, with

height, respectively, h1 = (R2 − ρ2)/(2(a + ρ)), h2 = R − (ρ + h1). Our choice of a and
the condition R ≤ 2ρ imply that

1

2

√

R2 − ρ2 ≤ r1 ≤
√

R2 − ρ2. (5.7)

As a consequence,

|K| ≤ |B(0, R)| − 2
ωn−1

n
(R − ρ)

(

1

2

√

R2 − ρ2

)n−1
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or, equivalently,

|K| ≤ |B(0, R)| − ωn−1

n2n−2
(R − ρ)

n+1

2 (R + ρ)
n−1

2 .

Notice now that K is symmetric w.r.t. the origin, so that |K△B(x, r)| = |K△B(−x, r)|.
Moreover, since B(x, r)∩B(−x, r) ⊆ B(0, r), we have that |K△B(x, r)| ≥ 1

2 |K \B(0, r)|
for all x. From the properties of the set K we obtain finally that

|K \ B(0, r)| ≥ 1

2
(|B(0, R)| − |K|).

The above remarks permit to estimate the measure of the symmetric difference between
K and B(x, r) for all x ∈ Rn:

|K△B(x, r)| ≥ 1

4
(|B(0, R)| − |K|) ≥ ωn−1

n2n
(R − ρ)

n+1

2 (R + ρ)
n−1

2 .

Using the definition of Fraenkel asymmetry, we have that

λ∗(K) ≥ ωn−1

n2nωn
(
R − ρ

r
)

n+1

2 (
R + ρ

r
)

n−1

2 .

Since d(K) ≤ R−ρ
r , we obtain one side of the desired inequality:

ωn−1

n2nωn
d(K)

n+1

2 ≤ λ∗(K).

The other side is similar. Indeed, we have |K| ≥ |B(0, R)| − 2|D| where D is a cylinder

with height R − ρ and radius r1 =

√

R2−ρ2

2(a+ρ)

(

2a − R2−ρ2

2(a+ρ)

)

. Therefore |K△B(0, r)| ≤
|B(0, R)| − |K| + 2|D| ≤ 4|D|, so that recalling (5.7) we obtain

|K△B(0, r)| ≤ 4ωn−1(R − ρ)
n+1

2 (R + ρ)
n−1

2 .

By definition of Fraenkel asymmetry, we have

λ∗(K) ≤ 4ωn−1

ωn

(

R − ρ

r

)
n+1

2
(

R + ρ

r

)
n−1

2

,

while from d(K) = max
{ r−ρ

r , R−r
r

}

we obtain d(K) ≥ R−ρ
2r . Consequently,

λ∗(K) ≤ 2
n+5

2 3
n−1

2
ωn−1

ωn
d(K)

n+1

2 .

The proof is concluded. �

We conclude the section with an easy general converse estimate.

Proposition 5.3 Let K ⊂ R
n be compact with |K| > 0 and d(K) < 1. Then

λ∗(K) ≤ n2nd(K). (5.8)
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Proof. Since spherical deviation and Fraenkel asymmetry are scale invariant, there is no
loss of generality in assuming that |K| = ωn (and b(K) = 0). Hence, from the definition
of Fraenkel asymmetry (Definition 2.4), we have

λ∗(K) ≤ |K△Ω|
|K| =

|K△Ω|
ωn

.

On the other hand, from the definition of spherical deviation d(K) (Definition 2.3) we
get

(1 − d(K))Ω ⊆ K ⊆ (1 + d(K))Ω.

Thus we obtain
|K△Ω| ≤ |(1 − d(K))Ω△(1 + d(K))Ω|,

from which it follows

|K△Ω| ≤ ωn((1 + d(K))n − (1 − d(K))n).

Thus, λ∗(K) ≤ 2n(1 + s)n−1d(K) for some s ∈ (−d(K), d(K)), which implies (5.8). �

6 Isoperimetric inequalities

In this section we prove some quantitative isoperimetric inequalities for ϕ0-convex sets.
We treat first the case where the isoperimetric deficiency is small enough (Theorem
6.1), through suitable modifications of the technique due to Fuglede [17]. According to
[17], the exponent appearing in the estimate is optimal for ∆ small. Next we treat the
complementary case (Theorem 6.2), i.e., ∆ larger than a given number, as a corollary
of the main result of [18]. The result is similar to Theorem 6.1, but the exponent is
different.

Theorem 6.1 Let ϕ0 ≥ 0 be given and let K ⊂ R
n be a compact ϕ0-convex set with

nonempty interior. Then there exist 0 < d0 < 1, η > 0 and a continuous strictly
increasing function f : [0, 1] → [0,+∞) (with f(0) = 0) such that if d(K) ≤ d0 and
∆(K) ≤ η/2, then

d(K) ≤ f(∆(K)).

Explicit formulas for f and η as well as explicit estimates for d0 appear in Remark 6.1
just after the proof.

