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Abstract

Consider the linear control system x ′(t) = Ax(t) + Bu(t) with the target {0}. The
function T (x) is the minimum time needed to steer a point x to {0}. It is well-known
that under the Rank-Kalman condition, T is just continuous in the reachable set. Our
main goal is to study the regularity of T (x). In this thesis, we prove that T is a.e. twice
differentiable. Moreover, we also obtain an explicitly formula of the set of singularities
where the optimal control changes its sign.
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1 Introduction

Consider the linear control system
¨

x ′(t) = Ax(t) + Bu(t) t > 0

x(0) = x0
(1.1)

where A∈Mn×n, B ∈Mn×m, 1≤ m≤ n and U = [−1,1]m ⊂ Rm.

• U = [−1,1]m ⊂ Rm is the control set.

• u : [0,∞) −→ U is a control function.

We will write

x(t) =









x1(t)
x2(t)

...
xn(t)









and u(t) =





u1(t)
...

um(t)





The set of admissible control is

Uad = {u : [0,∞) −→ U : u is measurable}

A solution of (1.1) depends on initial state x0 and the choice of admissible control u, denote
a solution by y x0,u(.) be the trajectory starting from x0 associated with the control u.

Given a target set S = {0} ⊂ Rn, we want to consider some basis questions

• Does exists a control u ∈ Uad such that the system (1.1) can be steer to S = {0} in a
finite amount of time? Which initial point x0 admit such a control like that?

• If there exist such a control like this, we call an control u is optimal, which is the
control that steer x0 to the target set S in the minimum time. "Does an optimal
control exist?".

• How can we characterize an optimal control?

• How can we construct an optimal control?

In 2.3.3 and 2.3.4 we will give some examples about this system. Furthermore, under some
conditions, we can prove that there exists the minimum time function

T : Rn −→ R
t 7−→ T (x) = inf

u∈Uad

{t > 0 : y x0,u(t) = 0}

Later, we know that T is continuous, but in general it’s not smooth or even Lipschitz. Several
papers were devoted to the partial regularity of T . In particular, we quote results devoted
to establishing (semi) convexity/concavity properties of T under various assumptions (see
[11], [12], [3], [6].)

The last part of this document concerns the regularity of T . In case

dom(T ) = {x ∈ Rn : T (x)<∞}= Rn
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the main goal is finding the structure of the set of non-Lipschitz points

S= {x ∈ Rn : T is not Lipschitz at x}

by using some tools in non-smooth analysis. By introducing the minimized Hamiltonian

H(x ,ζ) = 〈Ax ,ζ〉+min
a∈U
〈Bu,ζ〉

In 5 we will see that when ζ ∈ NR(T (x))(x), then

H(x ,ζ)≤ 0

Since the minimized Hamiltonian is constant and non-positive along every optimal trajec-
tory, it is natural to expect that non-Lipschitz points of T lie exactly where such Hamiltonian
vanishes. In 5 we will prove this characterization. We will use the result in [3] and [6],
saying that the epigraph of T has locally positive reach.

Let S be the set of non-Lipschitz points of T , in 5 we will give the explicit formula of S,
using points which belong to an optimal pair (i.e., an optimal trajectory together with a
corresponding adjoint arc) of (1.1) with vanishing Hamiltonian.

Finally, the positive reach property of epi(T ) implies that T is locally semi-convex outside
the closed set S (see theorem 5.1 in [7]). The structure of singularities of semi-convex
functions is well understood (see chapter 4 in [12]). And S has Lebesgue measure 0, this
implies T is a.e twice differentiable in Rn.

1.1 Notations

We consider the Euclid space (Rn,‖.‖) denote all vector x = (x1, x2, . . . , xn) where x i ∈ R
for all i = 1, n. The Euclid norm is defined as ‖x‖=

p

|x1|2 + . . .+ |xn|2.
As usual, the open ball with center x ∈ Rn and radius r, where r > 0 is defined as B(x , r) =
{y ∈ Rn : ‖y − x‖ < r}, the closed ball with center x ∈ Rn and radius r, where r > 0 is
the closure of B(x , r), and the sphere with center x ∈ Rn and radius r, where r > 0 is the
boundary of B(x , r), i.e S(x , r) = {y ∈ Rn : ‖y− x‖= r}. We also denote the scalar product
is denoted by 〈x , y〉 or x · y . Sometime, the Lebesgue measure on Rn is denoted by µ or
Ln.

In this document, we will use following notations when dealing to the linear optimal control
(1.1) for convenient

• The set of admissible controls is

Uad = {u : [0,∞) −→ U : u is measurable}

• A solution of (1.1) depends on initial state x0 and the choice of admissible control
u, denote a solution by y x0,u(.) be the trajectory starting from x0 associated with the
control u. (We will see (1.1) has unique solution which respect to u and x0 later.)

• U ⊂ Rm is the control set, where U = [−1,1]m

• u : [0,∞) −→ U is a measurable control function.
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1.2 Structure of thesis

This thesis conclude of 5 sections.

1. Introduction. We introduce the problem, notations which will be used in through this
thesis.

2. Preliminaries. We recall some background knowledge in function analysis, measure
theory, first order original differential equation (ODE), viscosity,. . . , especially con-
vex and non-convex, non-smooth analysis, which is the most important tool used to
study the regularity of the minimum time function. In this section, we also proving
almost basic properties of the solution (trajectory) of linear system. The dynamic
programming principle is crucial for investigating lots of properties of the minimum
time function later.

3. Controllability. We study when the linear system satisfies the small time controllable
or full time controllable property. From this we will describe the reachable set R of
all point which can be steered into the origin in finite time. In the end of this section,
we can see that the minimum time function T is continuous from the reachable set R
onto R. Furthermore, under the Rank-Kalman’s condition and an assumption of the
matrix A, R= Rn and thus T can be defined on whole space Rn.

4. Optimal controls. This section concern when there exists an optimal control steers
a given point (belong to reachable set) into the origin in the minimum amount of
time. We will prove that such an optimal control is always existed, and furthermore
it’s unique by bang-bang principle. Furthermore we can describe the structure of thus
control by maximum principle. Two examples will be given in this section.

5. The regularity of minimum time function. This is the main part of this thesis, we will
claim that under some assumptions, the minimum time function is semi-convex in a
dense subset of Rn. We also describe the detailed structure of the set of non-Lipschitz
point of this minimum time function.
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2 Preliminaries

In this section, we assert some basic well–known knowledge of functional analysis, measure
theory,...

2.1 Functional Analysis

2.1.1 Normed spaces

Let E be a vector space, a norm ‖.‖ on E is a mapping E −→ [0,+∞) such that for every
x , y ∈ E and λ ∈ R, ‖x‖= 0 iff x = 0, ‖λx‖= |λ|.‖x‖ and ‖x + y‖ ≤ ‖x‖+ ‖y‖.
Given a subset A in E, we call int (A) denote the interior of A, A denote the closure of A and
∂ A= A∩ X\A is the boundary of A.

A sequence (xn) ⊂ E is called Cauchy iff ‖xn − xm‖ −→ 0 as m, n −→∞. If every Cauchy
sequence in E is convergence in E, we call E is a Banach space.

Let F be a normed space, a linear function f : E −→ F is continuous iff it’s continuous at 0,
i.e there exists a constant C > 0 such that

‖ f (x)‖ ≤ C‖x‖ ∀ x ∈ X

And denote ‖ f ‖= sup{| f (x)| : ‖x‖= 1}.

The set of all linear continuous function from E to F denoted by L(E, F). Incase F = R, we
set L(E,R) = E∗, which is called the dual space of E.

Consider a complex vector space E, an inner product is a map 〈., .〉 : E × E −→ C s.t

(i) 〈ax + b y, z = a〈x , z〉+ b〈y, z〉 for all x , y, z ∈ E and a, b ∈ C

(ii) 〈y, x〉= 〈x , y〉

(iii) 〈x , x〉 ∈ (0,∞) for all nonzero x ∈ E.

We define ‖x‖ =
p

〈x , x〉 for all x ∈ E, and also called this is a norm. And from the
Schwarz Inequality |〈x , y〉| ≤ ‖x‖.‖y‖ yells that (E,‖.‖) come to a normed space. If this
space is complete, we call E is a Hilbert space which respect to the inner product 〈., .〉.

An simple but very useful formula in Hilbert space is the Parallelogram Law, that is

Theorem 2.1 (Parallelogram Law): For all x , y ∈ H,

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2

In case E is a Hilbert space, we have a representation for linear continuous mapping

Theorem 2.2 (Riesze’s theorem): If f ∈ E∗, there is a unique y ∈ E such that f (x) =
〈x , y〉 for all x ∈ E.
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So if E be a sub–vector space of Rn, which is a normal Hilbert space with scalar product
restricted on E, for any linear continuous function from E to R, there exists a unique vector
ξ ∈ E such that

f (x) = ξ · x = 〈ξ, x〉 ∀ x ∈ E

2.1.2 Weak topology

If E be normed space with dual space E∗, the strong topology on E is the topology generated
by norm, weak topology on E, denote by σ(E, E∗) is the topology generated by all linear
continuous mapping from E to R, i.e generated by E∗.

Similarly, the normed space E∗ with the usual norm ‖ f ‖ = sup{| f (x)| : ‖x‖ = 1} has
strong topology is the topology generated by this norm. The weak topology σ(E∗, E∗∗) is
the topology generated by E∗∗. On the other hand, note that the canonical projection

Φ : E −→ E∗∗

x 7−→ bx where bx( f ) = f (x)

is a linear isometry, so this let’s to identity bx with x and thus regard E∗∗ as a superspace of
E. In this case, we call the weak∗ topology σ(E∗, E) on E∗ is the topology generated by E.
We have a basic fact about this topology, it’s yell that fn

∗
* f in the weak∗ topology σ(E∗, E)

iff fn(x) −→ f (x) for all x ∈ E, and

‖ f ‖ ≤ lim inf‖ fn‖

We state an important result

Theorem 2.3: [Banach–Alaoglu–Bourbaski theorem] If E is a normed vector space. The
closed unit ball B∗ = { f ∈ E∗ : ‖ f ‖ ≤ 1} in E∗ is compact in the weak∗ topology.

If f , g are two measurable functions from [0, t] −→ Rm, and f = g a.e, i.e the set {x :
f (x) 6= g(x)} has Lebesgue measure 0, then we identity f ≡ g into a equivalent class [ f ].
We call L∞([0, t],Rm) be the set of all class measurable function from [0, t] −→ Rm s.t

sup
s∈[0,t]

| f (s)|<∞

And define
‖ f ‖∞ = sup

s∈[0,t]
| f (s)|

We recall that L∞,‖.‖∞ is a Banach space.
Similarly, L1([0, t],Rm) be the set of all class measurable function from [0, t] −→ Rm s.t

∫ t

0

| f (s)| ds <∞

and define

‖ f ‖L1 =

∫ t

0

| f (s)| ds

We recall that L∞,‖.‖∞ is a Banach space. And an important result
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Theorem 2.4: We have (L1)∗ = L∞

So in this case, the weak∗ convergence in σ(L∞, L1) can be known as

fn
∗
* f ⇐⇒

∫ t

0

g(s) · fn(s) ds −→
∫ t

0

g(s) · f (s) ds

Finally, we have a useful weak∗ compactness theorem for L∞, which is an corollary of
Alaoglu theorem.

Theorem 2.5: Let’s ( fn) ⊆ L∞([0, t],Rm) is a bounded sequence, then there exists a subse-
quence fnk

and some f ∈ L∞([0, t],Rm) such that fnk

∗
* f in the weak∗ topologyσ(L∞, L1).

Note that if we write f =
�

f (1), f (2), . . . , f (m)
�

, then clearly if ‖ f (i)nk
‖ ≤ Mi, then ‖ f (i)‖L∞ ≤

Mi for all i ∈ 1, m.

2.1.3 Hamilton–Cayley theorem in linear algebra

Assume V is a finite dimensional vector space over K (R or C), for f ∈ EndK(V ), we set

p f (λ) = det(λIdK − f )

and call it is the characteristic polynomial of f ∈ EndK(V ).

Also note that when dimV <∞, then A= [ f ]B is a n× n matrix in Mn(K) if B is any basic
of V . So another way to define p f is

p f (λ) = pA(λ) = det(λIn − A)

and clearly this is a polynomial of degree less or equal than n.

Theorem 2.6 (Hamilton–Cayley): For f ∈ EndK(V ), then p f ( f ) = 0, in the sense of

p( f ) = an f n + . . .+ a1 f + a0IdK

if p(x) = an xn + . . .+ a1 x + a0, and f n = f ◦ f ◦ . . . ◦ f (n–times).

2.2 Non-smooth and non-convex analysis

2.2.1 Lipschitz functions

We recall the notion (Frechét) differential of f , given by

Definition 2.7: Assume f : Ω ⊂ Rn −→ R and x ∈ Ω, then f is called (Frechét) differen-
tiable at x if there exists a linear mapping D f (x) : Rn −→ R and a real - valued function
defined when ‖h‖ is small such that

f (x + h) = f (x) + 〈D f (x), h〉+ ‖h‖ε(h)

15



where ε(h) −→ 0 as h −→ 0. Note that we also use D f (x) to denote the represent vector
of D f (x) in Rn.

Definition 2.8: A function f : (E,‖.‖) −→ (F,‖.‖) is called

• Lipschitz at x ∈ E, if there exists r > 0 and M = M(r) such that

‖ f (x)− f (y)‖ ≤ M‖x − y‖

for all y ∈ B(x , r).

• (Globally) Lipschitz on E if there exists a constant C > 0 such that

‖ f (x)− f (y)‖ ≤ C‖x − y‖

for all x , y ∈ E.

• Locally Lipschitz on E if for every x ∈ E, there exists r > 0 and M = M(x , r) such
that

‖ f (x)− f (y)‖ ≤ M‖x − y‖

for all y ∈ B(x , r).

It’s well-known that Locally Lipschitz property implies the continuity of f . One can see
that if f is (Fréchet) differentiable at x , then f is Lipschitz at x . Furthermore, we have the
Rademacher’s theorem

Theorem 2.9 (H.Rademacher’s theorem): Assume Ω ⊂ Rn is open. Then any locally Lip-
schitz function f : Ω ⊂ Rn −→ R is a.e differentiable in Ω.

Definition 2.10: A function f : Rn −→ R is non-Lipschitz at x if there exist two sequences
{x i}, {yi} such that x i 6= yi for all i with the same limit x as i −→∞, such that

lim sup
i−→∞

| f (yi)− f (x i)|
‖yi − x i‖

= +∞

Denote the set of all non-Lipschitz points satisfy the above definition by S. We say that f is
strictly continuous at a point x if x ∈ Rn\S.

Proposition 2.11: Consider f : Rn −→ R, we always have the set S of all non–Lipschitz
points of f is closed.

Proof. Let {xk}∞k=1 ⊂ S, and xk −→ x in Rn. For each k ∈ N, there exists ak
m −→ xk and

bk
m −→ xk as m −→∞, such that ak

m 6= bk
m for all m ∈ N, and

lim sup
m−→∞

| f (ak
m)− f (bk

m)|
‖ak

m − bk
m‖

= +∞

Thus, we can assume that there exists subsequences (ak
mi
) ⊂ (ak

m) and (bk
mi
) ⊂ (bk

mi
) such

that

lim
i−→∞

| f (ak
mi
)− f (bk

mi
)|

‖ak
mi
− bk

mi
‖

= +∞
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Therefore exists n(k) ∈ N such that

| f (ak
mi
)− f (bk

mi
)|

‖ak
mi
− bk

mi
‖

> k ∀ i ≥ n(k) (2.1)

Since ak
mi
−→ xk as i −→∞, we can choose a subsequence ak

mit
such that





ak
mit
− xk





≤
1
2t

∀ t ∈ N

Similarly, we can assume (without loss of generality, just for convenience) bk
mi
−→ xk as

i −→∞, we can choose a subsequence bk
mit

such that





bk
mit
− xk





≤
1
2t

∀ t ∈ N

One can see that at t = k+ n(k), we have




ak
mik+n(k)

− x




≤




ak
mik+n(k)

− xk





+ ‖xk − x‖ ≤
1

2k+n(k)
+ ‖xk − x‖ ∀ k ∈ N

Letting k −→∞, we can see that

αk = ak
mik+n(k)

−→ x as k −→∞

Doing similarly for bk
mik+n(k)

, we have

βk = bk
mik+n(k)

−→ x as k −→∞

Clearly αk 6= βk for all k ∈ N, furthermore from (2.1) we conclude that

| f (αk)− f (βk)|
‖αk − βk‖

> k ∀ k ∈ N

And thus, we can deduce x ∈ S, so S is closed.

2.2.2 Generalized differentials

Now, we extend the notion (Fréchet) differential into one-sided differential.

Definition 2.12: Let f be a real valued function defined on the open set Ω ⊂ Rn. For any
x ∈ Ω, the sets,

D− f (x) =
§

p ∈ Rn : lim inf
y−→x

f (y)− f (x)− 〈p, y − x〉
‖y − x‖

≥ 0
ª

D+ f (x) =

�

p ∈ Rn : lim sup
y−→x

f (y)− f (x)− 〈p, y − x〉
‖y − x‖

≤ 0

�

are called, respectively the (Frechét) subdifferential and superdifferential of f at x .
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Now we have some basic properties of superdifferential and supdifferential of f

Proposition 2.13: Let f : Ω −→ R and x ∈ Ω, then the following properties hold

(a) D+ f (x) = −D−(− f )(x)

(b) D+ f (x) and D− f (x) are convex (possibly empty)

(c) If f ∈ C(Ω), then p ∈ D+ f (x) if and only if there is a function ϕ ∈ C1(Ω) such that
∇ϕ(x) = p and f −ϕ has a local maximum at x .

(d) If f ∈ C(Ω), then p ∈ D− f (x) if and only if there is a function ϕ ∈ C1(Ω) such that
∇ϕ(x) = p and f −ϕ has a local minimum at x .

(e) D+ f (x) and D− f (x) are both nonempty if and only if f is differentiable at x . In this
case we have that

D+ f (x) = D− f (x) = {∇ f (x)}

(f) If f ∈ C(Ω), the sets of points where a one-sided differential exists

Ω+ = {x ∈ Ω : D+ f (x) 6= ;} Ω− = {x ∈ Ω : D− f (x) 6= ;}

are both non-empty. Indeed, they are dense in Ω.

Proof.

(a) It’s clearly since if an −→ a then

lim sup
n−→∞

(−an) = − lim inf
n−→∞

an

(b) It’s also clearly from the definitions.

(c) Assume that p ∈ D+ f (x), by definition, we can find δ > 0 and a continuous increasing
function σ : [0,∞) −→ R with σ(0) = 0 such that

f (y)≤ f (x) + 〈p, y − x〉+ ‖y − x‖σ(‖y − x‖) (2.2)

for ‖y − x‖< δ. Define

ρ(r) =

∫ r

0

σ(t) d t =⇒ ρ(0) = ρ′(0) = 0 and rσ(r)≤ ρ(2r)≤ rσ(2r)

Now for y ∈ B(x ,δ) we setting

ϕ(y) = f (x) + 〈p, y − x〉+ρ(2‖y − x‖)

Since f (x) = ϕ(x), the fact that ϕ is differentiable is clearly and since

σ(r)≤
ρ(2‖y − x‖)
‖y − x‖

≤ σ(2‖y − x‖)
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and σ(r) −→ 0 as r −→ 0, we conclude that ∇ϕ(x) = p. Now for all y ∈ B(x ,δ),
from (2.2) we have

f (y)− f (x)≤ 〈p, y−x〉+‖y−x‖σ(‖y−x‖)≤ 〈p, y−x〉+ρ(2‖y−x‖) = ϕ(y)−ϕ(x)

Therefore, ( f −ϕ)(y) ≤ ( f −ϕ)(x) for y ∈ B(x ,δ), i.e f −ϕ has a local maximum
at x .

For the converse, if ϕ ∈ C1(Ω) such that f −ϕ has a local maximum at x and f (x) =
ϕ(x), ∇ϕ(x) = p then since f (y)− f (x)≤ ϕ(y)−ϕ(x) in a neighborhood of x , we
have

limsup
y−→x

f (y)− f (x)− 〈p, y − x〉
‖y − x‖

≤ limsup
y−→x

ϕ(y)−ϕ(x)− 〈p, y − x〉
‖y − x‖

= 0

Therefore p ∈ D+ f (x).

(d) This completely similar to (c).

(e) If f is differentiable at x , then clearly ∇ f (x) ∈ D+ f (x) ∩ D− f (x). Furthermore, if
p ∈ D+ f (x), then there exists ϕ ∈ C1(Ω) such that

ϕ(x) = f (x) ∇ϕ(x) = p

and f −ϕ has a local maximum at x , hence∇( f −ϕ)(x) = 0, therefore p =∇ϕ(x) =
∇ f (x). Doing similarly for D− f (x) we have D+ f (x) = D− f (x) = {∇ f (x)}.

For the converse, assume that D+ f (x) and D− f (x) are both nonempty. Assume a ∈
D+ f (x) and b ∈ D− f (x), then there exists ϕ,ψ ∈ C1(Ω) such that

ϕ(x) =ψ(x) = f (x) and

¨

∇ϕ(x) = p f −ϕ has local maximum at x
∇ψ(x) = q f −ψ has local minimum at x

Therefore, in neighborhood B(x ,δ) we have

ψ(y)≤ f (y)≤ ϕ(y) ∀ y s.t ‖y − x‖< δ

Since ψ,ϕ ∈ C1(Ω), it’s easy to see that f is also differentiable at x , and so we also
have the formula D+ f (x) = D− f (x) = {∇ f (x)}.

(f) Let x0 ∈ Ω and ε > 0 be given. We will show that there exists a function ϕ ∈ C1(Ω)
such that f −ϕ has local maximum in B(x0,ε) at some point y in B(x0,ε). Consider
the smooth function in C1(B(x0,ε)) given by

ϕ(x) =
1

ε2 − ‖x − x0‖2
x ∈ B(x0,ε)

It’s easy to extend ϕ into a function in C1(Ω). Also observe that

ϕ(x) −→ +∞ as ‖x − x0‖ −→ ε−

Since f is continuous, we have f −ϕ has a local maximum in B(x0,ε), denoted by y .
By (c), we conclude that p =∇ϕ(y) ∈ D+ f (x) and therefore D+ f (x) 6= ;, i.e y ∈ Ω+.
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Furthermore, for every x0 ∈ Ω and ε > 0 so small enough, the set Ω+ contains a point
y ∈ B(x0,ε). It’s show that Ω+ is dense in Ω.

Similarly, if we consider the C1(B(x0,ε)) function given by

ϕ(x) =
−1

ε2 − ‖x − x0‖2
x ∈ B(x0,ε)

then the case Ω− is entirely following.

If we replace the function ϕ with ϕ(y) = ϕ(y)± ‖y − x‖2, then (c),(d) in above proposi-
tion become f −ϕ has a strict local maximum (or strict local minimum) instead of local
maximum (or local minimum). In view of this case, we have

Lemma 2.14: Let f : Ω −→ R be continuous. Assume for some ϕ ∈ C1(Ω), f −ϕ has a
strict local minimum (or a strict local maximum) at x ∈ Ω. If fn −→ f uniformly, then there
exists a sequence of points xn −→ x with fn(xn) −→ f (x) and such that

fn −ϕ has a local minimum (or a local maximum) at xn

for all n ∈ N.

Proof. Assume f −ϕ has a strict local minimum at x , then for δ > 0 so small enough, there
exists εδ > 0 such that

f (y)−ϕ(y)> f (x)−ϕ(x) + εδ for all y ∈ S(x ,δ)

where S(x ,δ) = {y ∈ Ω : ‖y − x‖ = r}. Since fn −→ f uniformly in C(Ω), there exists
n(δ) ∈ N such that for all n≥ n(δ) we have

| fn(y)− f (y)|<
εδ
2

for any y ∈ S(x ,δ). So for n≥ n(δ) we have

fn(y)−ϕ(y)> f (y)−ϕ(y)−
εδ
2
> f (x)−ϕ(x) +

εδ
2

for y ∈ S(x ,δ). It implies that fn−ϕ has a strict local minimum at some point xn ∈ B(x ,δ).
Now letting δ −→ 0 and εδ −→ 0 we can construct the sequence {xn}.

2.2.3 Convex sets

A subset A⊂ E is called convex if for any x , y ∈ A, λx + (1−λ)y ∈ A for all λ ∈ (0,1). It’s
also called strictly convex if for any x , y ∈ A, λx + (1−λ)y ∈ int (A) for all λ ∈ (0, 1). An
affine hyper plane is a subset H of the form

H = [ f = α] = {x ∈ E : f (x) = α)}

where f is linear from E −→ R. Sometimes, we denote 〈 f , x〉 instead of f (x). An well–
known result about hyperplane states that
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Theorem 2.15: The hyperplane H = [ f = α] is closed iff f is continuous.

Let A, B be two subsets of E, we say that the hyperplane H = [ f = α] separates A and B if

f (x)≤ α ∀ x ∈ A and f (x)≥ α ∀ x ∈ B

We say f is strictly separates A and B if there exists some ε > 0 such that

f (x)≤ α− ε ∀ x ∈ A and f (x)≥ α+ ε ∀ x ∈ B

Now since the dual space of Rn is also (isometric to) Rn, so from theorem 2.2 we have that
for any hyperplane in a sub–vector space E of Rn, there exists a unique vector ξ ∈ E s.t

H = [ f = α] = {x ∈ E : 〈ξ, x〉= α}

In this case, if ‖ξ‖= 1, we call ξ is the normal vector of the hyperplane H.

We have a well–know result about convex set in normed spaces.

Theorem 2.16 (Hahn–Banach theorem - geometric form):

(a) Let A, B be two nomempty convex subsets such that A∩ B = ;, assume that one of
them is open, then there exists a closed hyperplane that separates A and B.

(b) Let A, B be two nomempty convex subsets such that A∩B = ;, assume that A is closed
and B is compact, there exists a closed hyperplane that strictly separates A and B.

(c) [Hahn–Banach for finite–dimensions]. In case E be a sub–vector space of Rn, let A, B
be two nomempty convex subsets in E such that A∩ B = ;, then there exists a closed
hyperplane H = [ f = α] separates A and B, i.e there exists a unique vector ξ ∈ E s.t

〈ξ, x〉 ≤ α ∀ x ∈ A and 〈ξ, y〉 ≥ α ∀ y ∈ B

An application of this result, yells the existence of support hyperplane. We call the set
H = [ f = α] which is presented by normal vector ξ, is a support hyperplane of point
x0 ∈ ∂Ω, iff

f (x) = 〈ξ, x〉 ≤ f (x0) = 〈ξ, x0〉 ∀ x ∈ Ω

Theorem 2.17: [Support hyperplane in Rn] Assume E is a sub–vector space of Rn, let
Ω ⊂ E be a closed, convex set with boundary ∂Ω, then each point x0 ∈ ∂Ω admits a support
hyperplane where it’s normal vector is in E and isn’t equal to 0.

Proof. Let {xn} ⊂ E\Ω s.t xn −→ x0 as n −→∞, then for each xn we have {xn} is compact,
convex and Ω is closed, convex, so by Hahn–Banach theorem, there exists a unique vector
ξn ∈ E strictly separate {xn} and Ω, i.e

〈ξn, x〉< 〈ξn, xn〉 ∀x ∈ Ω

Clearly ξn 6= 0, so we can choose ξn has ‖ξn‖ = 1. Since {x ∈ E : ‖x‖ = 1} is compact in
Rn, so it’s also compact in E, and there exists a subsequence ξnk

−→ ξ in E where ‖ξ‖= 1.
Taking k −→∞ we have

〈xnk
, x〉< 〈ξnk

, xnk
〉=⇒ 〈ξ, x〉 ≤ 〈ξ, x0〉

for all x ∈ Ω. This complete the proof since ‖ξ‖= 1.
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We have a nice geometry result in Hilbert space for closed, convex sets.

Theorem 2.18 (The perpendicular projection): If K is a closed convex subset of a Hilbert
space H, then for any x ∈ H, there exists a unique x ′ ∈ K such that ‖x− x ′‖=min{‖x− y‖ :
y ∈ K},

Proof. Let δ = inf{‖x − y‖ : y ∈ K} then exists a sequence xn ⊂ K such that ‖x − xn‖ −→ δ
as n −→∞, using the Parallelogram Law we have

‖xn − xm‖2 + 4




x −
xn + xm

2







2

= 2‖x − xm‖2 + 2‖x − xm‖2

Since K is convex, we have xn+xm
2 ∈ K , so ‖xn− xm‖2 ≤ 2‖x − xm‖2+2‖x − xm‖2−4δ2. Let

m, n −→∞we conclude that {xn} is a Cauchy sequence, so it’s admit a limit point, denoted
by x ′ and ‖x−x ′‖= δ. Now assume that there exist a, b ∈ K such that ‖x−a‖= ‖x−b‖= δ,
then from the Parallelogram Law and convexity of K we have

‖a− b‖2+4









x −
a+ b

2









2

= 2‖x−a‖2+2‖x− b‖2 =⇒ ‖a− b‖2 ≤ 4δ2−4









x −
a+ b

2









2

≤ 0

So a = b and the proof is complete.

We call x ′ = π(x) is the perpendicular projection of x to K . Observe that if 0 /∈ K and
choosing x = 0, we have π(0) is the element which is has minimum norm in K .

Note that if K is convex, closed in E–sub–vector space of Rn, theorem 2.17 claim that at
x0 ∈ ∂ K , there exists a support hyperplane H = [ f = α] which respect to the normal vector
ξ. And easily seen that the support hyperplane is not unique, for example

−2 2 4 6

−2

2

0

Ω

From this example, we can see that in general, indeed if K is strictly convex, the supporting
hyperplane at points in ∂ K may be not unique.

But in case K is strictly convex, we have a special property, that is every supporting hyper-
plane H = [ f = δ] at x0 ∈ ∂ K such that H ∩ K = {x0}.
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Proposition 2.19: If K is convex, closed in Rn, then K is strictly convex if and only if at
any x0 ∈ ∂ K every supporting hyperplane of K at x0 has the common with K is exactly
{x0}.

Proof. First if K is strictly convex and H = [ f = δ] where ‖ f ‖ = 1 is a supporting hyper-
plane of K at x0. Assume by contradiction that there exists another point y 6= x such that
y ∈ H ∩ K , then by the strictly convexity we have

λx + (1−λ)y ∈ int K ∀ λ ∈ (0, 1)

Clearly, since f (x) = f (y) = δ, we have f (λx + (1 − λ)y) = δ for all λ ∈ (0,1), so
λx + (1−λ)y ∈ H ∩ int K for all λ ∈ (0,1). Now let z = λx + (1−λ)y for fixed λ ∈ (0,1),
there exists r > 0 such that B(z, r) ⊂ K , and since f (w)≤ f (x) = δ for all w ∈ K , we have

f (z + ra) = f (z) + r f (a)≤ f (x) ∀ a ∈ B(0, 1) =⇒ f (a)≤ 0 ∀ a ∈ B(0, 1) =⇒ f ≡ 0

It’s yell a contradiction since ‖ f ‖= 1. So we must have H = [ f = δ]∩ K = {x0}.

Conversely, if for any x0 ∈ ∂ K , every supporting hyperplane of K at x0 have the intersection
with K exactly {x0}, we will prove that K is strictly convex. Indeed, Assume there exist
x , y ∈ K such that there exists λ ∈ (0,1) such that z = λx + (1 − λ)y ∈ ∂ K . There
exists a supporting hyperplane which is respect to the unit normal vector ξ, and using the
assumption we have

〈ξ, w〉< 〈ξ, z〉 ∀ w ∈ K\{z}

So 〈ξ, x〉< 〈ξ, z〉 and 〈ξ, y〉< 〈ξ, z〉, so clearly

〈ξ, z〉= 〈ξ,λx + (1−λ)y〉< λ〈ξ, x〉+ (1−λ)〈ξ, y〉= 〈ξ, z〉

It’s a contradiction, so K must be strictly convex.

2.2.4 Proximal vectors of closed sets

Definition 2.20: In case K ⊂ Rn is closed and convex with boundary ∂ K , the normal cone
of K at x is defined by

NK(x) = {w ∈ Rn : 〈w, y − x〉 ≤ 0 ∀ y ∈ K}

For a closed set K in Rn, it’s well define the distance function

dK(x) =min
s∈K
‖x − s‖

Also define the projection

projK(x) = {y ∈ K : ‖y − x‖= dK(x)}
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Definition 2.21: For K ⊂ Rn is closed with boundary ∂ K , for every x ∈ K , we call ζ ∈ Rn

is a proximal normal vector of K at x if there exists r > 0 such that

dK(x + rζ) = r‖ζ‖

and define the set of proximal normal vector ζ is the proximal cone

N P
K (x) = {ζ ∈ R

n : ζ is a proximal vector of K at x}

It’s well-known that N P
K is convex. The next proposition give us another equivalent defini-

tions of N P
k (x), which is very useful later.

Proposition 2.22: For K ⊂ Rn is closed with boundary ∂ K , for x ∈ K and 0 6= ζ ∈ Rn, the
followings are equivalent

(i) (Characteristic) ζ ∈ N P
K (x).

(ii) (Globally) There exists σ = σ(ζ, x)≥ 0 such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ K

(iii) (Locally) For any η > 0, there exists σ = σ(ζ, x)≥ 0 such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ K ∩ B(x ,η)

Proof. First we prove (i) and (ii) are equivalent.

ζ ∈ N P
K (x)⇐⇒∃ r > 0 : dK(x + rζ) = r‖ζ‖

⇐⇒ ∃ r > 0 : ‖x + rζ− x‖ ≤ ‖x + rζ− y‖ ∀ y ∈ K

⇐⇒∃ r > 0 : ‖x + rζ− x‖2 ≤ ‖x + rζ− y‖2 ∀ y ∈ K

⇐⇒∃ r > 0 : −2〈x + rζ, x〉+ ‖x‖2 ≤ −2〈x + rζ, y〉+ ‖y‖2 ∀ y ∈ K

⇐⇒∃ r > 0 : 2r〈ζ, y − x〉 ≤ ‖x‖2 + ‖y‖2 − 2〈x , y〉 ∀ y ∈ K

⇐⇒∃ r > 0 : 〈ζ, y − x〉 ≤
1
2r
‖y − x‖2 ∀ y ∈ K

The rest is prove (iii) implies (ii). Assume there exists σ > 0 and η > 0 such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ K ∩ B(x ,η)

Pick y ∈ K\B(x ,η), there are two cases

• If ‖y − x‖ ≥ 1, then clearly

〈ζ, y − x〉 ≤ ‖ζ‖ · ‖y − x‖ ≤ ‖ζ‖ · ‖y − x‖2

• If ‖y − x‖< 1, then η≤ ‖y − x‖< 1, so ‖y−x‖
η ≥ 1 and 1

η > 1. So

〈ζ, y − x〉 ≤ ‖ζ‖ · ‖y − x‖ ≤
‖ζ‖
η
· ‖y − x‖2

Now taking σ =max
¦

σ,‖ζ‖, ‖ζ‖η
©

then we have

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀ y ∈ K
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The implication (ii) to (iii) is trivial, so the proof is complete.

In case ζ ∈ N P
K (x), by definition, the set {λ > 0 : dK(x + λζ) = λ‖ζ‖} is not empty. It’s

equivalent to

∃ λ > 0 : dK

�

x +λ‖ζ‖
ζ

‖ζ‖

�

= λ‖ζ‖ ⇐⇒ ∃ λ > 0 : K∩B
�

x +λ‖ζ‖
ζ

‖ζ‖
, r‖ζ‖

�

= ;

Definition 2.23: For x ∈ K and 0 6= ζ ∈ N P
K (x), we say that

(i) ζ is realized by a ball of radius r > 0 if

K ∩ B
�

x + r
ζ

‖ζ‖
, r
�

= ; ⇐⇒ dK

�

x + r
ζ

‖ζ‖

�

= r

In view of globally definition in proposition 2.22, it’s equivalent to

〈ζ, y − x〉 ≤
‖ζ‖
2r
· ‖y − x‖2 ∀ y ∈ K (2.3)

(ii) If (2.3) holds for any x ∈ ∂ K and for all 0 6= ζ ∈ N P
K (x), we say that K is proximally

smooth of radius r or r-proximally smooth.

We easily see that a closed set K ⊂ Rn is proximal smooth with radius r if and only if every
unit normal vector ζ ∈ N P

K (x) can be realized by a ball of radius r, for every x ∈ K . If
0 6= ζ ∈ N P

K (x) is realized by a ball of radius r, then the best constant σ such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀ y ∈ K

is ‖ζ‖2ρ where

ρ = sup
§

r > 0 : dK

�

x + r
ζ

‖ζ‖

�

= r
ª

We have another simple observation

Proposition 2.24: In case K is convex and closed, then N P
K (x)≡ NK(x) for any x ∈ ∂ K .

Proof. Clearly NK(x) ⊆ N P
K (x), assume there exists ζ ∈ N P

K (x)\NK(x), then there exists
y0 ∈ K and ε > 0 such that

ε < 〈ζ, y0 − x〉 ≤ σ(ζ, x)‖y0 − x‖2 =⇒ σ(ζ, x)> 0

Consider yλ = λy0 + (1 − λ)x where λ ∈ (0, 1), by the convexity of K , yλ ∈ K for every
λ ∈ (0,1), and by the assumption ζ ∈ N P

K (x), we have

〈ζ, yλ − x〉 ≤ σ(ζ, x)‖yλ − x‖2 = λ2σ(ζ, x)‖y0 − x‖2 (2.4)

Also, we have
〈ζ, yλ − x〉= 〈ζ,λ(y0 − x)〉= λ〈ζ, y0 − x〉> λε > 0 (2.5)

Now from (2.4) and (2.5) we get

λε < λ2σ(ζ, x)‖y0 − x‖2 =⇒ ε < λσ(ζ, x)‖y0 − x‖2

for all λ ∈ (0, 1). Letting λ −→ 0 we get a contradiction.
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Definition 2.25 (Proximal subdifferential and horizon subdifferential): Let Ω ⊂ Rn be
open and f : Ω −→ R∪ {+∞} be lower semi-continuous. We define some notions

(i) The epigraph of f is

epi( f ) = {(x , y) ∈ Ω×R : f (x)≤ y}

(ii) The hypograph of f is

hypo( f ) = {(x , y) ∈ Ω×R : f (x)≥ y}

(iii) The notion dom( f ) of f is

dom( f ) = {x ∈ Ω : f (x)< +∞}

(iv) The proximal subdifferential ∂P f (x) of f at a point x ∈ dom( f ) is the set

∂P f (x) =
¦

ζ ∈ Rn : (ζ,−1) ∈ N P
epi( f )(x , f (x))

©

(v) The proximal superdifferential ∂ P f (x) of f at a point x ∈ dom( f ) is the set

∂ P f (x) =
¦

ζ ∈ Rn : (−ζ, 1) ∈ N P
hypo( f )(x , f (x))

©

(vi) The horizon subdifferential ∂∞ f (x) of f at a point x ∈ dom( f ) is the set

∂∞ f (x) =
¦

ζ ∈ Rn : (ζ, 0) ∈ N P
epi( f )(x , f (x))

©

(v) The horizon superdifferential ∂∞ f (x) of f at a point x ∈ dom( f ) is the set

∂∞ f (x) =
¦

ζ ∈ Rn : (−ζ, 0) ∈ N P
hypo( f )(x , f (x))

©

We will present a nice relation between the proximal subdifferential ∂P f (x) and the the
one-sided subdifferential already presented in definition 2.12. Recall from theorem 1.2.5
in [2], we know that

Theorem 2.26: A vector v ∈ Rn is belong to ∂P f (x) at a point x ∈ dom( f ) if and only if
there exist positive numbers σ and η such that

f (y)− f (x)− 〈v, y − x〉 ≥ −σ‖y − x‖2 ∀ y ∈ B(x ,η)

In this case, we have

f (y)− f (x)− 〈v, y − x〉
‖y − x‖

≥ −σ‖y − x‖ ∀ y ∈ B(x ,η)

So letting y −→ x we have

lim inf
y−→x

f (y)− f (x)− 〈v, y − x〉
‖y − x‖

≥ 0 =⇒ v ∈ D− f (x)

in view of definition 2.12, so we conclude
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Proposition 2.27: Consider f : Rn −→ R∪ {+∞}, assume x ∈ dom( f ), then

∂P f (x) ⊂ D− f (x)

Now we will characterize some properties of N P
epi( f )(x , r).

Proposition 2.28: Let f : Ω −→ (−∞,+∞] is continuous, where Ω ⊂ Rn is open. Sup-
pose that

(ζ,−λ) ∈ N P
epi( f )(x , r)

where (x , r) ∈ epi( f ), and ζ ∈ Rn. Show that λ ≥ 0. Furthermore, If r > f (x) then λ = 0.
Thus If λ > 0 then r = f (x).

Proof. By definition, (ζ,−λ) ∈ N P
epi( f )(x , r) iff there exists t > 0 such that

depi( f )((x , r) + t(ζ,−λ)) = t‖(ζ,−λ)‖

It’s equivalent to
‖(x + tζ, r − tλ)− (y,α)‖ ≥ t‖(ζ,−λ)‖

for all f (y)≤ α. If λ < 0, then−tλ > 0, so α= r− tλ > r ≥ f (x), thus (x , r− tλ) ∈ epi( f ),
hence

‖(x + tζ, r − tλ)− (x , r − tλ)‖ ≥ t‖(ζ,−λ)‖=⇒ ‖(tζ, 0)‖ ≥ t‖(ζ,−λ)‖

It’s a contradiction, so we must have λ ≥ 0. If r > f (x), and λ > 0, take α = r − ε > f (x)
to make sure that (x , r − ε) ∈ epi( f ), then

‖(x + tζ, r − tλ)− (x , r − ε)‖ ≥ t‖(ζ,−λ)‖=⇒ |ε − tλ| ≥ t|λ|

We can choose ε such that 0 < ε <min{tλ, r − f (x)}, then it follows a contradiction. And
the rest is trivial.

2.2.5 Convex and concave functions

A function f : Ω ⊂ Rn −→ R is called convex if and only if

f (λx + (1−λ)y)≤ λ f (x) + (1−λ) f (y) (2.6)

for all x , y such that [x , y] ⊂ Ω and for all λ ∈ [0, 1].

As a standard criterion of convex functions, we have

Proposition 2.29: A function f is convex if and only if f satisfies (2.6) for λ= 1
2 .

Proof. First we prove that if (2.6) is true for λ = 1
2 then it’s also true for all λ = k

2n for
1≤ k ≤ 2n − 1. Using induction by n

• n= 2. We need to prove (2.6) for λ= 1, 2,3. We have

– k = 1, f (x) + 3 f (x) = f (x) + f (y) + 2 f (y)≤ 2 f
� x+y

2

�

+ 2 f (y)≤ 4 f
� x+3y

4

�
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– k = 2, this case reduces to λ= 1
2 .

– k = 3, this case is similar to k = 1.