Proof. We wish to apply Theorem 1.2 in [17], by assuming that the inequalities (6.6),
(6.7), and (6.8) hold. Without loss of generality assume also that b(K) = 0. By setting

ρ = 1 − d(K), R = 1 + d(K),

we observe that

B(0, ρ) ⊆
( |K|

ωn

)−1/n

K ⊆ B(0, R),
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so that formula (6.6) becomes (4.3). Therefore, we can apply Proposition 4.1, obtaining
by (6.7) and (6.8) that

∆(coK) ≤ ∆(K) + η/2, (6.1)

d(K) ≤ d(coK) + a/2. (6.2)

Therefore, if

∆(K) ≤ η

2
:= σ

by (i) in Proposition 4.1 and (6.1) it holds

∆(coK) < η.

The proof of Theorem 2.3 in [17] (see formula (39)) shows then that

d(coK) <
a

2
.

Recalling (3.22), by (ii) in Proposition 4.1 and (6.2) it follows that

d(K) < a.

Using (3.21), we are ready to apply Theorem 1.2 in [17], which gives

d(K) ≤ f(∆(K)),

where f is as in (6.3), (6.4). �

Remark 6.1 Explicit formulas for η and f and estimates for d0.
The function f is defined as follows:
if n = 3

f(∆) = C

(

∆ log
1

∆

)
1

2

, ∆ ∈ [0,
1

e
]; (6.3)

if n ≥ 4

f(∆) = C ∆
2

n+1 , ∆ ≥ 0, (6.4)

where the constant C is explicitly given (depending only on n) by [17, Remark 1.5 and
pages 630, 631]. Recalling the number a defined in (3.21), η = η(n) is defined by the
property that

f(η) = a/2. (6.5)

Finally, d0 is any positive number satisfying the following inequalities:

ϕ0 64n

( |K|
ωn

)1/n

<
1 − d0

d0
, (6.6)

ϕ0 64n(η + 4)

( |K|
ωn

)1/n

< η
1 − d0

d0
, (6.7)

ϕ0
128(1 + d0)(2n + 1 − d0)

1 − d0 − 64nϕ0d0
< a

1 − d0

d0
. (6.8)
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Remark 6.2 The exponent appearing in the inequalities stated in Proposition 5.2 shows
that estimates of the type (6.3) and (6.4), for ∆(K) small, cannot be obtained by applying
Theorem 1.1 in [18]. In fact, the set K appearing in the statement of Proposition 5.2
satisfies the assumptions of Theorem 6.1 if ρ is suitably close to R, so that (for n ≥ 4)

we obtain that d(K) ≤ C ∆(K)
2

n+1 , while from Proposition 5.2 and Theorem 1.1 in [18]

we obtain d(K) ≤ n2nC ∆(K)
1

n+1 .

As a corollary of Theorem 6.1, we prove now a result of the same nature of Theorem
1.1 in [18], where the spherical deviation d(K) is substituted by the measure theoretic
concept of Fraenkel asymmetry. The exponents appearing in our estimate are far from
being sharp as those appearing in the result obtained in [18], which is optimal in the
most general class of sets with finite perimeter and finite Lebesgue measure. However
our proof, valid for the restricted class of sets considered in Theorem 6.1, is very simple.

Corollary 6.1 Let K ⊂ R
n be a ϕ0-convex set satisfying the inequalities of Remark 6.1.

Then there exists a constant T (n) such that

λ∗(K) ≤ n2nf(∆(K)),

where f is as in (6.3), (6.4).

Proof. Recalling (5.8) we obtain

λ∗(K) ≤ n2n d(K),

while, by Theorem 6.1, d(K) ≤ f(∆(K)). �

We now prove another quantitative isoperimetric inequality, as a corollary of Theorem
1.1 in [18]. Differently from Theorem 6.1, it is valid for ∆(K) large enough.

Theorem 6.2 Let K be satisfying the assumptions of Proposition 5.1. Then there exists
a constant C4 = C4(n, c0, R0, ρ0) > 0 such that

d(K) ≤ C4∆(K)
1

n+1 . (6.9)

Proof. It is an immediate corollary of Theorem 1.1 in [18] and of Proposition 5.1. �

The last statement of this section puts together Theorems 6.1 and 6.2.

Theorem 6.3 Let K be a ϕ0-convex set and let σ > 0. Assume that if ∆(K) ≤ σ then
the inequalities in Remark 6.1 are satisfied, while if ∆(K) > σ then the assumptions
of Proposition 5.1 hold. Then there exists a continuous strictly increasing function f :
[0,+∞) −→ [0,+∞) such that

d(K) ≤ f(∆(K)). (6.10)

More precisely, f(∆) is given by the right-hand sides of (6.3) and (6.4) if ∆(K) is small
enough, and by the right-hand side of (6.9) if ∆(K) is large enough.

Proof. It is an immediate corollary of Theorems 6.1 and 6.2. �
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