• Assume (2.6) is true for all 1≤ k ≤ 2n − 1. For 2n ≤ k ≤ 2n+1 − 1 we have

– If k is even, write k = 2m, since 1≤ m≤ 2n − 1 we have

2 [mf (x) + (2n −m) f (y)]≤ 2.2n f
�

mx + (2n −m)y
2n

�

= 2n+1 f

�

2mx + (2n+1 − 2m)y
2n+!

�

– If k is odd, since k ≥ 2n+1, clearly 2n+1− k ≤ 2n−1, and k−2n = 2n− (2n− k)

k f (x) + (2n+1 − k) f (y) =
�

(k− 2n) f (x) + (2n+1 − k) f (y)
�

+ 2n f (x)

≤ 2n f

�

(k− 2n)x + (2n+1 − k)y
2n

�

+ 2n f (x)

≤ 2n+1 f

�

kx + (2n+1 − k)y
2n+1

�

So (2.6) is true for all λ = k
2n , but

�

k
2n :, k, n ∈ N

	

is dense in [0,1], so by continuity, we
complete the proof.

Now we establish some well known facts about convex function

Theorem 2.30: If Ω ⊂ Rn is an open set and f : Ω −→ R is convex, then f is locally
bounded in Ω. Furthermore, if | f (x)| ≤ M on B(a, r) then f is Lipschitz on B(a, r−ε) with
constant 2M

ε . Therefore f is also locally Lipschitz in Ω.

Proof. For any fixed x0 ∈ Ω, by the openness, there exists a closed cube K centered at x0

with vertices v1, v2, . . . , v2n . For any x ∈ K , there exists λ1, . . . ,λ2n ∈ [0, 1] such that

x =
2n
∑

i=1

λi vi and
2n
∑

i=1

λi = 1

Since f is convex in Ω, we have

f (x)≤
2n
∑

i=1

λi f (vi)≤ max
1≤i≤2n

f (vi) = M

So f is bounded above in K . On the other hand, for any x ∈ K , by the symmetry of K , there
exists y ∈ K such that x0 =

x+y
2 , then

2 f (x0)≤ f (x) + f (y) =⇒ f (x)≥ 2 f (x0)− f (y)≥ 2 f (x0)−M

So f is also bounded below in K , hence f is locally bounded in Ω.
For the rest, if x , y ∈ B(a, r−ε), by the openness, there exists ε > 0 small enough such that
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z = y + ε
‖y−x‖(y − x) ∈ B(a, r), so we have

y =
�

ε

ε + ‖y − x‖

�

x +
� ‖y − x‖
ε + ‖y − x‖

�

z =⇒ (ε + ‖y − x‖) f (y)≤ ε f (x) + ‖y − x‖ f (z)

=⇒ ε( f (y)− f (x))≤ ( f (z)− f (x))‖y − x‖

=⇒ | f (y)− f (x)| ≤
2M
ε
‖y − x‖

So f is locally Lipschitz on Ω.

Theorem 2.31: Assume Ω ⊂ Rn is an open set and f : Ω −→ R is a function. Then f is
convex if and only if the epigraph of f is convex in Ω×R

Proof. Let (a, b) and (x , y) both belong to epi( f ), for any λ ∈ (0, 1), we have

λ(a, b) + (1−λ)(x , y) =
�

λa+ (1−λ)x ,λb+ (1−λ)y
�

Recall that f (a)≤ b and f (x)≤ y , we have

f (λa+ (1−λ)x)≤ λ f (a) + (1−λ) f (x)≤ λb+ (1−λ)y

Therefore epi( f ) is also convex. For the converse, since (a, f (a)) and (x , f (x)) lie in epf( f ),
which is convex, thus for λ ∈ (0,1) we have

λ(a, f (a)) + (1−λ)(x , f (x)) ∈ epi( f ) =⇒ f (λa+ (1−λ)x)≤ λ f (a) + (1−λ) f (x)

The proof is complete.

On the contrary, a function f : Ω ⊂ Rn −→ R is called concave if and only if

f (λx + (1−λ)y)≥ λ f (x) + (1−λ) f (y) (2.7)

for all x , y such that [x , y] ⊂ Ω and for all λ ∈ [0, 1].

In other word, f is convex if and only if − f is concave. So theorem 2.30 are also true for
concave function f , by the same argument via convex function − f .

Theorem 2.32: If Ω ⊂ Rn is an open set and f : Ω −→ R is concave, then f is locally
bounded in Ω. Furthermore, if | f (x)| ≤ M on B(a, r) then f is Lipschitz on B(a, r−ε) with
constant 2M

ε . Therefore f is also locally Lipschitz in Ω.

2.2.6 Semiconvex and semiconcave functions

Now, we extend the notion of concave functions define the notion of semiconcave function.
Similarly, f is semiconvex if − f is semiconcave.
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Definition 2.33 (Semiconcave functions with linear modulus): LetΩ ⊂ Rn be an open set.
We say that a function f : Ω −→ R is semiconcave with linear modulus if it is continuous
in Ω and there exists C > 0 such that

λ f (x) + (1−λ) f (y)− f (λ f (x) + (1−λ)y)≤ λ(1−λ)C‖y − x‖2 (2.8)

for all λ ∈ [0,1] such that [x , y] ⊂ Ω. The constant C is called a semiconcavity constant
for f in Ω.

It’s easy to see that when C = 0 in (2.8) then f is concave in Ω. Hence a semiconcave
function is a concave function up to a quadratic term, more precisely

Lemma 2.34: The function f : Ω −→ R is semiconcave with the semiconcavity constant
C in Ω if and only if f (x)− C‖x‖2 is concave in Ω.

Proof. Setting g(x) = f (x)− C‖x‖2, and the rest is trivial by substituting g into (2.8).

Now we introduce a standard criterion of semiconcave functions

Proposition 2.35: Let f : Ω −→ R, then the followings are equivalent

(i) f is continuous and satisfy

f (x + h) + f (x − h)− 2 f (x)≤ 2C‖h‖2

for all [x − h, x + h] ⊂ Ω.

(ii) f is semiconcave with a semiconcavity constant C in Ω.

Proof. Setting g(x) = f (x)− f (x)− C‖x‖2, then g is continuous and

g(x + h) + g(x − h)≤ 2g(x) ∀ [x − h, x + h] ⊂ Ω

Now using the same argument in proposition 2.29 we can see g is concave, therefore f is
semi-concave.
For the converse, if f is semiconcave with semiconcavity constant C , setting g(x) = f (x)−
f (x) − C‖x‖2 then g is concave, so by theorem 2.32 we have g is locally Lipschitz in Ω.
This implies the continuity of g, and so does f . The rest is trivial, since g is concave, we
have

g(x + h) + g(x − h)≤ 2g(x) ∀ [x − h, x + h] ⊂ Ω
Combine this fact and g(x) = f (x)− C‖x‖2 we achieve (i).

We also have the locally Lipschitz of a semiconcave function as follow

Theorem 2.36: If a function f : Ω −→ R is semiconcave with a semiconcavity C in Ω,
then f is locally Lipschitz in Ω.

Proof. Setting g(x) = f (x)− C‖x‖2 is Lipschitz with constant M and bounded by m in a
neighborhood K ⊂ Ω, then for x , y ∈ K

|g(x)− g(y)| ≤ M‖x− y‖=⇒ | f (x)− f (y)| ≤
C
2
‖x2− y2‖+M‖x− y‖ ≤ (mC+M)‖x− y‖

So f is also locally Lipschitz in Ω.
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Combine with H.Radamacher’s theorem 2.9, we have the following result on differentiabil-
ity of semiconcave function.

Corollary 2.37: A semiconcave function f : Ω −→ R is a.e differentiable in Ω.

For example, we now establish some properties about the distance function from a point to
the closed set S ⊂ Rn, given by

Proposition 2.38: Let S ⊂ Rn be a closed set, consider the function

dS(x) = inf
y∈S
‖y − x‖ x ∈ Rn

Prove that

(i) dS is locally semiconcave in Rn\S.

(ii) dS is not locally semiconcave in Rn

(iii) d2
S is semiconcave with constant 2.

Proof. First we observe that dS is continuous in Rn. Indeed, for x , y ∈ Rn, let a be fixed in
S, then clearly

‖x − a‖ ≤ ‖x − y‖+ ‖y − a‖=⇒ dS(x)≤ ‖x − a‖ ≤ ‖x − y‖+ ‖y − a‖

From this, for all a ∈ S we have

‖y − a‖ ≤ ‖x − y‖ − dS(x) =⇒ dS(y)≤ ‖y − a‖ ≤ ‖x − y‖ − dS(x)

There fore we have
dS(x)− dS(y)≤ ‖x − y‖

Doing similarly we easily conclude that dS is Lipschitz with constant 1, so clearly dS is
continuous in Rn.

(i) If x0 ∈ Rn\S, then clearly dS(x0) > 0 since S is closed. Denote 2r = dS(x0) > 0, for
y ∈ B(x0, r) and a ∈ S we have

2r = dS(x0)≤ ‖x0 − a‖ ≤ ‖x0 − y‖+ ‖y − a‖ ≤ r + ‖y − a‖=⇒ ‖y − a‖ ≥ r

This is true for any a ∈ S, so dS(y) ≥ r > 0 for all y ∈ B(x0, r). Now for x ∈ B(x0, r)
and h such that [x − h, x + h] ⊂ B(x0, r), let a ∈ S, we always have ‖x − a‖ ≥ r, so

�

‖x + h− a‖+ ‖x − h− a‖
�2
≤ 2

�

‖x + h− a‖2 + ‖x − h− a‖2
�

= 4
�

‖x − a‖2 + ‖h‖2
�

≤
�

2‖x − a‖+
‖h‖2

‖x − a‖

�2

Therefore

‖x + h− a‖+ ‖x − h− a‖ ≤ 2‖x − a‖+
‖h‖2

‖x − a‖
≤ 2‖x − a‖+

‖h‖2

r

From proposition 2.35, dS is semiconcave in B(x0, r) with semiconcavity C = 1
r .
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(ii) It’s easy to see an counter-example, in case S = {0} and xRn\0, then dS(x) = ‖x‖> 0,
we will show that dS is not semiconcave in any neighborhood of 0. Indeed, for any
r > 0 and h ∈ B

�

0, r
2

�

, if dS is semiconcave in B(0, r), since [0− h, 0+ h] ⊂ B(0, r),
there must be exists C > 0 such that

ds(0+ h) + dS(0− h)− 2dS(0) = 2h≤ Ch2 =⇒ h≥
2
C

Let h −→ 0 we have a contradiction. Therefore dS is not semiconcave in any neigh-
borhood B(0, r) of 0.

(iii) It’s easy to see that

d2
S (x) =

�

inf
a∈S
‖x − a‖

�2
= inf

a∈S
‖x − a‖2

For x , h ∈ Rn and a ∈ S be fixed, then ‖x +h− a‖2+‖x −h− a‖2−2‖x − a‖2 = 2‖h‖2

d2
S (x + h) + d2

S (x − h)≤ ‖x + h− a‖2 + ‖x − h− a‖2 = 2‖h‖2 + 2‖x − a‖2

Since this equation is true for all a ∈ S, we conclude that

d2
S (x + h) + d2

S (x − h)≤ 2‖h‖2 + 2d2
S (x)

and from proposition 2.35, d2
S is semiconcave in Rn with semiconcavity C = 2.

2.2.7 Sets with positive reach

In this section, we introduce some concepts, due to [13], given an arbitrary closed set
K ⊂ Rn, we set

Unp(K) = {x ∈ Rn : projK(x) is a singleton}

reach(K , x) = sup
¦

r ≥ 0 : B(x , r) ⊆ Unp (K)
©

∀ x ∈ K

and define the reach of K to be

reach(K) = inf
x∈K

reach(K , x)

Definition 2.39: We say that a closed set K ⊆ Rn has positive reach if reach(K) > 0.
Similarly, a closed K ⊆ Rn has locally positive reach if reach(K , x)> 0 for all x ∈ K .

From this definition, we can define the mapping x 7−→ πK(x) = projK(x) for x ∈ Unp(K).
Furthermore, for x ∈ ∂ K , then

Proposition 2.40: For a closed K ⊆ Rn, we have Unp(∂ K) ⊆ Unp(K).

Proof. Assume x ∈ Unp(K), if x ∈ K then clearly x ∈ Unp(K). Consider x /∈ K , then exists
unique a ∈ ∂ K such that

proj∂ K(x) = {a} i.e, d∂ K(x) = ‖x − a‖

If x /∈ Unp(K), then there exists an element y ∈ projK(x) such that y 6= a.
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• If y ∈ ∂ K , then it’s a contradiction since proj∂ K(x) = {a}

• If y ∈ K\∂ K , then y must lie in the interior of K , so there exists ε > 0 such that
B(y,ε) ⊂ K . Define r = ‖x − y‖= dK(x)> 0. We must have

r = ‖x − y‖ ≤ ‖x − z‖ ∀ z ∈ K

Consider the set {y + ζ : ζ ∈ B(0,ε)} ⊂ B(y,ε) ⊂ K , we have

r = ‖x − y‖ ≤ ‖x − y − ζ‖ ∀ ζ ∈ B(0,ε) (2.9)

Let ζ= ε(x−y)
2r , then

‖ζ‖=
‖x − t‖

r
ε

2
=
ε

2
< ε =⇒ ζ ∈ B(0,ε)

So substitute this into (2.9) we have

r = ‖x − y‖ ≤








x − y −
ε(x − y)

2r









=
�

1−
ε

2r

�

‖x − y‖< ‖x − y‖= r

It’s a contradiction.

In summary, we must have projK(x) = {a}= proj∂ K(x), i.e Unp(∂ K) ⊆ Unp(K).

Thus, for x ∈ ∂ K , we deduce that

0≤ reach(∂ K , x)≤ reach(K , x)≤ +∞

In case K is closed and convex, clearly every point in Rn has the unique projection into K ,
so Unp(K) = Rn, thus reach(K) = +∞, since reach(K , x) = +∞ for any x ∈ K .

The converse is also true, and is the famous result which is known as the Motzkin’s theorem

Theorem 2.41 (Motzkin’s theorem): Let K ⊂ Rn be closed. If for every x ∈ Rn, the
projection πK(x) is unique determined, then K is convex.

From this, if K has locally positive reach, i.e reach(A, x)> 0 for all x ∈ K , then Unp(K) = Rn,
by theorem 2.41 we have K is convex. Thus we obtain

Proposition 2.42: If K ⊂ Rn is closed, then K is convex if and only if reach(K) = +∞.

We have a simple observation

Proposition 2.43: The function

reach(K , .) : K −→ [0,+∞]
x 7−→ reach(K , x)

is continuous.

Proof. Let x ∈ K , given ε > 0, we claim that for all y ∈ B
�

x , ε2
�

then |reach(K , x) −
reach(K , y)| ≤ ε.
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• If reach(K , x) = 0, then for any r > 0, we have B(x , r)∩Rn\Unp(K) 6= ;. We have

y ∈ B
�

x ,
ε

2

�

=⇒ reach(K , y)≤ ε

Indeed, for any r > ε, then B
�

x , ε2
�

⊆ B(y, r) since

z ∈ B
�

x ,
ε

2

�

⇐⇒ ‖z − x‖<
ε

2
=⇒ ‖z − y‖ ≤ ‖z − x‖+ ‖x − y‖<

ε

2
+
ε

2
= ε < r

Therefore
; 6= B

�

x ,
ε

2

�

⊆ B(y, r)∩Rn\Unp(K)

So we must have reach(K , y)≤ ε, thus |reach(K , x)− reach(K , y)| ≤ ε.

• If reach(K , x) = r > 0. We only need to consider ε < r. We have

B(y, r − ε) ⊆ B
�

x , r −
ε

2

�

⊆ Unp(K) =⇒ reach(K , y)≥ r − ε

Furthermore, for any η > r + ε, one has B
�

x , r + ε
2

�

⊆ B(y,η) since

z ∈ B
�

x , r +
ε

2

�

=⇒ ‖z − y‖ ≤ ‖z − x‖+ ‖x − y‖ ≤ r +
ε

2
+
ε

2
= r + ε < η

Thus
; 6= B

�

x , r +
ε

2

�

∩Rn\Unp(K) ⊆ B (y,η)∩Rn\Unp(K)

So we must have reach(K , y)≤ r + ε, and thus

r − ε ≤ reach(K , y)≤ r + ε =⇒ |reach(K , x)− reach(K , y)| ≤ ε

Thus x 7−→ reach(K , x) is continuous in K .

In case K is closed and has positive reach, we have a better boundσ > 0 in proximal smooth
vector definition, in view of proposition 2.22. This result come from [13], theorem 4.8 (7).

Lemma 2.44: For non-empty closed subset K of Rn, if x ∈ Unp(K) has πK(x) = a,
reach(K , a)> 0, then for any y ∈ A, we have

〈x − a, y − a〉 ≤
‖x − a‖

2 reach(K , a)
‖y − a‖2

Proposition 2.45: If K ⊂ Rn is closed, and has locally positive reach, i.e reach(K , x) > 0
for all x ∈ K , for any ζ ∈ N P

K (x), we have



ζ

‖ζ‖
, y − x

·

≤
1

2 reach(K , x)
‖y − x‖2 ∀ y ∈ K
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Proof. Since 0 6= ζ ∈ N P
K (x), there exists r > 0 such that dK(x + rζ) = r‖ζ‖, thus

x ∈ projK(x + rζ)

Reducing r > 0 such that x + rζ ∈ B(x , s) ⊂ Unp(K) for some s < tex t reach(K , x), we can
assume

x + rζ ∈ Unp(K) and πK(x + rζ) = r‖ζ‖
Now using lemma 2.44 we obtain

〈ζ, y − x〉 ≤
‖ζ‖

2 reach(K , x)
‖y − x‖2 ∀ y ∈ A

Thus the proof is complete.

Now we state some relation definitions

Definition 2.46: Let K ⊂ Rn be closed. Then K is ϕ-convex if and only if there exists a
continuous function ϕ : K −→ (0,+∞] such that the inequality

〈ζ, y − x〉 ≤ ϕ(x)‖ζ‖‖y − x‖2

holds for all x , y ∈ K and ζ ∈ N P
K (x). In other word, K is ϕ-convex if and only at every

point x ∈ ∂ K , every non-zero vector ζ ∈ N P
K (x) can be realized by a ball of radius 1

2ϕ(x) .
In case ϕ ≡ ϕ0 is a constant, we can see that K is ϕ0-convex it equivalent to K is 1

2ϕ0
-

proximally smooth.

By proposition 2.45, we can see that if K is non-empty, closed in Rn and has locally positive
reach, then



ζ

‖ζ‖
, y − x

·

≤
1

2 reach(K , x)
‖y − x‖2 ∀ y ∈ K

holds. Combine with the fact that x 7−→ reach(K , x) is continuous in proposition 2.43, we
obtain

K has locally positive reach =⇒ K is
1

2 reach(K , .)
− convex

In case K has positive reach, then

K has positive reach =⇒ K is
1

2 reach(K)
− convex

It’ well study in [12] that the converse is also true. And s a closed set K is proximal smooth,
or ϕ0-convex if and only if K has positive reach. Thus, these definitions (and a various
other) are equivalent. These also related with the following weaker definition.

Definition 2.47: Let K ⊆ Rn be closed and θ : ∂ K −→ (0,∞] be continuous. We say that
K satisfies the θ -external sphere condition if and only if for every x ∈ ∂ K , there exists a
non-zero vector ζx ∈ N P

K (x) is realized by a ball of radius θ (x). In other word,

〈ζx , y − x〉 ≤
‖ζx‖

2θ (x)
‖y − x‖2 ∀ y ∈ K

In case θ (.)≡ ρ0, we say that K is satisfies the ρ0-external sphere condition.
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We can easily see that

K is ϕ − convex=⇒ K is satisfies the
1

2ϕ
− external sphere condition

2.2.8 Semiconvex/concave functions and sub/superdifferentials

Proposition 2.48: Consider Ω ⊂ Rn is an open set. Let f : Ω −→ R is semi-concave with
linear modulus C , then a vector ζ ∈ Rn belong to D+ f (x) if and only if

f (y)− f (x)− 〈ζ, y − x〉 ≤ C‖y − x‖2 (2.10)

for any point y ∈ Ω such that [x , y] = {λx + (1−λy) : λ ∈ [0, 1]} ⊆ Ω.

Proof. If (2.10) hold, then clearly

lim sup
y−→x

f (y)− f (x)− 〈ζ, y − x〉
‖y − x‖

≤ 0 =⇒ ζ ∈ D+ f (x)

For the converse, let ζ ∈ D+ f (x), then there exists δ > 0 such that there eixsts a continuous
increasing function σ : [0,+∞) −→ R with σ(0) = 0 and

f (y)− f (x)≤ 〈ζ, y − x〉+ ‖y − x‖σ(‖y − x‖) ∀ y ∈ B(x ,δ) (2.11)

Recall the semi-concavity property of f , for [x , y] ⊂ Ω, it holds

λ f (x) + (1−λ) f (y)≤ f (λx + (1−λ)y) +λ(1−λ)C‖y − x‖2

It’s equivalent to

(1−λ) f (y)− (1−λ) f (x)≤ f (x + (1−λ)(y − x)) +λ(1−λ)C‖y − x‖2

Therefore

f (y)− f (x)
‖y − x‖

≤
f (x + (1−λ)(y − x))− f (x)

(1−λ)‖y − x‖
+λC‖y − x‖ (2.12)

Let λ −→ 1− enough in (2.12) and using (2.11) we obtain

f (y)− f (x)
‖y − x‖

≤
〈ζ, y − x〉
‖y − x‖

+ C‖y − x‖

It’s become (2.10), and thus the proof is complete.

As a corollary, it holds

Corollary 2.49: Let f : Ω −→ R be semi-concave with semi-concavity C and [x , y] ⊂ Ω.
For p ∈ D+ f (x) and q ∈ D+ f (y), it holds

〈q− p, y − x〉 ≤ 2C‖y − x‖2
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If f os semiconcave with semi-concavity C , then g = − f is semi-convex with the same
constant C . So we obtain

Proposition 2.50: Consider Ω ⊂ Rn is an open set. Let f : Ω −→ R is semi-convex with
linear modulus C , then a vector ζ ∈ Rn belong to D− f (x) if and only if

f (y)− f (x)− 〈ζ, y − x〉 ≥ −C‖y − x‖2 (2.13)

for any point y ∈ Ω such that [x , y] = {λx + (1−λy) : λ ∈ [0, 1]} ⊆ Ω.

Proof. Since − f is semi-concave with linear modulus C , from proposition 2.48 we obtain

−ζ ∈ D+(− f )(x)⇐⇒ (− f )(y)− (− f )(x)− 〈−ζ, y − x〉 ≤ C‖y − x‖2

ζ ∈ D− f (x)⇐⇒− f (y) + f (x) + 〈ζ, y − x〉 ≤ C‖y − x‖2

ζ ∈ D− f (x)⇐⇒ f (y)− f (x)− 〈ζ, y − x〉 ≥ −C‖y − x‖2

for any y ∈ Ω such that [x , y] ⊆ Ω.

From the definition of proximal subdifferentials and theorem 2.26, we see that in general
∂P f (x) ⊂ D− f (x) but the converse is not true in general. The two notions coincide, how-
ever, for a semiconvex function with a linear modulus, by using proposition 2.50 above.

Proposition 2.51:

(i) Let f : Ω −→ R is semi-convex with linear modulus C , then ∂P f (x) = D− f (x).

(ii) Let f : Ω −→ R is semi-cave with linear modulus C , then ∂ P f (x) = D+ f (x).

The converse is also true, i.e, if f : Ω −→ R is continuous and D+ f (x) = ∂ P f (x), i.e there
exists C > 0 such that

f (y)− f (x)≤ 〈ζ, y − x〉+ C‖y − x‖2 ∀ y ∈ Ω ∀ ζ ∈ ∂ P f (x)

then clearly f is semi-concave with semi-concavity C . Indeed, for any vector h such that
[x − h, x + h] ⊂ Ω, for ζ ∈ ∂ P f (x), we have

f (x + h) + f (x − h)− 2 f (x) = f (x + h)− f (x) + f (x − h)− f (x)

= 〈ζ, h〉+ 〈ζ,−h〉+ 2C‖h‖2 = 2C‖h‖2

By proposition 2.35, we have f is semi-concave with semi-concavity C . So we summarize
into

Proposition 2.52 (Properties of semi-concave functions): Let Ω ⊂ Rn be open and f :
Ω −→ R is continuous. Then the following are equivalent

(i) f is semi-concave with concavity C .

(ii) f (y)− f (x)≤ 〈ζ, y − x〉+ C‖y − x‖2 for all ζ ∈ ∂ P f (x).

And the similar result for semi-convex function holds

37



Proposition 2.53 (Properties of semi-convex functions): Let Ω ⊂ Rn be open and f :
Ω −→ R is continuous. Then the following are equivalent

(i) f is semi-convex with linear modulus C .

(ii) f (y)− f (x)≥ 〈ζ, y − x〉 − C‖y − x‖2 for all ζ ∈ ∂P f (x).

Finally, from proposition 2.31, we know that f is convex if and only if its epigraph is convex.
We state the generalized version for semi-convex function. First from theorem 3.6.6 in [12]
or [14], we have the following result.

Proposition 2.54: AssumeΩ ⊂ Rn is bounded, open and convex, f : Ω −→ Rn is Lipschitz.

(i) f is semi-convex with linear modulus if and only if epi( f ) has positive reach.

(ii) f is semi-concave with linear modulus if and only if hypo( f ) has positive reach.

From this, we obtain

Theorem 2.55: Let Ω ⊂ Rn is bounded, open and convex.

(i) A function f : Ω ⊂ Rn −→ R is semi-convex if and only if f is locally Lipschitz and
epi( f ) has positive reach.

(ii) A function f : Ω ⊂ Rn −→ R is semi-concave if and only if f is locally Lipschitz and
hypo( f ) has positive reach.

Proof. See [12] and [14]. It’s just a corollary of proposition 2.54. If f is semi-convex
then clearly f is locally Lipschitz by proposition 2.36. For each neighborhood Ωx of x
such that f is Lipschitz on Ωx with some constant Cx , using proposition 2.54, we obtan
epi( f ) is proximally smooth, or it’s has positive reach in a neighborhood of (x , f (x)). Since
it’s true for all x ∈ Ω, we conclude epi( f ) has positive reach. Here we already using the
boundedness of Ω to obtain the minimum of reach(.).
For the converse, aslo choose a neighborhood Ωx of x such that f is Lipschitz on this, and
also using proposition 2.54 we obtain the semi-convexity of f on Ωx , for all x ∈ Ω, so f
is semi-convex in Ω. Here we using the boundedness of Ω to obtain the maximal linear
modulus of f .

We finish this section by the following theorem,

Theorem 2.56 (Alexandroff’s theorem): Assume Ω ⊂ Rn is open, and f : Ω −→ R be
semi-concave, then f is a.e twice differentiable in Ω, i.e for a.e x ∈ Ω, there exists a vector
ζ ∈ Rn and a symmetric matrix B such that

lim
y−→x

f (y)− f (x)− 〈ζ, y − x〉+ 〈B(y − x), y − x〉
‖y − x‖2

= 0
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2.3 Linear control systems

2.3.1 Integral of vector–valued functions

Let (E,‖.‖) is a Banach space and u : [a, b] −→ E is continuous. A partition of [a, b]

P(a0, a1, . . . , an, c1, . . . , cn) where a = a0 < c1 < a1 < . . .< cn < an = b

Also define |P|=max{ai+1−ai : i = 0, n− 1} and P([a, b]) is the collection of all partitions
of [a, b]. A Riemann sum with respect to the partition P is

S(u, P) =
n
∑

i=1

u(ci)(ai − ai−1)

Theorem 2.57: Then there exists a unique v ∈ E such that

lim
|P|−→0

S(u, P) = v

We call v is the integral of u over [a, b], denoted by
∫ b

a
u(t) d t.

In case E = Rn and u = (u1, u2, . . . , un), then the continuity of u is equivalent to the conti-
nuity of ui for all i = 1, n. And it’s not hard to see that the integral v in this case has the
form

v =

∫ b

a

u(t) d t =

�

∫ b

a

u1(t) d t, . . . ,

∫ b

a

un(t) d t

�

Our goal is the following theorem, which is called the fundamental theorem of calculus for
vector-valued function

Theorem 2.58: Assume that f ∈ C([a, b], E), f is continuously differentiable on (a, b),
i.e f ∈ C1((a, b), E) and f extends to a continuous function on [a, b] which is still denoted
by f . Then

f (b)− f (a) =

∫ b

a

f ′(t) d t

We also have the usual property










∫ b

a

u(t) d t











≤
∫ b

a

‖u(t)‖ d t

2.3.2 The solution of linear control systems

Consider the linear ODE system
¨

x ′(t) = A · x(t) a.e t ∈ [0,+∞)
x(0) = x0

(2.14)
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where A ∈ M n×n(R), x0 ∈ Rn is initial condition and x(.) : [0,∞]) −→ Rn is a unknown
function.
We call a function x(.) which is absolutely continuous, x(0) = 0 and x ′(t) = A · x(t) a.e in
[0,∞) is a solution of (2.14).1

Now we have some observations. Assume x(.) satisfies (2.14), then it must be continuous
since it’s has derivative a.e, and furthermore since

x ′(t) = Ax(t)

we obtain that x ′(.) is also continuous, and similarly, we can see x(.) is smooth, or C∞(0, T ).
for any T <∞. Thus by the fundamental theorem of Calculus, we obtain

x(t)− x(0) =

∫ t

0

x ′(t) d t

Therefore (2.14) will has a solution of the form

x(t) = x0 +

∫ t

0

A · x(s) ds

We will prove that that there exist a unique solution like this. First, we introduce a classical
representation of this solution, via the following terminology, since A can be though as a
linear operator from Rn −→ Rn

Theorem 2.59: For A∈ L(H, H) where H is a Hilbert space, we have the following series
is convergence in L(H, H)

eA =
∞
∑

n=0

An

n!
where An = A◦ A◦ . . . ◦ A (n time)

and has some properties, if A, B ∈ L(H, H) then

(a) If A.B = B.A then eA+B = eA.eB = eB.eA

(b) e0 = Id and (eA)−1 = e−A, e(x+y)A = exA.e yA.

(c) If P ∈ M n×n(R) and Q = P−1AP then eQ = p−1eAP.

(d) d
d t eAt = AeAt .

It’s easy to see if H is a Hilbert space then L(H, H) is a Banach space with the usual sup-
norm. So we can using the theory of integral of vector-valued function here to derive a nice
property. For example, take f : [0, T] −→ L(Rn,Rn) where

f (t) = eAt ∈ L(Rn,Rn) with f (t)(v) = eAt · v

then from theorem 2.59 above we have f is continuously differentiable on (0, T ), f can be
extended continuously on [0, T] clearly, so by the Fundamental theorem of Calculus 2.58,
we have

1The notion of absolutely continuous, see 2.3.7
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Proposition 2.60: For any t ∈ [0, T] we have

f (t)− f (0) =

∫ t

0

f ′(s) ds =⇒ etA− 1=

∫ t

0

AesA ds

Recall a useful fact

Theorem 2.61: [Gronwall’s inequality] Let ϕ continuous [a, b], ϕ ≥ 0, assume there
exists constants K , C s.t

0≤ ϕ(t)≤ K + C

∫ t

a

ϕ(s) ds ∀ t ∈ [a, b]

then
0≤ ϕ(t)≤ Kec(t−a) ∀ t ∈ [a, b]

Proof. Let F(t) =
∫ t

0
ϕ(s) ds for t ∈ [a, b], we have F ′(t) = ϕ(t)≥ 0 foe all t ∈ [a, b], so F

is increase so F(t)≥ F(a) = 0. So for all t ∈ [a, b]

ϕ(t)≤ K+C F(t) =⇒ ϕ(t)−C F(t)≤ K =⇒
�

F(t)e−C t
�′
≤ Ke−C t =⇒ F(s)e−Cs ≤ K

∫ s

a

e−C t d t

Hence
F(s)≤

K
C

�

eC(s−a) − 1
�

=⇒ ϕ(s)≤ K + C F(s)≤ KeC(s−a)

From this fact, we easily conclude that x(t) = eAt x0 is the unique solution of (2.14).

Theorem 2.62: The linear system (2.14) has the unique solution of the form x(t) = eAt x0

Proof. Clearly x(t) = eAt x0 satisfies the system (2.14), furthermore, it’s is smooth, thus it’s
a solution. Now we will prove that it’s unique by using the Gronwall’s inequality 2.61.

Assume u(.), v(.) are two solution of (2.14), then
¨

(u− v)′(t) = A · (u− v)(t)
(u− v)(t) = 0

And thus, the function ϕ = u− v is satisfies
¨

ϕ′(t) = A ·ϕ(t) ∀ t > 0

ϕ(0) = 0

Clearly ϕ′(.) is continuous, so by the fundamental theorem of Calculus we obtain

ϕ(t) =

∫ t

0

ϕ′(s) ds =

∫ t

0

A ·ϕ(s) ds =⇒ ‖ϕ(t)‖ ≤











∫ t

0

A ·ϕ(s) ds











≤
∫ t

0

‖ϕ(s)‖ ds

Now using Gronwall’s inequality 2.61, we obtain ϕ(.) ≡ 0, thus u ≡ v and the solution is
unique.
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Now applying to our problem, we consider the linear control system
¨

x ′(t) = Ax(t) + Bu(t) t > 0

x(0) = x0
(2.15)

where A ∈ Mn×n, B ∈ Mn×m, 1 ≤ m ≤ n and U = [−1,1]m ⊂ Rm. The set of admissible
control is

Uad = {u : [0,∞) −→ U : u is measurable}

The most difficulty in this case it that, the function t 7−→ Ax(t)+Bu(t) is not continuous in
general, so we can not using the fundamental theorem of Calculus as usual in here. But by
imitating the above process, we can claim that, if (2.15) has solution, it’s must be unique.

Proposition 2.63: If u(.), v(.) are two solution of (2.15) in time [0, T] for T <∞. Then
u≡ v in [0, T].

Proof. We also obtain
¨

(u− v)′(t) = A · (u− v)(t)
(u− v)(t) = 0

and thus u≡ v by using Gronwall’s inequality because (u− v)′(.) is continuous.

We now present an other approach. Assume x(.) is a solution on [0, T] of (2.15), then for
t ∈ (0, T ) we have

x ′(t) = A · x(t) + Bu(t) =⇒−Ae−At x(t) + e−At x(t) = e−At Bu(t)

=⇒
�

e−At x(t)
�′
(t) = e−At Bu(t)

Clearly s 7−→ e−sABu(s) is L1(0, t) in this case since ‖u(t)‖ is bounded. So we guest that

e−At x(t)− x0 =

∫ t

0

e−AsBu(s) ds i.e, x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds

Now define

y x0,u(t) = eAt x0 +

∫ t

0

eA(t−s)Bu(s) ds

We can see x(.) = y x0,u(.) is continuous, and x(0) = x0. The rest is check that x(.) satisfies
x ′(t) = Ax(t) + Bu(t). Setting

g(t) =

∫ t

0

e−sABu(s) ds (2.16)

It’s easy to check that g is continuous. Assume g is differentable and g ′(t) = e−tABu(t),
then

x ′(t) = AeAt x0 + AeAt g(t) + eAt g ′(t)
= Ax(t) + eAt · e−At Bu(t) = Ax(t) + Bu(t)
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But again, s 7−→ e−AsBu(s) is not continuous, so it’s not straight-forward to obtain this fact
about g. Thus, our work is now prove g is differentiable and g ′(t) = e−tABu(t). Define
f (s) = e−sABu(s), then f ∈ L1((0, t),Rn). Let’s compute

g(t + h)− g(t)
h

=
1
h

∫ t+h

t

f (s) ds

Now writing f = ( f1, f2, . . . , fn), we obtain fi ∈ L1((0, t),R) for all i ∈ 1, n, and

g(t + h)− g(t)
h

=
1
h

∫ t+h

t

f (s) ds =

�

1
h

∫ t+h

t

f1(s) ds, . . . ,
1
h

∫ t+h

t

fn(s) ds

�

Thus, our goal is prove that for any i ∈ 1, n then

lim
h−→0

�

1
h

∫ t+h

t

fi(s) ds

�

= f (t)⇐⇒ lim
h−→0

�

1
h

∫ t+h

t

�

fi(s)− f (t)
�

ds

�

= 0 (2.17)

for any i ∈ 1, n. Recall the Lebesgue’s differentiation theorem

Theorem 2.64: Assume Ω ⊂ Rn is open and f ∈ L1
loc(Ω,R), then

lim
r−→0

1
µ(B(x , r))

∫

B(x ,r)

| f (y)− f (x)| d y = 0 for a.e x ∈ Ω

where µ denote the Lebesgue measure on Rn.

For fi ∈ L1((0, T ),R), i ∈ 1, n, note that in R, µ(B(t, r)) = µ(t − r, t + r) = 2r, we have
�

�

�

�

�

1
h

∫ t+h

t

�

fi(s)− f (t)
�

ds

�

�

�

�

�

≤
1
h

∫

(t,t+h)

�

� fi(s)− fi(t)
�

� ds =
2

µ(B(t, h))

∫

B(t,h)

�

� fi(s)− fi(t)
�

� ds

Using Lebesgue’s differentiation theorem, we obtain for a.e t ∈ (0, T )

lim
h−→0

�

2
µ(B(t, h))

∫

B(t,h)

�

� fi(s)− fi(t)
�

� ds

�

= 0

and thus for a.e t ∈ (0, T ).

lim
h−→0

�

1
h

∫ t+h

t

�

fi(s)− f (t)
�

ds

�

= 0

Thus, (2.17) is true for a.e t ∈ (0, T ).

In summarize, we conclude that given u ∈ Uad , the linear control system (2.15) has a unique
solution given by

x(t) = y x0,u(t) = eAt x0 +

∫ t

0

eA(t−s)Bu(s) ds (2.18)
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Recall that for any continuous function f : [a, b] −→ Rn, define

F : [a, b] −→ Rn

t 7−→
∫ t

a

f (s) ds

then F is (Fréchet) differentiable in (a, b), continuous on [a, b] and furthermore

F ′(t) = f (t) ∀ t ∈ (a, b) (2.19)

Also the converse is true, if F : [a, b] −→ Rn is differentiable on (a, b) and F ′ = f is contin-
uous on [a, b], then (2.19) holds.

The linear control system (2.15) give us that for a control u ∈ Uad and T <∞, the trajectory
x(.) = y x0,u(.) is continuous on [0, T], furthermore it’s differentiable on (0, T ) where

x′(t) = Ax(t) + Bu(t)

But x′(t) is not continuous in general, so it isn’t straight-forward to obtain the formula

x(t)− x(0) =

∫ t

0

x′(s) ds (2.20)

But in this case, by using the uniqueness of solution of (2.15), we can obtain this fact.
Indeed, since u : [0, T] −→ [−1,1]m is bounded, and x : [0, T] −→ Rn is continuous, and
[0, T] is compact, we must have ‖x(.)‖ is bounded on [0, T], thus

x ′(.) = A · x(.) + Bu(.) =⇒ x ′(.) ∈ L1((0, T ),Rn)

Setting

h : [0, T] −→ Rn where t 7−→ x0 +

∫ t

0

x ′(s) ds

Writing x = (x1, x2, . . . , xn), then x ′ = (x ′1, . . . , x ′n). So if we assume h = (h1, h2, . . . , hn)
then from definition of h we obtain

hi(t) = pri(x0) +

∫ t

0

x ′i(s) ds

where pri : (a1, . . . , an) 7−→ ai is the ith projection. Since every x i is belong to L1((0, T ),R),
using Lebesgue differentiation theorem 2.64 we obtain

lim
ε−→0

hi(t + ε)− hi(t)
ε

= lim
ε−→0

�

1
ε

∫ t+ε

t

x ′i(s) ds

�

= x ′i(t) for a.e t ∈ (0, T )

Therefore we have h is differentiable and h′(t) = x ′(t) for a.e t ∈ (0, T ). Also h(0) = x0

by the definition of h, so h is another solution of the linear system (2.15). Now by the
uniqueness of the solution, we obtain h≡ y x0,u, thus

x(t) = y x0,u(t) = h(t) = x0 +

∫ t

0

x ′(s) ds for a.e t ∈ (0, T )

Later we will observe that x(.) = y x0,u is Lipschitz on every compact interval [0, T], and
hence it’s absolutely continuous on [0, T].
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2.3.3 Example: Rocket rail road car

We introduce an example before going to state main problem

Example. [The rocket car] Imaging a rail road car powered by rocket engines on each
side. We introduce the variables

• x(t) is the position of the rocket rail road car on the train track at time t.

• v(t) is the velocity of the rocket rail road car at time t.

• F(t) is the force from the rocket engines at time t.

where we only consider F(t) ∈ [−1, 1] and the sign of F(t) depends on which engine is
firing.

Our goal. Construct F(.) in order to drive the rocket rail road car to the origin 0 with zero
velocity in a minimum amount of time.

Mathematical Model. Assuming that the rocket railroad car has mass m= 1, the motion
law is

mx ′′(t) = F(t)⇐⇒ x ′′(t) =
F(t)
m
= u(t)

where u(.) is understood as a control function. So the motion equation of the rocket railroad
car is

¨

x ′′(t) = u(t)
x(0) = x0 and v(0) = v0

(2.21)

where u(t) ∈ U = [−1, 1] for all t ≥ 0, x0 is the position of the rocket car at time 0 and v0

is the velocity of the rocker railroad car at x0. By setting

z(t) =
�

x(t)
v(t)

�

A=
�

0 1
0 0

�

b =
�

0
1

�

we can rewrite (2.21) as first order control system
¨

z′(t) = A · z(t) + b · u(t)
z(0) = (x0, v0)T
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A geometric solution We will introduce a way to steer (x0, v0) to the origin (0,0). First
of all, let us guess that to find an optimal control solution we will need only to consider
cases u= 1 or u= −1. In other words, we will focus our attention only upon those controls
for which at each moment of time either the left or the right rocket engine is fired at full
power. We will see later that this assumption is correct.

Case u= 1. Assume u= 1 on some time interval, during which, from (2.21) we have
¨

x ′(t) = v(t)
v′(t) = 1

=⇒ v(t)v′(t) = x ′(t) =⇒
1
2
(v2(t))′ = x ′(t)

Now let t0 belong to this the interval where u = 1 and integrate from t0 to t, where t so
small such that [t0, t] also belong to this time interval

v2(t)
2
−

v2(t0)
2

= x(t)− x(t0) =⇒ v2(t) = 2x(t) +
�

v2(t0)− 2x(t0)
�

︸ ︷︷ ︸

b0

(2.22)

In other words, in the time interval such that u = 1, the trajectory stays on the curve
v2(t) = 2x(t)+ b0, where b0 = v2(t0)−2x(t0) is a constant respect to the initial condition
(x0, v0).

Figure 1: The curves v2(t) = 2x(t) + b0 in case u= 1.

Case u= −1. Assume u= −1 on some time interval, during which, from (2.21) we have
¨

x ′(t) = v(t)
v′(t) = −1

=⇒ v(t)v′(t) = −x ′(t) =⇒
1
2
(v2(t))′ = −x ′(t)
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Now let t0 belong to this the interval where u = −1 and integrate from t0 to t, where t so
small such that [t0, t] also belong to this time interval

v2(t)
2
−

v2(t0)
2

= −x(t) + x(t0) =⇒ v2(t) = 2x(t) +
�

v2(t0) + 2x(t0)
�

︸ ︷︷ ︸

c0

(2.23)

In other words, in the time interval such that u = 1, the trajectory stays on the curve
v2(t) = 2x(t) + b0, where c0 = v2(t0) + 2x(t0) is a constant respect to the initial condition
(x0, v0).

Figure 2: The curves v2(t) = −2x(t) + c0 in case u= −1.

Geometric Interpretation Now, conclude from two cases above and equations (2.22),
(2.23), we can design an control u′, which steers the initial data (x0, v0) (we denote by the
black dot) to the origin. For example, assume it live on the plane like following picture,
it’s easy to see that if we set u′ = −1, causing this point move down along the parabola of
u= −1 and pass through (x , 0, v0), then when it first meets the parabola of u= 1 and pass
through the origin, then switch u′ = 1 on this. This control u′ is steer (x0, v0) to (0, 0) by
switching only one time.
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Figure 3: The trajectory causing by the control u′ move (x0, v0) to the origin

We shall see later that such a control like u′ is optimal.

2.3.4 Example: Harmonic oscillation

Now we consider the simple harmonic oscillation of an oscillating weight (of unit mass,
i.e m = 1) in a spring, with the control is interpreted as an exterior force acting on this
oscillating weight.

Figure 4: Vibrating Spring

For simplify, assume some conditions lead to consider its equation

x ′′ + x = u

where x(t) denote the position oat time t, v(t) = x ′(t) denote the velocity at time t,
a(t) = x ′′(t) denote the acceleration of this oscillating weight at time t. And u be the
exterior force acting to this mass hanging from a spring.
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Our goal. Given the initial position and the initial velocity, we want to construct an opti-
mal exterior forcing α that brings the motion to a stop in minimum time.

Mathematical Model. Considering the equation x ′′+ x = u, where u : R −→ U = [−1,1]
and x0 = x(0), v0 = v(0) be the given initial data. The motion equation is v′(t) + x(t) =
u(t), i.e

¨

x ′(t) = v(t) x(0) = x0

v′(t) = −x(t) + u(t) v(0) = v0
(2.24)

By setting

z(t) =
�

x(t)
v(t)

�

A=
�

0 1
−1 0

�

b =
�

0
1

�

We have that

z′(t) =
�

v(t)
v′(t)

�

z(0) =
�

x0

v0

�

=⇒

¨

z′(t) = A · z(t) + b · u(t)
z(0) = (x0, v0)T = z0

This become a first order control system as we have known in general.

2.3.5 Basic notions and properties

Consider the linear control system
¨

x ′(t) = Ax(t) + Bu(t) t > 0

x(0) = x0
(2.25)

where A ∈ Mn×n, B ∈ Mn×m, 1 ≤ m ≤ n and U = [−1,1]m ⊂ Rm. The set of admissible
control is

Uad = {u : [0,∞) −→ U : u is measurable} (2.26)

It’s easy to see some basic properties of Uad

Theorem 2.65: The set Uad is convex, symmetric in L∞([0,+∞),Rm)

Proof. For the convex, if u, v ∈ Uad then for all λ ∈ (0,1), clearly w = λu+ (1−λ)v ∈ Uad

since it’s measurable from [0,+∞) −→ U . It’s also obvious that if u ∈ Uad then −u ∈ Uad

so Uad is symmetric. Note that U = [−1, 1]m in this case is convex.

Given u ∈ Uad , the trajectory starting from x0 with the control u can be presented as

y x0,u(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds (2.27)

Let’s define the reachable set for time t to be

R(t) = {x0 ∈ Rn : ∃ u ∈ Uad such that : x(t) = 0}
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And define the overall reachable set to be

R=
⋃

t≥0

R(t)

Using this expression, we can assert some basic properties of the reachable set R(t).

Theorem 2.66: For a fixed time t > 0, we have

(i) R(t) is convex, symmetric and compact.

(ii) R(t) ⊂ R(t ′) for all t ′ ≥ t ≥ 0.

(iii) R is convex and symmetric.

Proof.

(i) For the convex, assume that x0, y0 ∈ R(t), i.e there exist controls u, v ∈ Uad s.t

x0 = −
∫ t

0

e−sABu(s) ds y0 = −
∫ t

0

e−sABv(s) ds =⇒ z = −
∫ t

0

e−sABw(s) ds

where λ ∈ (0,1) and z = λx0+ (1−λ)y0 and w(.) = λu(.) + (1−λ)v(.) ∈ Uad by the
convexity of Uad . So w ∈ R(t), i.e R(t) is convex. For the symmetric, similarly

x0 = −
∫ t

0

e−sABu(s) ds =⇒−x0 = −
∫ t

0

e−sABw(s) ds

where w(.) = −u(.) ∈ Uad since Uad is symmetric, so R(t) is symmetric. For the
compactness, let (xn) ⊂ R(t)which are respect to the sequence of controls (un) ⊂ Uad ,
where

xn = −
∫ t

0

e−sABun(s) ds ∀ n ∈ N

Then since {un} is a bounded sequence in L∞((0, t),Rn), by theorem (2.5), there
exists a subsequence (unk

) ⊂ (un) s.t unk

∗
* u ∈ L∞((0, t),Rn) in the weak∗ topology

σ(L∞, L1), and easily seen that u ∈ Uad . Hence we have

xnk
= −

∫ t

0

(e−sAB) · unk
(s) ds −→−

∫ t

0

(e−sAB) · u(s) ds = x as k −→∞

since v(s) = e−sAB : [0, t] −→ Rm is integrable by
∫ t

0

|v(s)| ds ≤
∫ t

0

et‖A‖‖B‖ ds ≤ tet‖A‖‖B‖<∞

So xnk
−→ x in Rn and clearly x ∈ R(t). So R(t) is compact in Rn.

(ii) If x ∈ R(t) which respect to the control u, define v = uχ[0,t] + 0.χ[t,t ′] where t > t ′,
then clearly v ∈ Uad and x ∈ R(t ′) which respect to control v, hence R(t) ⊂ R(t ′).

(iii) It’s clearly from (i) and (ii).
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As an useful remark, we have x0 ∈ R(t) iff exist u(.) ∈ Uad such that

0= etAx0 +

∫ t

0

e(t−s)ABu(s) ds⇐⇒ x0 = −
∫ t

0

e−sABu(s) ds

2.3.6 The minimum time function

We will study the continuity of the minimum time function for the linear control system
(2.25), recall that given u ∈ Uad , the trajectory starting from x0 with the control u can be
presented as

y x0,u(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds

Now let’s define the minimum time function, for fixed x0 ∈ Rn\{0}, let T (x) be the mini-
mum amount of time to reach to the target S from x0, i.e

T (x0) = inf
u∈Uad

{t > 0 : y x0,u(t) = 0} (2.28)

From this definition, one can see that

• T (x0) is finite for all x0 ∈ R

• T (x0) = +∞ for all x0 ∈ Rn\R.

Theorem 2.67 (Existence of the time–optimal control): For every x0 ∈ R, we have that

T (x0) = min
u∈Uad

{t > 0 : y x0,u(t) = 0} (2.29)

It means that there exists an optimal control u∗ ∈ Uad such that y x0,u∗(T (x0)) = 0.

Proof. Since x0 ∈ R, we have that T = T (x0)<∞, so there exists a sequence of admissible
control {uk} ⊂ Uad and an decreasing sequence {tk} converging to T (x0) such that

y x0,uk(tk) = 0 ∀ k ∈ N

Note that for each time tk, we only consider the control utk
(s) for s ∈ [0, tk], so we can

assume that utk
(s)≡ 0 for s ≥ tk.

Since ‖uk‖L∞(0,t1) ≤ 1, there exists a subsequence {ukl
} such that ukl

∗
* u weakly in the

weak∗ topology σ(L∞([0, t1]), L1([0, t1]), and clearly u ∈ Uad . We claim that y x0,u(T ) = 0.
Indeed we will prove that y x0,ukl (tkl

) −→ y x0,u(T ) as l −→∞, note that

y x0,ukl (tkl
) = y x0,ukl (t1)

since ukl
(s) = 0 for all s ≥ tkl

, and t1 ≥ tkl
for all l ∈ N. Now by weakly convergence,

clearly
y x0,ukl (t1) −→ y x0,u(t1) as l −→∞ (2.30)
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We claim that y x0,u(t1) = y x0,u(T ) by proving u = 0 a.e in [T, t1]. Indeed, since ukl

∗
* u in

σ(L∞, L1), so for any integrable function g(.) : [0, t1] −→ Rm we have that
∫ t1

0

g(s) · ukl
(s) ds −→

∫ t1

0

g(s) · u(s) ds as l −→∞

Now take

g(s) =

¨

u(s)
‖u(s)‖ .χ[T,t1] if u(s) 6= 0

0 if u(s) = 0

which is clearly integrable, and so we have that ukl
(s) = 0 for s ≥ tkl

, so

∫ t1

0

g(s) · ukl
(s) ds =

∫ t1

T

g(s) · ukl
(s) ds −→

∫ t1

0

g(s) · u(s) ds =

∫ t1

T

‖u(s)‖ ds (2.31)

On the other hand, we have that
�

�

�

�

�

∫ t1

T

g(s) · ukl
(s) ds

�

�

�

�

�

=

�

�

�

�

�

∫ tkl

T

g(s) · ukl
(s)

�

�

�

�

�

ds ≤
∫ tkl

T

‖g(s)‖ · ‖ukl
(s)‖ ds −→ 0 (2.32)

as l −→∞ since tkl
−→ T . Compile (2.31) and (2.32) we conclude that

∫ t1

T

‖u(s)‖ ds = 0=⇒ u(s) = 0 a.e in [T.t1] (2.33)

So from (2.30) and (2.33) we have that y x0,u(t1) = y x0,u(T ), i.e

y x0,u(T ) = lim
l−→∞

y x0,ukl (t1) = lim
l−→∞

y x0,ukl (tkl
) = 0

The proof is complete.

Theorem 2.68 (Dynamics programming principle for the minimum time function in linear
case): Let x ∈ R, then it holds

min
u∈Uad

{t + T (y x ,u(t))}= T (x) ∀ 0< t < T (x)

Proof. Fix x0 ∈ R and define T = T (x0) <∞, we also fix time t ∈ (0, T ). Let’s prove by
some steps.

1. T (x0)≤ inf{t + T (y x0,u(t)) : u ∈ Uad}
Pick u ∈ Uad arbitrary, we need to show that T (x0) ≤ t + T (y x0,u(t)). Indeed, let
xu(.) = y x0,u(.) be the trajectory which is respect to u, i.e

¨

x ′u(s) = Axu(s) + Bu(s) s > 0

x(0) = x0

Now define x1 = xu(t) = y x0,u(t), from (2.29), there exists an admissible control u
such that

y x1,u(T (x1)) = 0 (2.34)
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Define xu(.) = y x1,u(.) be the trajectory which respect to u, i.e
¨

x ′u(s) = Axu(s) + Bu(s) s > 0

xu(0) = x1

Define a new control u∗ by this way
¨

u∗(s) = u(s) ∀ s ∈ (0, t)
u∗(s) = u(s) ∀ s ∈ (t, T )

Then, let xu∗(.) = y x0,u∗(.) then






x ′u∗(s) = Axu∗(s) + Bu∗(s)
xu∗(0) = x0

xu∗(t) = x1

=⇒

¨

xu∗(s) = xu(s) ∀ s ∈ (0, t)
xu∗(s) = xu(s) ∀ s ∈ [t, T )

Under the affect of u∗, we have x0 7−→ x1 7−→ 0, and since (2.34) we also have

y x0,u∗(t + T (x1)) = 0=⇒ T (x0)≤ t + T (x1) = t + T (y x0,u(t))

so we obtain T (x0)≤ inf{t + T (y x0,u(t)) : u ∈ Uad} since u is choosing arbitrary.

2. T (x0)≥ inf{t + T (y x0,u(t)) : u ∈ Uad}
We only need to find some control v ∈ Uad such that T (x0)≥ t+ T (y x0,v(t)). Indeed,
from (2.29) there exists a control u ∈ Uad such that y x0,u(T (x0)) = 0. Let xu(.) =
y x0,u(.) we have

¨

x ′u(s) = Axu(s) + Bu(s) s > 0

x(0) = x0

Now define x1 = xu(t) = y x0,u(t), and a new control v ∈ Uad by

v(s) :=

¨

u(s+ t) 0≤ s ≤ T − t
0 t < s ≤ T (x)

and one can see that y x1,v(T − t) = 0, indeed let’s recall that

y x0,u(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds = x1

So we have

y x1,v(T − t) = e(T−t)Ax1 +

∫ T−t

0

e(T−t−s)ABv(s) ds

= e(T−t)A

�

etAx0 +

∫ t

0

e(t−s)ABu(s) ds

�

+

∫ T−t

0

e(T−t−s)ABv(s) ds

= e(T−t)A

�

etAx0 +

∫ t

0

e(t−s)ABu(s) ds

�

+

∫ T−t

0

e(T−t−s)ABu(s+ t) ds

= eTAx0 +

∫ t

0

e(T−s)ABu(s) ds+

∫ T

t

e(T−δ)ABu(δ) dδ = y x0,u(T ) = 0

So by definition, we have T (x1)≤ T (x0)− t, i.e T (x0)≥ t + T (x1) = t + T (y x0,u(t)).
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By step 1 and 2, we conclude that

T (x0) = inf
u∈Uad

{t + T (y x0,u(t))}= min
u∈Uad

{t + T (y x0,u(t))}

Since T (x0) = t + T (y x0,u(t)) where u ∈ Uad such that y x0,u(T (x0)) = 0.

From above proof, we can deduce the principle for the optimality, i.e

Theorem 2.69 (Principle of Optimality): Assume T (x0) = T with the optimal control
u ∈ Uad , then for t ∈ [0, T], setting x1 = y x0,u(t), then

T (x1) = T − t

Proof. By dynamic programming principle we already prove above

T = T (x0) = T (y x0,u(0))≤ t + T (y x0,u(t)) = t + T (x1) =⇒ T (x1)≥ T − t

Now doing similarly to the proof in dynamic programming principle, setting

v(s) =

¨

u(s+ t) 0≤ s ≤ T − t
0 otherwise

then we have
T (y x1,v(T − t)) = 0=⇒ T (x1)≤ T − t

Therefore T (x1) = T − t.

2.3.7 The Lipschitz and absolutely continuous properties of the trajectory

In this section, by using the formula (2.18) and the principle of optimality 2.69, we will
establish the locally Lipschitz of y x0,u(.), which is useful later. First we consider consider a
bound for R(T )

Proposition 2.70: Consider ‖A‖> 0, then

(i) For any x0 ∈ ∂R(T ), we have

‖x0‖ ≤
‖B‖
‖A‖

eT‖A‖ ⇐⇒ R(T ) ⊆ B
�

0,‖B‖.‖A‖−1eT‖A‖
�

(ii) Furthermore, let’s call u ∈ Uad is the corresponding optimal control. Let x(.) = y x0,u(.)
is the corresponding trajectory. Then for every t ∈ [0, t], by principle of optimality
2.69, we know that

T (x(t)) = T − t

so x(t) ∈ ∂R(T − t) and therefore

‖x(t)‖ ≤
‖B‖
‖A‖

e(T−t)‖A‖ ⇐⇒ R(T − t) ⊆ B
�

0,‖B‖.‖A‖−1e(T−t)‖A‖
�
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Proof.

(i) By using the formula (2.18), any x0 ∈ R(T ) has the form

x0 = −
∫ T

0

e−sABu(s) ds

for u ∈ Uad is a control. Thus we have

‖x0‖ ≤
∫ T

0

es‖A‖‖B‖ ds = ‖B‖
∫ T

0

es‖A‖ ds =
‖B‖
‖A‖

eT‖A‖

(ii) It’s just the consequence of (ii).

Theorem 2.71: Assume T = T (x0). There exists a constant M = M(T )> 0 such that

‖x(t)− x(0)‖ ≤ M t ∀ 0≤ t ≤ T

i.e, x(.) is Lipschitz at 0. We can choose M = 2‖B‖e2T‖A‖.

Proof. In view of x(.) = y x0,u(.) is the optimal trajectory with optimal control u ∈ Uad , first
using (2.60) to have the following estimate for any t ∈ [0, T]

etA− 1=

∫ t

0

AesA ds =⇒ ‖etA− 1‖ ≤
∫ t

0

‖A‖es‖A‖ ds ≤ ‖A‖et‖A‖ t (2.35)

Now using this fact and the formula

x(t)− x(0) = (etA− 1)x0 +

∫ t

0

e(t−s)ABu(s) ds

we obtain the estimate (we have used proposition 2.70)

‖x(t)− x(0)‖ ≤ ‖etA− 1‖.‖x0‖+

�

�

�

�

�

∫ t

0

e(t−s)ABu(s) ds

�

�

�

�

�

≤ ‖
�

A‖et‖A‖ t
�

�

‖B‖
‖A‖

eT‖A‖
�

+

∫ t

0

e(t+s)‖A‖‖B‖ ds

≤ ‖B‖e(t+T )‖A‖ t + ‖B‖et‖A‖

∫ t

0

es‖A‖ ds

≤ ‖B‖e(t+T )‖A‖ t + ‖B‖e2t‖A‖ t

≤ 2‖B‖e(t+T )‖A‖ t ≤ 2‖B‖e2T‖A‖ t

So we can choose M = 2‖B‖e2T‖A‖ in the Lipschitz property at 0 of x(.).

From the locally Lipschitz property at 0 of the trajectory, we can deduce that it’s is Lipschitz
in whole [0, T].
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Proposition 2.72: Assume T = T (x0). There exists a constant M = M(T )> 0 such that

‖x(t)− x(t ′)‖ ≤ M(t − t ′) ∀ 0≤ t, t ′ ≤ T

i.e, x(.) is Lipschitz in [0, T] with constant M = ‖B‖e2T‖A‖.

Proof. The proof is straight-forward, assume 0 ≤ t < t ′ ≤ T , by principle of optimality
2.69, we have

T (x(t)) = T − t

and if we consider the new control

v(s) =

¨

u(s+ t) 0≤ s ≤ T − t
0 otherwise

then T (yx(t),v(T − t)) = 0, i.e v is the optimal control which steer x(t) to the origin in time
T − t, thus x(t) ∈ ∂R(T − t). Now also by proposition 2.70 we obtain

‖x(t)‖ ≤
‖B‖
‖A‖

e(T−t)‖A‖ ≤
‖B‖
‖A‖

eT‖A‖

Consider the trajectory z(.) = yx(t),v(.), we have

z(0) = x(t) and z(t ′ − t) = x(t ′)

Thus, by using theorem 2.71 we obtain

‖x(t ′)− x(t)‖= ‖z(t ′ − t)− z(0)‖ ≤ 2‖B‖e2T‖A‖ · |t ′ − t|

Therefore we conclude that x(.) is Lipschitz in [0, T] with constant M = 2‖B‖e2T‖A‖.

As a corollary, we obtain the absolutely continuous of the trajectory, first recall that a func-
tion f : [a, b] −→ Rn is said to be absolutely continuous if for every ε > 0, there exists
δ > 0 such that for any {(ak, bk)}mk=1 is the collection of finite disjoint subintervals of [a, b],
then

m
∑

k=1

|bk − ak|< δ =⇒
m
∑

k=1

‖ f (bk)− f (ak)‖< ε

If f is Lipschitz with constant C , then for any given ε > 0, we just choose δ = ε
2C , then

the absolutely continuous property of f will follow. Thus, the Lipschitz property implies
absolutely continuous property of the trajectory.

Proposition 2.73: Given x0 ∈ Rn, T (x0) = T and u ∈ Uad is a optimal control of x0. Then
the trajectory x(.) = y x0,u(.) : [0, T] −→ Rn is absolutely continuous.
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2.4 Definition of viscosity solutions

We consider the first order partial differential equation

F(x , u(x),∇u(x)) = 0 (2.36)

where F : Ω×R×Rn −→ R is a continuous function from an open set Ω ⊂ Rn

Definition 2.74: A function u ∈ C(Ω) is a viscosity subsolution of (2.36) if

F(x , u(x), p)≤ 0 for every x ∈ Ω, p ∈ D+u(x) (2.37)

Similarly, u ∈ C(Ω) is viscosity supersolution of (2.36) if

F(x , u(x), p)≥ 0 for every x ∈ Ω, p ∈ D−u(x) (2.38)

We say u is a viscosity solution of (2.36) if it is both a supersolution and a subsolution in
the viscosity sense.

Note that our definition is well-define, since for u ∈ C(Ω), the set Ω− and Ω+ are both non-
empty and dense in Ω. Furthermore, if u ∈ C1(Ω) is a function satisfies (2.36), then by
proposition 2.12, for any x ∈ Ω we have

D+u(x) = D−u(x) = {∇u(x)}

and clearly u is a viscosity solution of (2.36). Conversely, if u is a viscosity solution, then
(2.36) must hold for any x ∈ Ω such that u is differentiable at x .

Now we define the terminology of viscosity solutions for the general Hamilton-Jacobi equa-
tions of the form

ut +H(t, x , u,∇u) = 0 (t, x) ∈ (0, T )×Ω (2.39)

where ∇u denotes the gradient of u which respect to x . From lemma 2.13 we have the
following definition of viscosity solution for above equation

Definition 2.75: A continuous function u : (0, T )×Ω −→ R is a viscosity subsolution of
(2.39) if for every C1 function ϕ = ϕ(t, x) such that u−ϕ has a local maximum at (t, x),
one has

ϕt(t, x) +H(t, x , u,∇ϕ)≤ 0

Similarly, a continuous function u : (0, T )×Ω −→ R is a viscosity supersolution of (2.39) if
for every C1 function ϕ = ϕ(t, x) such that u−ϕ has a local minimum at (t, x), one has

ϕt(t, x) +H(t, x , u,∇ϕ)≥ 0
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3 Controllability

In this section, we want to study the basis controllability question: given the initial point x0

and a "target" S ⊂ Rn, is there a control which is steer the system to S = {0} in finite time?

Definition 3.1: Consider the linear system (2.25), we call this system is

• Small time controllable on 0 if 0 is an interior point of R

• Fully controllable if R= Rn.

To study the controllability of (2.25), we recall that x0 ∈ R(t) iff exist u(.) ∈ Uad such that

0= etAx0 +

∫ t

0

e(t−s)ABu(s) ds⇐⇒ x0 = −
∫ t

0

e−sABu(s) ds

A simple example for the small time controllability. Let n = 2, m = 1 and U = [−1, 1],
consider the linear control system

¨

x ′(t) = bu(t) t > 0

x(0) = x0

where b = (0,1)T , we can easily compute that R = {(x1, x2) : x1 = 0} so R cannot contain
a neighborhood of the origin, i.e the control system is not small time controllable in 0.

Now we introduce some algebraic condition which ensure that R contains a small ball with
the center being the origin. Let’s start with a simple case, that is B = b ∈ Rn.

3.1 Simple case B = b ∈ Rn

Proposition 3.2: Assuming that B = b ∈ Rn and U = [−1, 1], then

R ⊆ H(A, b) = span{b, Ab, . . . , An−1 b}

Proof. Fixing t > 0, recall that

R(t) =

�

x = −
∫ t

0

e−sAbu(s) ds : u ∈ Uad

�

(3.1)

Let P(λ) = det(λIn−A) is the characteristic polynomial of A, by Hamilton–Cayley theorem
we have P(A) = 0, i.e if we assume P(λ) = λn + an−1λ

n−1 + . . .+ a1λ+ a0 then

An + an−1An−1 + . . .+ a1A+ a0In = 0⇐⇒ An = −an−1An−1 − . . .− a1A− a0In

So clearly Ak can be written as a linear combination of {In, A, . . . , An−1} for all k ≥ n. Then
because e−sAb =

∑∞
k=0

(−s)kAk b
k! we conclude that e−sAb ∈ H(A, b) = span{b, Ab, . . . , An−1 b}.

From (3.1) we have R(t) ⊆ H(A, B) and complete the proof.
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From this fact, we have

Proposition 3.3: For every t > 0, 0 is an interior point of R(t) in H(A, b), i.e there exists
r(t)> 0 such that B(0, r(t))∩H(A, b) ⊂ R(t) ⊂ R.

Proof. Assuming 0 isn’t an interior point of R(t) in H(A, b), then clearly it’s must lie in
the boundary of R(t). Recall that R(t) is compact and convex in H(A, b), there exists a
supporting hyperplane at 0, i.e there exists a unit vector ξ ∈ H(A, b) such that

〈ξ, y〉 ≤ 0 ∀ y ∈ R(t) (3.2)

Now, let’s consider g(s) = 〈ξ, e−sAb〉 for all s ∈ [0,+∞). We can be easily seen that g is
continuous from R −→ R, so if we the define the control u := −sign

�

g(s)
�

for x ∈ [0,+∞)
then clearly u ∈ Uad . Now from (3.2) we have

y = −
∫ t

0

e−sAbu(s) ds ∈ R(t) =⇒ 〈ξ, y〉=
∫ t

0

|g(s)| ds ≤ 0

Since g is continuous, it implies that g ≡ 0 on [0, t], hence g(k) ≡ 0 on [0, t] for all k ∈ N.
Therefore 〈ξ, Ak b〉= 0 for all k = 0, n− 1, it’s a contradiction to ξ ∈ H(A, b).

By this proposition, if R = H(A, b) then the linear system (2.25) in case B = b ∈ Rn and
U = [−1, 1] is small time controllable, we lead to a result.

Theorem 3.4: Assuming that Re λ≤ 0 for each eigenvalue of A, then R= H(A, b).

Proof. Assume by a contradiction, we will introduce some steps, note that R ⊆ H(A, b) since
proposition 3.2

1. If R  H(A, b), then exists z ∈ H(A, b)\R. Since R is convex in H(A, b) ⊂ Rn, by
Hahn–Banach theorem, exist a hyperplane [F = µ] with F : Rn −→ R separate R and
{z}, i.e exists a vector ξ ∈ H(A, b) and a real number µ such that

〈ξ, y〉 ≤ µ= F(z) ∀ y ∈ R (3.3)

2. We will find some y ∈ R so that (3.3) is fails. Recall that y ∈ R iff exits a time t > 0
and a control α(.) ∈ Uad such that

y = −
∫ t

0

e−sAbα(s) ds =⇒ 〈ξ, y〉= −
∫ t

0

ξT e−sAbα(s) ds

Define v(s) = ξT e−sAb for all s ∈ [0,∞), then 〈ξ, y〉= F(y) = −
∫ t

0
v(s)α(s) ds.

3. We assert that v 6≡ 0. Suppose that v ≡ 0, then k–time differentiate the expression
v(s) = bT e−sAB with respect to s and set s = 0 to discover ξT Ak b = 0 for all k ∈ N. It’s
a contradiction since ξ ∈ H(A, b). So v 6≡ 0.
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4. Define α(s) = −sign(v(s)) for all s ∈ [0,∞). It’s obvious that α(.) ∈A, let

x0 = −
∫ t

0

e−sAbα(s) ds =⇒ F(x0) = 〈ξ, x0〉= −
∫ t

0

v(s)α(s) ds =

∫ t

0

|v(s)| ds

Clearly x0 ∈ R, we will prove that x0 make (3.3) to be fail.

5. To find t > 0 such that F(x0) > µ, we will prove that
∫∞

0
|v(s)| ds = +∞. Assume

it’s not true, then the following function is well–define

ϕ(t) =

∫ ∞

t

v(s) ds and ϕ′(t) = −v(t) ∀ t > 0

Take p(λ) = det(A−λIn) to be the characteristic polynomial of A. Then according to
the Caley–Hamilton theorem p(A) = 0. So we have

p
�

−
d
d t

�

v(t) = p
�

−
d
d t

�

�

ξT e−tAb
�

= ξT (p(A)e−tA)b ≡ 0

So v(t) is a solution of nth order ODE p
�

d
d t

�

v(t) = 0. So ϕ(t) is a solution of the
(n+ 1)th order ODE

�

−
d
d t

�

p
�

−
d
d t

�

ϕ(t) = 0

The polynomial λp(−λ) = 0 has n+ 1 solutions 0,λ1, . . . ,λn, so F(t) has the form

ϕ(t) =
n
∑

i=1

pi(t)e
−λi t (3.4)

where {pi}ni=1 are appropriate polynomials. On the other hand, we have

|ϕ(t)|=
�

�

�

�

∫ ∞

t

v(s) ds

�

�

�

�

≤
∫ ∞

t

|v(s)| ds −→ 0 as t −→∞

So ϕ(t) −→ 0 as t −→ ∞, but since Re (λi) ≤ 0, we have a contradiction to the
representation formula of (3.4). So

∫∞
0
|v(s)| ds = +∞.

From this fact, exist a time t and x0 such that 〈ξ, x0〉 = F(x0) > µ, it’s a contradiction to
(3.3)!. So R= H(A, b) and we complete the proof.

From above result, we can introduce a algebraic condition which ensures that the linear
control system (2.25) is small time controllable. First define the Controllability matrix is

G(A, B) = [B, AB, . . . An−1B]

which is a n×mn matrix.

So in case B = b ∈ Rn and U = [−1,1], we have G(A, b) is a n× n matrix and we have the
following result
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Theorem 3.5: Let B = b ∈ Rn and U = [−1,1], then the linear system (2.25) is small
time controllable if and only if

rank G(A, b) = n

Proof. Assume that the linear system (2.25) is small time controllable, i.e there exists δ > 0
such that B(0, r) ⊂ R ⊆ H(A, b) = span{b, Ab, . . . , An−1 b} by proposition 3.2. Then it follow
that rank G(A, b) = n. For the converse, if rank G(A, b) = n then H(A, b) = Rn and so
clearly 0 is an interior point of R by proposition 3.3, i.e the linear system (2.25) is small
time controllable.

Similarly, from proposition 3.4 we conclude that

Theorem 3.6: Let B = b ∈ Rn and U = [−1,1]. Assume that Re λ≤ 0 for each eigenvalue
of A and rank G(A, b) = n. Then the linear system (2.25) is fully controllable.

Proof. If rank G(A, b) = n then H(A, b) = Rn, and from proposition 3.4 we conclude that
R= H(A, b) = Rn.

3.2 General case B ∈Mn×m(R)

In general case B ∈Mn×m(R), we have a similar result of proposition 3.2 and 3.3

Proposition 3.7: For every t > 0, we have R(t) ⊂ H(A, B) and there exists rt > 0 s.t

B(0, rt)∩H(A, B) ⊂ R(t)

Proof. Write B = [b1, b2, . . . , bm] where bi ∈ Rn is columns of B for i = 1, m, note that
control u : [0,∞) −→ [−1,1]m can be representation of the form u = (u1, u2, . . . , um)T

where ui : [0,∞) −→ [−1,1]. One has that

−
∫ t

0

e−sABu(s) ds = −
m
∑

i=1

∫ t

0

e−sAbiui(s) ds

and hence R(t) = R(t)1+ . . .+R(t)m where R(t)i is the reachable set in time t of the linear
control system (2.25) with B = bi for all i = 1, m. On the other hand, note that clearly
H(A, B) = H(A, b1)+. . .+H(A, bm). Now from proposition 3.2, we have that R(t)i ⊆ H(A, bi)
for all i = 1, m, so clearly R ⊆ H(A, b). For the rest, from proposition 3.3 for each i ∈ 1, m
there exists ri > 0 such that

B(0, ri)∩H(A, bi) ⊂ R(t)i ⊆ R(t)

Let r =min{ri : i ∈ 1, m}, then clearly B(0, r)∩H(A, B) ⊂ R(t), the proof is complete.

Now we state some condition for small time controllability and fully controllability for the
linear control system (2.25) in case B ∈ M n×m(R).

Theorem 3.8: The linear control system (2.25) is small time controllable if and only if
rank G(A, B) = n.
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Proof. According to the proof of theorem 3.7, we have that R = R1 + . . .+Rm where Ri is
the reachable set of the linear control system (2.25) with B = bi for all i ∈ 1, m.
Now if rank G(A, B) = n, then H(A, B) = Rn, from proposition 3.7 we have that there exists
r > 0 such that B(0, r) = B(0, r) ∩ H(A, B) ⊂ R, i.e the linear system (2.25) is small time
controllable. For the converse, if the linear system (2.25) is small time controllable, i.e
there exists r > 0 such that B(0, r) ⊂ R, we will prove that rank G(A, B) = n. Assume by
a contradiction, one has dim H(A, B) < n, from proposition 3.7 we have R ⊆ H(A, B) so
dimR≤ n− 1, which is cannot contain any ball at 0, it’s a contradiction.

We conclude this section with a result about fully controllable condition of the linear system
(2.25) in general case.

Theorem 3.9: Assume that rank G(A, B) = n and Re λ≤ 0 for each eigenvalue of A. Then
the linear control system 2.25 is fully controllable, i.e R= Rn.

Proof. First note that if rank G(A, B) = n then H(A, B) = Rn, we will claim that R= H(A, B)
under this assumption that Re λ ≤ 0 for each eigenvalue of A. From 3.4 for all i ∈ 1, m we
have Ri = H(A, bi) where Ri is the reachable set of the linear control system (2.25) with
B = bi. So clearly

R= R1 + . . .+Rm = H(A, b1) + . . .+H(A, bm) = H(A, B) = Rn

and the proof is complete.

3.3 The continuity of the minimum time function

Now we study the continuity property of T .

Theorem 3.10: Let TR : R −→ [0,∞) be denoted by TR(x) = T (x) for all x ∈ R, then
x 7−→ TR(x) is continuous from R −→ R.

Proof. First we claim that TR is continuous at 0. Indeed, let {xk} ⊂ R be a sequence con-
verging to 0, recall that for every t > 0 there exists r(t)> 0 such that

B(0, r(t))∩H(A, B) ⊂ R(t)

Let {tk} be the sequence of real numbers converging to 0 such that xk ∈ R(tk), it implies
that 0≤ TR(xk)≤ tk for all k ∈ N. So since tk −→ 0, hence TR is continuous at 0.

Now assume x ∈ R\{0}, for z ∈ R such that TR(z) ≥ TR(x). Let ux ∈ Uad such that
y x ,ux (T (x)) = 0, i.e

y x ,ux (T (x)) = eT (x)Ax +

∫ T (x)

0

e(T−s)ABux(s) ds = 0⇐⇒
∫ T (x)

0

e(T−s)ABux(s) ds = −eT (x)Ax

Consider the trajectory yz,ux (.) and define z = yz,ux (T (x)) we can see that

z = yz,ux (T (x)) = eT (x)Az +

∫ T (x)

0

e(T−s)ABux(s) ds = eT (x)A(z − x)
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So we have ‖z‖ ≤ eT (x)‖A‖‖z − x‖= δz. By dynamics programming principle we have

T (z)≤ T (x) + T (z) =⇒ T (z)− T (x)≤ T (z)≤ sup
z∗∈B′(0,δz)

T (z∗) (3.5)

Similarly, if z ∈ R such that T (z)≤ T (x), let uz ∈ Uad such that yz,uz(T (z)) = 0, i.e

yz,uz(T (z)) = eT (z)Az +

∫ T (z)

0

e(T−s)ABuz(s) ds = 0⇐⇒
∫ T (z)

0

e(T−s)ABuz(s) ds = −eT (z)Az

Consider the trajectory y x ,uz(.) and define x = y x ,uz(T (z)) we can see that

x = y x ,uz(T (z)) = eT (z)Ax +

∫ T (z)

0

e(T−s)ABuz(s) ds = eT (x)A(x − z)

So we have ‖x‖ ≤ eT (x)‖A‖‖z − x‖ ≤ eT (x)‖A‖‖z − x‖ = δz. By dynamics programming
principle we have

T (x)≤ T (z) + T (x) =⇒ T (x)− T (z)≤ T (x)≤ sup
z∗∈B′(0,δz)

T (z∗) (3.6)

From (3.5) and (3.6) we conclude that for all z ∈ R we have

|TR(x)− TR(z)| ≤ sup
z∗∈B′(0,δz)

T (z∗)

where δz = eT (x)‖A‖‖z − x‖, since TR is continuous at 0, we have TR is continuous at x .

Finally, if rank G(A, B) = n and Reλ≤ 0 for each eigenvalue of A, we haveRn = H(A, B) = R,
so the time minimum function TR will continuous on Rn.

Proposition 3.11: Let T : R −→ R is the continuous minimum time function for the
control system (2.25). If this system satisfies Re λ ≤ 0 for each eigenvalue λ of A, and the
Rank-Kalman’s condition, that is

rank G(A, B) = n

then R= Rn, thus T : Rn −→ R is continuous.
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4 Optimal controls

4.1 Bang–Bang principle for linear control systems

The control u ∈ Uad is called bang–bang if for each time t ≥ 0, we have |ui(t)| = 1 for all
i = 1, m, where

u(t) =





u1(t)
...

um(t)





Theorem 4.1 (Bang–bang principle): Given any x ∈ R, then there exists a bang–bang
control u which steer x to the origin.

Recalling that
R= R1 +R2 + . . .+Rm

where Ri is the reachable set of the system (2.25) with B = bi for all i = 1, m. So to prove
Bang–bang principle, we only need to show in the case of B = b ∈ Rn and U = [−1,1]. In
this case, recall that for every t > 0 we have

R(t) ⊆ H(A, b) = span {b, Ab, . . . , An−1 b}

Proposition 4.2: For every t > 0, consider the reachable set R(t). Let x be on the bound-
ary of R(t) in the space H(A, b). Then exists an bang–bang control which steers x to the
origin in time t.

Proof. Clearly R(t) is convex in H(A, b), thus for every x ∈ ∂R(t), exists a unit vector
ξx ∈ H(A, b) suth that

(ξx)
T · (y − x)≤ 0 ∀ y ∈ R(t) (4.1)

Note that x = −
∫ t

0
e−sAbu(s) ds, where u : [0, t) −→ U is measurable. Let’s consider

g : R −→ R
s 7−→ ξT

x e−sAb

It’s easy to check that g is a continuous mapping. Further more, it’s infinitely differentiable,
so we claim that the set Ker g = {s ∈ R : g(s)}= 0 is finite. Indeed, if this set is infinite, we
can choose a sequence {sn} ⊂ Ker g such that sn < sn+1 for any n ∈ N. From mean–value
theorem, we have sk,k+1 ∈ (sk, sk + 1) such that

g ′s12 = g ′(s23) = g ′(s34) = . . .= g ′(sk,k+1) = . . . ∀ k ∈ N

So similarly, we obtain a increase sequence tk such that g(n−1)(tk) = 0 for all k ∈ N, i.e
ξT

x · A
k b = 0 for all k = 0, 1,2 . . . , n − 1. It’s a contradiction since ξx ∈ H(A, b) so cannot

orthogonal to any column of matrix [b, Ab, A2 b, . . . , An−1 b].

Define
u(s) = −sign g(s) ∀ s ∈ [0,+∞) (4.2)
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Since g is continuous, it’s clearly u ∈ Uad , hence y = −
∫ t

0
e−sAbu(s) ds ∈ R(t). Since (4.1)

ξT
x · (y − x)≤ 0⇐⇒

∫ t

0

ξT
x

�

− e−sAbu(s) + e−sAbu(s)
�

ds ≤ 0

⇐⇒
∫ t

0

|g(s)|.
�

1+ sign(g(s))u(s)
�

ds ≤ 0

Clearly 1+ sign(g(s))u(s)≥ 0 since u(x) ∈ [−1,1], so we obtain

|g(s)|.
�

1+ sign(g(s))u(s)
�

= 0 for a.e s ∈ [0, t]

Since Ker g is finite, we also have

1+ sign(g(s))u(s) = 0 for a.e s ∈ [0, t]⇐⇒ u(s) = u(s) for a.e s ∈ [0, t]

Therefore, x is also steered to the origin by a bang–bang control u.

Note that we also obtain that any control steer x to the origin in this case is a.e bang–bang.
Now, we assert a property of R(t) base on above proposition.

Proposition 4.3: For every t > 0, the reachable set R(t) is strictly convex in space H(A, b)

Proof. Let x0 6= y0 in R(t) which respect to control u, v, i.e

x0 = −
∫ t

0

e−sAbu(s) ds y0 = −
∫ t

0

e−sAbv(s) ds (4.3)

Given λ ∈ (0,1), assume that there exist a point z = λx0+(1− t)λy0 ∈ ∂R(t), we will lead
to a contradiction. Indeed, z is respect to the control α = λu+ (1− λ)v, since z ∈ ∂R(t),
from proposition (4.2) we obtain that α is a bang–bang control, i.e for a.e s ∈ [0, t]we have
|α(s)|= 1. Note that max{|u(s)|, |v(s)|} ≤ 1 for all s ∈ [0, 1], so

|α(s)|= |λu(s) + (1−λ)v(s)| ≤ λ|u(s)|+ (1−λ)|v(s)| ≤ 1

hence we also have |u(s)|= |v(s)|= 1 for a.e s ∈ [0, t], i.e u, v are also bang–bang controls.
Now we also have u(s) = v(s) for a.e s ∈ [0, t] because

α(s) = 1=⇒ 1= λu(s) + (1−λ)v(s)≤ λ+ (1−λ) = 1=⇒ u(s) = v(s) = 1

α(s) = −1=⇒−1= λu(s) + (1−λ)v(s)≥ −λ− (1−λ) = −1=⇒−u(s) = −v(s) = −1

So from (4.3) we obtain x0 = y0, it’s contradiction. Hence R(t) is stritly convex in H(A, b).

We can easily prove proposition 4.3 by using the property of the strictly convex set, by
proposition 2.19, indeed
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Proof based on proposition 2.19. Let x ∈ ∂R(t) arbitrary, then from proposition 4.2, there
exists a bang bang control u(.) steer x to the origin in time t, i.e

x = −
∫ t

0

esAbu(s) ds

Consider a supporting hyperplane of R(t) at x , given by the unit normal vector ξ. All we
need is prove that

〈ξ, y〉< 〈ξ, x〉 ∀ y ∈ R(t)

Assume by contradiction that there exists y ∈ R(t) such that 〈ξ, x〉= 〈ξ, y〉. Note that also
from proposition 4.2, we have u(s) = −sign g(s) a.e in [0, t], where

g(s) = ξT · esAb

So if 〈ξ, x〉= 〈ξ, y〉, assume y is respect to the control v, we must have

−
∫ t

0

g(s)u(s) ds = −
∫ t

0

g(s)v(s) ds =

∫ t

0

|g(s)| ds =⇒
∫ t

0

|g(s)|
�

1+sign(g(s))v(s)
�

ds = 0

Since sign(g(s))v(s) + 1≥ 0 for all s ∈ [0, t], we must have

sign(g(s))v(s) = −1 a.e in [0, t] =⇒ v(s) = −sign(g(s)) = u(s) a.e in [0, t]

And clearly from this we have x = y , it’s a contradiction.

Finally, from propositions (4.2) we obtain a general result in the case x ∈ R.

Theorem 4.4: Let B = b ∈ Rn and U = [−1,1]. Then for every point x ∈ R =
⋃

t≥0 R(t),
there exists a bang–bang control which steers x to the origin.

Proof. We claim that for every λ > 0, there exists a number ε > 0 such that

R(t) ⊆ (1+λ)R(t − ε) (4.4)

We will introduce some steps.

1. For a, b > 0, we have R(a+ b) ⊆ R(a) + e−aAR(b).
Indeed, let x ∈ R(a+ b), then exists a control u ∈ Uad such that

x = −
∫ a+b

0

e−sABu(s) ds = −
∫ a

0

e−sABu(s) ds−
∫ a+b

a

e−sABu(s) ds

= −
∫ a

0

e−sABu(s) ds− e−aA

∫ b

0

e−δABu(a+δ) dδ

Define v(s) := u(a+s) then clearly v ∈ Uad and this implies x ∈ R(a)+e−aAR(b) since

x = −
∫ a

0

e−sABu(s) ds− e−aA

∫ b

0

e−sABv(s) ds ∈ R(a) + e−aAR(b)
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2. For any t > 0, 0 is an interior point of R(t) in H(A, b), i.e theres exist rt > 0 such that
B(0, rt)∩H(A, b) ⊂ R(t).

3. For λ > 0, there exists ε > 0 such that R(ε) ⊆ λR(t − ε).
Indeed, for any x ∈ R(ε) where ε < 1 will be choosing later, we have

‖x‖=








∫ ε

0

e−sABu(s) ds









≤
∫ ε

0



e−sABu(s)


 ds ≤ εeε‖A‖‖B‖ ≤ (e‖A‖‖B‖)ε

So we have R(ε) ⊆ B(0, Mε) where M = e‖A‖‖B‖. Now from step [2.], exists r > 0
such that B(0, r)∩H(A, b) ⊂ R

�

t
2

�

. Finally, choose ε > 0 small such that

ε <min
§

t
2

,
rλ
M

ª

=⇒
t
2
< t − ε,

Mε
λ
< r

Then we have B(0, Mε) ⊂ λB
�

0, Mε
λ

�

, so

R(ε) = R(ε)∩H(A, b) ⊆ B(0, Mε)∩H(A, b) ⊂ λB
�

0,
Mε
λ

�

∩H(A, b) ⊂ λR
� t

2

�

⊂ λR(t−ε)

4. For any x ∈ R, we have e−εAx ∈ R.
Indeed, if x ∈ R(t), we have

e−εAx = −
∫ t

0

e−(ε+s)ABu(s) ds =

∫ t+ε

ε

e−δABu(δ− ε) dδ

Define a new control

v(s) :=

¨

u(s− ε) s ∈ [ε, t + ε]
0 s ∈ [0,ε)

then it’s clear that

e−εAx = −
∫ t+ε

0

e−sABv(s) ds ∈ R(t + ε) ⊂ R

5. From [4.], it’s follow that (e−εA−1)x ∈ H(A, b) since H(A, b) = span {b, Ab, A2 b, . . . , An−1 b}.

6. For λ > 0, there exists ε > 0 such that e−εAR(t − ε) ⊂ (1+λ)R(t − ε).
Indeed, let x ∈ R(t − ε), consider

e−εAx =
�

e−εA− 1
�

x + x

Let r > 0 such that B(0, r)∩H(A, b) ⊂ R
�

t
2

�

. On the other hand, we have R(t − ε) ⊂
B(0, M(t − ε)) ⊂ B(0, M t), so

sup
x∈R(t−ε)





�

e−εA− 1
�

x


 −→ 0 as ε −→ 0
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so we can choose ε > 0 so small such that (e−εA− 1)x ∈ B(0,λr) for all x ∈ R(t − ε),
then

(e−εA− 1)x ∈ B(0,λr)∩H(A, b) ⊆ λB(0, r)∩H(A, b) ⊆ λR
� t

2

�

⊂ λR(t − ε)

So we have
e−εAx =

�

e−εA− 1
�

x + x ⊂ λR(t − ε) +R(t − ε)

Assume that e−εAx = λa+ b where a, b ∈ R(t − ε), then

e−εAx = (λ+ 1)
�

λ

λ+ 1
a+

1
λ+ 1

b
�

∈ (λ+ 1)R(t − ε)

since R(t − ε) is convex. So we conclude that e−εAR(t − ε) ⊂ (λ+ 1)R(t − ε).

Finally, we prove (4.4), indeed, let a = ε and b = t − ε in step [1.], we have

R(t) ⊆ R(ε) + e−εAR(t − ε)

Now from step [3.] and [6.] there exists ε > 0 such that

R(ε) ⊆
λ

2
R(t − ε) and e−εAR(t − ε) ⊆

�

λ

2
+ 1

�

R(t − ε)

So we have

R(t) ⊆ R(ε) + e−εAR(t − ε) ⊆
λ

2
R(t − ε) +

�

λ

2
+ 1

�

R(t − ε) ⊂ (λ+ 1)R(t − ε)

since R(t − ε) is convex. We complete the proof of (4.4).
Now, let 0 6= x ∈ R=

⋃

t≥0 R(t), we will prove that there exists s such that x ∈ ∂R(s), and
from 4.2 we have a bang–bang control which steers x to the origin. To see this, let

t = inf{δ > 0 : x ∈ R(δ)} (4.5)

It’s easy to see that x ∈ R(t),(theorem 2.29). Now, we claim that x ∈ ∂R(t), indeed,
assume that there exists r > 0 such that B(x , r) ⊂ R(t), define λ := r

2‖x‖ , we have

(λ+ 1)x ∈ B(x , r) ⊂ R(t)

From (4.4), there exists ε > 0 such that

(λ+ 1)x ∈ R(t) ⊆ (λ+ 1)R(t − ε) =⇒ x ∈ R(t − ε)

It’s a contradiction to (4.5), so we conclude that x ∈ ∂R(t).

From this, we have a simple but very useful fact

Remark 4.5: We have conclude that if x ∈ R, then if we set t = inf{δ > 0 : x ∈ R(δ)} then
x ∈ ∂R(t), so by theorem 4.2, there exists a bang–bang control u∗ which steers x to 0 in time
t. Clearly the bang–bang control u∗ is an optimal control. Since t = inf{δ > 0 : x ∈ R(δ)}.
So we obtain

Theorem 4.6: For every point x ∈ R, there exists a bang–bang optimal control u∗ which
steers x to 0.
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4.2 The maximum principle for linear control systems

In this section, we introduce a useful principle, which is the consequence of Bang-bang
principle. From which, we can study easily about the switching time of the optimal controls.

Now recall theorem 4.6, we know that for every x ∈ R, there exists a bang–bang optimal
control u∗ which steer x to the origin. Further more, we have

Theorem 4.7 (The Pontryagin maximum principle for linear control systems): If u∗ is a
bang–bang optimal control which steer x to the origin in time t, there exists a nonzero
vector θ such that

〈θ , e−sABu∗(s)〉=max
λ∈U
〈θ , e−sABλ〉 (4.6)

for each time s ∈ [0, t]. Recall that U = [−1, 1]m in this case.

Proof. We introduce some steps

1. A point y ∈ R(t), respect to the control u if and only if

y = −
∫ t

0

e−sABu(s) ds (4.7)

2. We know that x ∈ ∂R(t), and R(t) is strictly convex in H(A, B), by supporting hy-
perplane theorem for strictly convex sets, there exists a unit vector ξ ∈ H(A, B) such
that

〈ξ, y〉< 〈ξ, x〉 ∀ y ∈ R(t)\{x}

Now from (4.7), we have

−
∫ t

0

ξT e−sABu(s) ds < −
∫ t

0

ξT e−sABu∗(s) ds ∀ u ∈ Uad

Setting θ = −ξ, we have
∫ t

0

θ T e−sAB
�

u∗(s)− u(s)
�

ds > 0 ∀ u ∈ Uad (4.8)

3. We claim that (4.6) is true, i.e

θ T e−sABu∗(s) =max
λ∈U

�

θ T e−sABλ
	

for a.e s ∈ [0, t]

Assuming by contradiction, there would exist a subset E ⊂ [0, t] of positive measure
such that

θ T e−sABu∗(s)<max
λ∈U

�

θ T e−sABλ
	

∀ s ∈ E (4.9)

For any s ∈ [0, t], the mapping gs : U −→ R where gs(λ) = θ T e−sABλ is continuous
on a compact set U = [−1,1]m, so it must achieve a maximum, denote by αs.
We want to construct a measurable control function v : E −→ U such that

gs · v(s) = αs for a.e s ∈ E
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Also note that for any s ∈ [0, t], the mapping g : s −→ gs from [0, t] −→ Rm is also
continuous and furthermore, it’s in C∞(0, t). And so similarly to the proof of theorem
4.2, we can see that the set Ker g is finite since θ ∈ H(A, B). In consider a simple case
at first

– Case m= 1, i.e U = [−1, 1], then clearly

gs(λ)≤ |gs| ⇐⇒ αs = |gs|

since it’s archived at λ = sign gs. Naturally, we can choose v(s) = sign gs form
E −→ U = [−1, 1]. Clearly v is measurable.

– Case U = [−1,1]m, we can assume that gs is presented by the vector

gs = (a1(s), a2(s), . . . , am(s))
T

where s 7−→ ai(s) are continuous mappings for i = 1, m. Then for any λ =
(λ1, . . . ,λm) ∈ U , we have

θ T e−sABλ= gs(λ) =





a1(s)
...

am(s)



 · (λ1, . . . ,λm) =
m
∑

i=1

ai(s)λi ≤
m
∑

i=1

|ai(s)|

Soαs =
∑m

i=1 |ai(s)| since it’s archived at (λ1, . . . ,λm) = (sign a1(s), . . . , sign am(s)).
So clearly v(s) = (sign a1(s), . . . , sign am(s)) is measurable.

Now we design a new control u as follows

u(s) =

¨

u∗(s) s /∈ E
v(s) s ∈ E

Clearly u is measurable since v and E is measurable. Now from (4.8) and (4.9), we
have

∫ t

0

θ t e−sAB
�

u∗(s)− u(s)
�

ds =

∫

E

θ t e−sAB
�

u∗(s)− u(s)
�

ds ≥ 0

but for a.e s ∈ E we also have

θ t e−sABu∗(s)<max
λ∈U
{θ t e−sABλ}= θ t e−sABu(s) =⇒

∫

E

θ t e−sAB
�

u∗(s)− u(s)
�

ds ≤ 0

It’s a contradiction since µ(E)> 0.

Finally, (4.6) is true, the proof is complete.

From above fact, we can see that any optimal control u(.) corresponding to x0 must have
the following form

u(t) =









u1(t)
u2(t)

...
um(t)









and ui(t) = sign〈θ , e−tAbi〉
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where θ = −ζ and ζ ∈ NR(T ), and B = [b1, b2, . . . , bm] is the m columns of B. Also observe
that since we have defined any control which steer x0 to the origin in time T is optimal, so
we conclude

Corollary 4.8: If x0 ∈ ∂R(T ), then the control which is steer x0 to the origin in time T is
unique. Furthermore, it’s is bang–bang and has the following form

u(t) =









u1(t)
u2(t)

...
um(t)









and ui(t) = −sign〈ζ, e−tAbi〉

where 0 6= ζ is any normal vector in NR(T )(x0). And B = [b1, . . . , bm] are m-columns.

Surprisingly, the converse of this fact is also true and have many interesting consequences.

Theorem 4.9: If x ∈ R is steered to the origin in time T , and the corresponding control
u∗ has the form (where B = [b1, . . . , bm] are m-columns)

u∗(t) =









u∗1(t)
u∗2(t)

...
u∗m(t)









and u∗i (t) = −sign〈ζ, e−tAbi〉

where ζ is a non-zero vector in H(A, B). Then we must have x ∈ ∂R(T ) and ζ ∈ NR(T )(x),
thus the above control u is optimal and unique.

Proof. We have T (x) ≤ T , we need to prove T (x) = T , this implies x ∈ ∂R(T ). Assume
T (x) = s < T , then x ∈ ∂R(s), by using theorem 4.4. Now clearly x can be presented in
form

x = −
∫ T

0

e−tABu∗(t) d t

For any y ∈ R(T ), there exists a control v ∈ Uad such that

y = −
∫ T

0

e−tABv(t) d t

Now we have

〈ζ, y − x〉=

®

ζ,

∫ T

0

e−tAB
�

u∗(t)− v(t)
�

¸

=
m
∑

i=1

∫ T

0




ζ, e−tAbi

�

u∗i (t)− vi(t)
��

d t

=
m
∑

i=1

∫ T

0

�




ζ, e−tAbi

�

u∗i (t)−



ζ, e−tAbi

�

vi(t)

�

d t

=
m
∑

i=1

∫ T

0

�

−
�

�




ζ, e−tAbi

��

�−



ζ, e−tAbi

�

vi(t)

�

d t ≤ 0
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Since R(s) ⊂ R(T ), we conclude

〈ζ, y − x〉 ≤ 0 ∀ y ∈ R(s)

thus, ζ ∈ NR(s)(x). Now using corollary 4.8, the unique control v∗ which steer x to the
origin in time s is also optimal and has the form

v∗(t) =









v∗1(t)
v∗2(t)

...
v∗m(t)









and v∗i (t) = −sign〈ζ, e−tAbi〉= u∗i (t)

From this we easily see that u∗(t)≡ v∗(t) for all t ∈ [0, s]. So this implies that

∫ T

s

e−tABu∗(t) d t = 0

Form this we have

0=

∫ T

s




ζ, e−tABu∗(t)
�

d t =
m
∑

i=1

∫ T

s




ζ, e−tAbi

�

u∗i (t) d t = −
m
∑

i=1

∫ T

s

�

�




ζ, e−tAbi

��

� d t

The final equation implies

∫ T

s

�

�




ζ, e−tAbi

��

� d t = 0 ∀ i = 1, m

i.e,



ζ, e−tAbi

�

= 0 ∀ i = 1, m,∀ t ∈ (s, T )

Doing similarly to the proof of theorem 3.4, it’s give a contradiction since ζ ∈ H(A, B). Thus
T (x) = T , i.e, x ∈ ∂R(T ) and ζ ∈ NR(T )(x).

In 4.5, we will use this result to prove a nice fact, that is every point is optimal if R= Rn.

4.3 Application to Rocket railroad car problem

4.3.1 The switching time of the bang–bang optimal control

Now we will extract the interesting fact that the maximum principle enable us to know
the switching time of the bang–bang optimal control, let’s recall the rocket rail road car
problem

¨

z′(t) = A · z(t) + b · u(t)
z(0) = (x0, v0)T
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where u(t) ∈ U = [−1, 1] and

z(t) =
�

x(t)
v(t)

�

A=
�

0 1
0 0

�

b =
�

0
1

�

Let’s consider the controllability matrix

G =
��

0
1

�

;
�

0 1
0 0

��

0
1

��

=
�

0 1
1 0

�

Note that because rank G = 2, and also the condition Re λ ≤ 0 for eigenvalue λ of A is
satisfied since λ = ±i. Thus we have R = H(A, b) = R2. Let u∗ be a bang–bang optimal
control for z0, according to the maximum principle, then there exists θ ∈ R2 such that

θ T e−sAbu∗(s) =max
|λ|≤1
{θ T e−sAbλ} ∀ s ∈ [0, T (z0)] (4.10)

Let’s compute e−sA, observe that A0 = I2, An = 0 for all n≥ 2, so

e−sA = I − sA=
�

1 −s
0 1

�

Assume θ = (θ1,θ2) then

θ T e−sAb = (θ1,θ2)
�

1 −s
0 1

��

0
1

�

= −sθ1 + θ2

So by (4.10) we have

(−sθ1 + θ2)u
∗(s) =max

|λ|≤1
{(−sθ1 + θ2)λ}=⇒ u∗(s) = sign(−sθ1 + θ2)

where sign is the sign function, i.e

sign(x) =







1 x > 0

0 x = 0

−1 x < 0

From this fact, we easily see that the bang–bang optimal control u∗ switches at most once.
Further more, if θ1 = 0 then u∗ is a constant, 1 or -1.

Now from this, the geometric solution of rocket problem that we had introduced before in
2.3.3 must have been a bang–bang optimal control.

4.3.2 The reachable sets

Now we want to draw the reachable set R(t) of the rocket rail road car problem.

Note that R(t) is compact, strictly convex in R2. So to know R2, we only need to know the
boundary ∂R(t).
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Let’s find the boundary ∂R(t). A point z0 = (x0, v0) ∈ ∂R(t) if and only if

z0 = −
∫ t

0

e−sAbu(s) ds

where u(s) is a bang–bang optimal control, i.e u switches at most once. So such an bang–
bang optimal control like this must have one of two forms

(a) ua(s) =

¨

1 on [0, t0]
−1 on (t0, t]

or (b) ub(s) =

¨

−1 on [0, t0]
1 on (t0, t]

So the set of all point on ∂R(t) is compatible to the set of all admissible control u of above
forms. Let’s finding z0 in each case

z0 = −
∫ t

0

e−sAbu(s)ds = −
∫ t

0

�

1 −s
0 1

��

0
1

�

u(s) ds = −
∫ t

0

�

−s
1

�

u(s) ds

(a) If u= ua for t0 ∈ [0, t], we have

x0 = −
∫ t

0

−su(s) ds = −
∫ t0

0

−s ds−
∫ t

t0

s ds = t2
0 −

t2

2

v0 = −
∫ t

0

u(s) ds = −
∫ t0

0

1 ds−
∫ t

t0

−1 ds = t − 2t0

So (x0, v0) must lie on the curve (t0 ∈ [0, t])

(Ca) : x0 +
t2

2
=
� t − v0

2

�2

i.e (Ca) : v2
0 = 2t v0 + 4x0 + t2

(b) If u= ub for t0 ∈ [0, t], we have

x0 = −
∫ t

0

−su(s) ds = −
∫ t0

0

s ds−
∫ t

t0

−s ds = −t2
0 +

t2

2

v0 = −
∫ t

0

u(s) ds = −
∫ t0

0

−1 ds−
∫ t

t0

1 ds = −t + 2t0

So (x0, v0) must lie on the curve (t0 ∈ [0, t])

(Cb) : −x0 +
t2

2
=
� t + v0

2

�2

i.e (Cb) : v2
0 = −2t v0 − 4x0 + t2

It’s easy to see that (Ca) and (Cb) is symmetric through the origin.

For example, let’s consider the geometric presentation of ∂R(2)
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Figure 5: The boundary of R(2)

In this cases, the point A= (x0, v0) = (−2,2) which is respect to the control u= −1, and the
trajectory which is steer A to the origin just is the parabola v2 = −2x . Another observation,
consider (−1, 0) which is respect to the control

u(s) =

¨

1 on [0, 1]
−1 on (1, 2]

Then the trajectory which steer (−1,0) to the origin is first go on the parabola v2 = 2x +2,
then when first meet the parabola v2 = −2x , switching to it parabola and go to the origin.

We will see some geometric presentation of R(t) when t is increasing.
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Figure 6: Reachable set for t = 3, 2,1.5, 1

We can see that for t −→ 0, the reachable set R(t) is decreasing but always contain 0 as an
interior point, as we had proved before.

4.3.3 The minimum time function

Now we can find the formula for the minimum time function for the rocker rail road car
problem, by using above results.

Let z0 = (x0, v0) ∈ R2, the the minimum time T (z0) is exactly the time t, where (x0, v0)
lie on the boundary ∂R(t), in other words, we can see that (x0, v0) must lie on either
(C t

a) : t2 + 2t v0 + 4x0 − v2
0 = 0 or (C t

b) : t2 − 2t v0 − 4x0 − v2
0 = 0.

So given (x0, v0), we only need to solve two equations

(Ca) : t2 + 2t v0 + 4x0 − v2
0 = 0 ∆′a = 2(v2

0 − 2x0) (4.11)

(Cb) : t2 − 2t v0 − 4x0 − v2
0 = 0 ∆′b = 2(v2

0 + 2x0) (4.12)

Then choosing the minimum positive solution of these solutions, it’s must be T (x0, v0). We
also note that at least one of these equations must have positive solution, since

∆′a +∆
′
b = 4v2

0 ≥ 0
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so at least one equation must have solution, and the existence of positive solution following

• If∆′a ≥ 0. If∆′a > 0, then clearly 4x0− v2
0 < 0, so the equation (4.11) has two distinct

solutions, one of them is positive clearly, given by

t = −v0 +
q

2(v2
0 − 2x0)

If ∆′a = 0, i.e v2
0 = 2x0, so x0 ≥ 0, then (4.11) become t2 + 2t v0 + v2

0 = (t + v0)2 = 0

– If v0 < 0, then t = −v0 > 0 is a positive solution.

– If v0 > 0, then (4.12) become t2 − 2t v0 − 3v2
0 = 0, i.e (t + v0)(v − 3v0) = 0, so

t = 3v0 > 0 is a positive solution. It’s can be also given by

t = v0 +
q

2(v2
0 + 2x0) = 3v0

– If v0 = 0, then x0 = 0 and we have nothing to do in case (x0, v0)≡ (0,0).

• If ∆′b ≥ 0. If ∆′b > 0, then clearly −4x0 − v2
0 < 0, so the equation (4.12) has two

distinct solutions, one of them is positive clearly, given by

t = v0 +
q

2(v2
0 + 2x0)

If ∆′b = 0, i.e v2
0 = −2x0, so x0 ≤ 0 then (4.12) become t2− 2t v0+ v2

0 = (t − v0)2 = 0

– If v0 > 0, then t = v0 > 0 is a positive solution.

– If v0 < 0, then (4.11) become t2 + 2t v0 − 3v2
0 = 0, i.e (t − v0)(v + 3v0) = 0, so

t = −3v0 > 0 is a positive solution. It’s can be also given by

t = −v0 +
q

2(v2
0 − 2x0) = −3v0

– If v0 = 0, then x0 = 0 and we have nothing to do in case (x0, v0)≡ (0,0).

To summarize this fact, given (x0, v0), we have

t = T (x0, v0) =

¨

−v0 +
Æ

2(v2
0 − 2x0) if 2x0 < −v0|v0|

v0 +
Æ

2(v2
0 + 2x0) if 2x0 ≥ −v0|v0|

Now we have a geometric presentation of this formula.

From this presentation, we can see that the minimum time function is continuous as we
had proved before, but there some point at that it’s not differentiable.
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Figure 7: Geometric presentation of the minimum time function

Figure 8: Geometric presentation of the minimum time function
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We can see that along to the curves

v2 = −2x , v ≥ 0

v2 = 2x v ≤ 0

the minimum time function of the rocket car problem is not smooth. So this function is not
smooth in whole domain R, and even non-Lipschitz, as we will prove later. Furthermore,
in 5.2.1 we will prove that the union of these curves contains all points at which T is non–
Lipschitz.

4.4 Application to the Harmonic oscillator

4.4.1 The switching time of the bang–bang optimal control

Let’s consider the controllability matrix

G =
��

0
1

�

;
�

0 1
−1 0

��

0
1

��

=
�

0 1
1 0

�

Since rank G = 2, and also eigenvalues of A are ±i, so we have R = H(A, b) = R2. Let u∗

be a bang–bang optimal control for z0, according to the maximum principle, there exists
θ ∈ R2 such that

θ T e−sAbu∗(s) =max
|λ|≤1
{θ T e−sAbλ} ∀ s ∈ [0, T (z0)] (4.13)

Let’s compute e−sA, we have

A0 = I2 A1 =
�

0 1
−1 0

�

A2 =
�

−1 0
0 −1

�

= −I2 A3 = −A

So by induction, it’s easy to see that A4k+r = Ar for all k ∈ N and r = 0, 1,2,3. So we have

esA =
∞
∑

n=0

sn

n!
An =

∞
∑

k=0

s2k

(2k)!
A2k +

∞
∑

k=0

s2k+1

(2k+ 1)!
A2k+1 = I2

�∞
∑

k=0

(−1)ks2k

(2k)!

�

+ A

�∞
∑

k=0

(−1)ks2k+1

(2k+ 1)!

�

= (cos s) I2 + (sin s) A=
�

cos s sin s
− sin s cos s

�

So we have e−sA =
�

cos(−s) sin(−s)
− sin(−s) cos(−s)

�

=
�

cos s − sin s
sin s cos s

�

, assume θ = (θ1,θ2)T then

θ T e−sAb = (θ1,θ2)
�

cos s − sin s
sin s cos s

��

0
1

�

= −θ1 sin s+ θ2 cos s

By (4.13) we have

θ T e−sAbu∗(s) =max
|λ|≤1
{θ T e−sAbλ}=⇒ u∗(s) = sign (−θ1 sin s+ θ2 cos s)

Now, since the vector θ is choosing to be unit, i.e ‖θ‖2 = θ 2
1 +θ

2
2 = 1, so for simplify further

we may choose δ such that cosδ = −θ1 and sinδ = θ2. Then

u∗(s) = sign (−θ1 sin s+ θ2 cos s) = sign (cosδ sin s+ sinδ cos s) = sign (sin(s+δ))

From this, we ca deduce that when time s is increase, then every s pass through π–units of
time, then u∗ will be switch between +1 and -1.
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4.4.2 Geometric interpretation

We will figure out the geometric solution by this motion, by considering the case u≡ 1 and
u≡ −1.

Case u∗ ≡ 1. Our equation (2.24) becomes
¨

x ′(t) = v(t)
v′(t) = −x(t) + 1

=⇒
∂

∂ t

�

(−x(t) + 1)2 + v2(t)
�

= 0

So the motion must satisfy (x(t)− 1)2 + v2(t) = r2 for some constant r. I.e the trajectory
must lie on a circle center at (1,0).

Figure 9: The trajectory in case u∗ ≡ 1

Indeed, if u≡ 1 in [0, t0], then the trajectory in [0, t0] has the form

z(t) = etz0 +

∫ t

0

e(t−s)ABu∗(s) ds =⇒
�

x(t)
v(t)

�

=
�

x0 cos t + v0 sin t + 1− cos t
−x0 sin t + v0 cos t + sin t

�

for all t ∈ [0, t0]. This fact explains why is the orientation of this trajectory like this picture.

Case u∗ ≡ −1. Our equation (2.24) becomes
¨

x ′(t) = v(t)
v′(t) = −x(t)− 1

=⇒
∂

∂ t

�

(x(t) + 1)2 + v2(t)
�

= 0

So the motion must satisfy (x(t) + 1)2 + v2(t) = r ′2 for some constant r ′. I.e the trajectory
must lie on a circle center at (-1,0).
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Figure 10: The trajectory in case u∗ ≡ −1

Indeed, if u≡ −1 in [0, t0], then the trajectory in [0, t0] has the form

z(t) = etAz0 +

∫ t

0

e(t−s)ABu∗(s) ds =⇒
�

x(t)
v(t)

�

=
�

x0 cos t + v0 sin t − 1+ cos t
−x0 sin t + v0 cos t − sin t

�

for all t ∈ [0, t0]. This fact explains why is the orientation of this trajectory like this picture.

Summary. In summary, to get to the origin we must switch our control u∗ back and forth
between the values ±1, causing the trajectory to switch between lying on circles centered at
(±1,0). The switches occur each π units of time. Too understand deeply, we construct an
control like this when z0 = (cos4+3, sin 4)T . First, assume control u= 1, the trajectory lies
on the circle center as (1, 0) pass through z0, with the orientation like above figure. Until
the time t = π, the control switches to 1 and the trajectory switches to the circle center as
(−1, 0) pass through the point z(π), as following picture

Figure 11: The trajectory steers (cos 4+ 3, sin4) to the origin in time 4s
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Another example by z0 =
�

−2 cos1
−2 sin1

�

in time t = π. We have

�

−2 cos1
−2sin 1

�

u=1
−→

1s

�

−1− cos1
sin1

�

u=−1
−→
(π−1)s

�

0
0

�

Figure 12: The trajectory steers (−2 cos1,−2sin 1) to the origin in time πs

4.4.3 The reachable sets

Now we want to draw the reachable set R(t) of this motion, note that since R = R2, so
there nothing to draw about R. Note that R(t) is compact, strictly convex in R2. So to
know R2, we only need to know the boundary ∂R(t).
Let’s find the boundary ∂R(t). A point z0 = (x0, v0) ∈ ∂R(t) if and only if

z0 = −
∫ t

0

e−sAbu(s) ds

where u(s) is a bang–bang optimal control. From the fact that u∗(s) = sign (sin(s + δ)),
given a time t > 0, the geometric property of R(t) depend on the relation about t and π.

The reachble set R(π) First we draw R(t) for t = π. Consider vertexs, it’s consist of two
kinds of points, one of them is respect to the control u = 1 in [0,π], another is respect to
the control u = −1 in [0,π]. And there are two cases about a vertexs z0 ∈ ∂R(π) with no
switch time during the motion

z0 = −
∫ π

0

e−sAb ds =
�

2
0

�

or z0 =

∫ π

0

e−sAb ds =
�

−2
0

�
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Now, all points of R(π) except two vertexs has exactly one switch times. I.e it must has
once of two form

(a) ua(s) =

¨

1 on [0, t]
−1 on (t,π]

or (b) ub(s) =

¨

−1 on [0, t]
1 on (t,π]

So the set of all point on ∂R(π) is compatible to the set of all admissible control u of above
forms. Let’s finding z0 in each case

z0 = −
∫ t

0

e−sAbu(s)ds = −
∫ π

0

�

cos s − sin s
sin s cos s

��

0
1

�

u(s) ds =

∫ π

0

�

sin s
− cos s

�

u(s) ds

(4.14)

(a) u= 1 on [0, t] and u= −1 on [t,π], we have

za
0 =

�

− cos s|t0 + cos s|πt
− sin s|t0 + sin s|πt

�

=
�

−2 cos t
−2 sin t

�

So we have za
0 = (x0, v0) must live on the curve (Ca) : v = −

p
4− x2, v ≤ 0.

(b) u= −1 on [0, t] and u= 1 on [t,π], we have

zb
0 =

�

cos s|t0 − cos s|πt
sin s|t0 − sin s|πt

�

=
�

2cos t
2 sin t

�

So we have zb
0 = (x0, v0) must live on the curve (Cb) : v =

p
4− x2, v ≥ 0.

It’s easy to see that they are symmetric through the origin as we have prove before.
Finally, we draw the boundary of R(π) as the circle center at (0,0) has the radius of 2.

Figure 13: The reachable set R(π) with boundary consist of two semicircles Ca and Cb
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The reachble set R(t) where t < π Doing similarly from above steps, since in [0, t]
where t < π, the maximum principle says that the motion switches at most once.

Now, all points of R(t) has exactly one switch times. I.e it must has once of two form

(a) ua(s) =

¨

1 on [0, t0]
−1 on (t0, t]

or (b) ub(s) =

¨

−1 on [0, t0]
1 on (t0, t]

So the set of all point on ∂R(π) is compatible to the set of all admissible control u of above

forms. Let’s finding z0 in each case

z0 = −
∫ t

0

e−sAbu(s)ds = −
∫ t

0

�

cos s − sin s
sin s cos s

��

0
1

�

u(s) ds =

∫ t

0

�

sin s
− cos s

�

u(s) ds

(a) u= 1 on [0, t0] and u= −1 on [t0, t], we have

za
0 =

�

− cos s|t0
0 + cos s|tt0

− sin s|t0
0 + sin s|tt0

�

=
�

−2 cos t0 + 1+ cos t
−2sin t0 + sin t

�

So we have za
0 = (x0, v0) must live on the curve

(Ca) :
�

x0 − (1+ cos t)
�2
+ (v0 − sin t)2 = 4

where
v0 − sin t = −2sin t ≤ 0

since t ∈ [0,π).

(b) u= −1 on [0, t0] and u= 1 on [t0, t], we have

zb
0 =

�

cos s|t0
0 − cos s|tt0

sin s|t0
0 − sin s|tt0

�

=
�

2 cos t0 − 1− cos t
2sin t0 − sin t

�

So we have za
0 = (x0, v0) must live on the curve

(Cb) :
�

x0 − (−1− cos t)
�2
+
�

v0 − (− sin t)
�2
= 4

where
v0 + sin t = 2 sin t ≤ 0

since t ∈ [0,π).

It’s easy to see that they are also symmetric through the origin as we have prove before.
Finally, we draw the boundary of R(t) as following, two vertexs are respect to t0 = 0 and
t0 = t.

�

−1+ cos t
sin t

�

and
�

1− cos t
− sin t

�

85



Figure 14: The reachable set R(2) (2< π)

Figure 15: The reachable set R(t) where t = 1, 2,π
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The reachble set R(t) where π < t ≤ 2π When π < t ≤ 2π, then also from maximum
principle, we conclude that on the boundary, the motion switches at most two times. We
have four cases

• Case 1. 0≤ t0 ≤ t −π and

Figure 16: The control u in case 1.

Easily from (4.14) we have

(C1) z0 =
�

x0

v0

�

=
�

−4cos t0 + 1− cos t
−4 sin t0 − sin t

�

t0 ∈ [0, t −π]

This is an arc center as (1− cos t,− sin t) with radius 4.

• Case 2. 0≤ t0 ≤ t −π and

Figure 17: The control u in case 2.

Easily from (4.14) we have

(C2) z0 =
�

x0

v0

�

=
�

4 cos t0 − 1+ cos t
4sin t0 + sin t

�

t0 ∈ [0, t −π]

This is an arc center as (−1+ cos t, sin t) with radius 4.

• Case 3. t −π≤ t0 ≤ π and

Figure 18: The control u in case 3.

Easily from (4.14) we have

(C3) z0 =
�

x0

v0

�

=
�

−2cos t0 + cos t + 1
−2 sin t0 + sin t

�

t0 ∈ [t −π,π]

This is an arc center as (1+ cos t, sin t) with radius 2.

• Case 4. t −π≤ t0 ≤ π and
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Figure 19: The control u in case 4.

Easily from (4.14) we have

(C4) z0 =
�

x0

v0

�

=
�

2 cos t0 − cos t − 1
2sin t0 − sin t

�

t0 ∈ [t −π,π]

This is an arc center as (−1− cos t,− sin t) with radius 2.

It’s easy to see that (C1), (C2) are symmetric through the origin, and the same to (C3) and
(C4). They make a closed curve, and R(t) is follow

Figure 20: The boundary of the reachable set R(π+ 2).

As we can seen, the boundary of R(t) seem to be "smooth" when t ≥ π, in the following
picture
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Figure 21: The boundary of the reachable set R(t) where t = 1,2,π, 4, 2+ pi, 2π.

The reachable set R(t) where 2π < t <∞ As we have seen from two above cases, we
just doing similarly to obtain that there exists a unique n ∈ N such that t ∈ (nπ, (n+ 1)π],
and there are almost four types of optimal control u∗. This make into two pairs, in which
pair two optimal controls are symmetric through 0.

Type 1. u has n+ 1 switching times. This type consist of two cases, which are symmetric
through 0, with 0< t0 < t − nπ

Figure 22: The controls in type 1.
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Easily we obtain the formula for z0 = (x0, v0) in case 1 from (4.14)

(C1) z0 =
�

x0

v0

�

=
�

−(2n+ 2) cos t0 + (−1)n cos t + 1
−(2n+ 2) sin t0 + (−1)n sin t

�

t0 ∈ [0, t − nπ] (4.15)

And since (C2) and (C1) are symmetric through 0, we obtain

(C2) z0 =
�

x0

v0

�

=
�

(2n+ 2) cos t0 − (−1)n cos t − 1
(2n+ 2) sin t0 − (−1)n sin t

�

t0 ∈ [0, t − nπ] (4.16)

Type 2. u has n switching times. This type consist of two cases, which are symmetric
through 0, with t − nπ < t0 < π

Figure 23: The controls in type 2.

Easily we obtain the formula for z0 = (x0, v0) in case 1 from (4.14)

(C3) z0 =
�

x0

v0

�

=
�

−2n cos t0 − (−1)n cos t + 1
−2n sin t0 − (−1)n sin t

�

t0 ∈ [t − nπ,π] (4.17)

And since (C3) and (C4) are symmetric through 0, we obtain

(C4) z0 =
�

x0

v0

�

=
�

2n cos t0 + (−1)n cos t − 1
2n sin t0 + (−1)n sin t

�

t0 ∈ [t − nπ,π] (4.18)

Note that at t = nπ, the boundary of R(t) is always the circle center at (0, 0)with the radius
of 2n. We have some geometric presentations of R(t) when t is large.
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Figure 24: The reachable set R(t) when t = 1, 2,π, 2π, 8, 3π, 10, 15.

4.4.4 The minimum time function

Now from the formula of initial point which is determine the boundary of R(t), we deduce
the formula for the minimum time function of this problem. We can estimate t and n in
view of formula from reachable sets in general by consider the minimum n ∈ N such that

2n≤
q

x2
0 + v2

0 = ‖z0‖< 2(n+ 1)

It’s implies nπ≤ t < (n+ 1)π. First, consider case 0< t ≤ π.

Case 0 < t ≤ π A point z0 = (x0, v0) ∈ ∂R(t) if and only if it can be presented in one of
two forms

(Ca)

¨

x0 = −2 cos t0 + 1+ cos t
v0 = −2sin t0 + sin t

(C b)

¨

x0 = 2cos t0 − 1− cos t
v0 = 2sin t0 − sin t
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which is respect to two kinds of optimal controls

(ua) ua(s) =

¨

1 s ∈ [0, t0]
0 s ∈ (t0, t]

(ub) ub(s) =

¨

0 s ∈ [0, t0]
1 s ∈ (t0, t]

We derive the equations for t in both cases

(x0 − (1+ cos t))2 + (v0 − sin t)2 = 4 (x0 + (1+ cos t))2 + (v0 + sin t)2 = 4

(x0, v0) ∈ S
�

(1+ cos t, sin t), 2
�

(x0, v0) ∈ S
�

(−1− cos t,− sin t), 2
�

((1+ cos t), sin t) ∈ S(z0, 2)∩ S((1,0), 1) ((−1− cos t),− sin t) ∈ S(z0, 2)∩ S((−1,0), 1)

where S(x , r) = {y ∈ R2 : ‖x − y‖ = r} denote the circle center at x with radius r. Note
that we have

S(z0, 2)∩ S(( 1, 0), 1) 6= ; ⇐⇒ 1≤ ‖z0 − ( 1,0)‖ ≤ 3

S(z0, 2)∩ S((−1,0), 1) 6= ; ⇐⇒ 1≤ ‖z0 − (−1,0)‖ ≤ 3

Since z0 ∈ R(π), we have ‖z0‖ ≤ 2. It’s easy to see that there always exists at least one of
two above equations has solution, from the triangle inequality.
In each cases, we need to find the intersection (x , y) of

(x , y) ∈ S(z0, 2)∩ S(( 1, 0), 1) such that x ≥ 0, y ≥ 0 (4.19)

(x , y) ∈ S(z0, 2)∩ S((−1, 0), 1) such that x ≤ 0, y ≤ 0 (4.20)

We can easily see that at most one of both equation has a solution with this property. It’s
easy to see that the intersections of (CA) : (xA, yA), rA and (CB : (xB, yB), rB in general
are given by (if its exist)

x12 =
1
2
(xB + xA) +

1
2

(xB − xA)(r2
A − r2

B)

d2
± 2(yB − yA)

K
d2

y12 =
1
2
(yB + yA) +

1
2

(yB − yA)(r2
A − r2

B)

d2
±−2(xB − xA)

K
d2

where d = ‖(xA, yA)− (xB, yB) and

K =
1
4

È

�

(rA+ rB)2 − d2
��

d2 − (rA− rB)2
�

Using this result, we can find all the intersection

(a) (x a
1 , ya

1 ), (x
a
2 , ya

2 ) (b) (x b
1 , y b

1 ), (x
b
2 , y b

2 )

After choosing the intersection points has our’s property, (after this step, we only have at
most 2 solutions) we subtracting this to the equation of t

¨

1+ cos t = x
sin t = y

or

¨

−1− cos t = x
− sin t = y

respect to the property of the solution from (4.19) and (4.20). The explicit formula is very
complicated to write here. Now, we can use any computer algebra system to find the graph
of minimum time function in case ‖z0‖ ≤ 2, i.e 0< t ≤ π.
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Figure 25: Graph of the minimum time function T (z0) when ‖z0‖ ≤ 2, i.e T (z0)≤ π.

Figure 26: Graph of the minimum time function T (z0) when ‖z0‖ ≤ 2, i.e T (z0)≤ π.

It’s easy to see that this graph is not smooth in this case.

Case π < t <∞ In this case, we have ‖z0‖> 2. The strategy to find t is determined by

1. Find the positive number n ∈ N such that

2n≤ ‖z0‖< 2n+ 2=⇒ n=
�‖z0‖

2

�

Such an n like that is unique. Furthermore, this implies that T (z0) = t ∈ [nπ, (n+1)π)

2. From this and the formula of ∂R(t), (4.15), (4.16), (4.17), (4.18) we can see that t
must have one of 4 forms
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(C1) (x , y) = ((−1)n cos t + 1, (−1)n sin t) ∈ S(z0, 2n+ 2)∩ S((1,0), 1)
where x ≥ 0, y ≥ 0

(C2) (x , y) = (−(−1)n cos t − 1,−(−1)n sin t) ∈ S(z0, 2n+ 2)∩ S((−1,0), 1)
where x ≤ 0, y ≤ 0

(C3) (x , y) = (−(−1)n cos t + 1,−(−1)n sin t) ∈ S(z0, 2n)∩ S((1,0), 1)
where x ≥ 0, y ≤ 0

(C4) (x , y) = ((−1)n cos t − 1, (−1)n sin t) ∈ S(z0, 2n)∩ S((−1, 0), 1)
where x ≤ 0, y ≥ 0

3. After having {(x i, yi)} has this properties. We solve equations to find t.

4. Choosing t min.

To summarize this, similarly, the explicit formula is very complicated to write here, we will
use a computer algebra system to write the graph of the minimum time function in this case.

Figure 27: Graph of the minimum time function T (z0)

We will see the graph of this minimum time function via some viewpoints
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Figure 28: Graph of the minimum time function T (z0) via some viewpoints

Figure 29: Graph of the minimum time function T (z0) via some viewpoints
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From this, we see that ∂R(t) although it not smooth when t ≤ π, but it’s smooth for all
t ≥ π. It’s little bit different to the rocket car problem. Also, we can see in general the
graph of T is not smooth in whole space Rn. This inspire us to study the regularity of the
minimum time function. Before doing this, we will prove a tool which is mainly used later.

4.5 Another way to rewrite the Pontryagin maximum principle

Consider the linear control system where A∈Mn×n, B ∈Mn×m and u : [0,+∞) −→ Rm,2

¨

x ′(t) = Ax(t) + Bu(t)
x(0) = x0

(4.21)

Let’s denote the optimal control in time T = T (x0) is u∗(t), and let the trajectory corre-
sponding is

x(t) = y x0,u∗(t) ∀ t ∈ [0, T]

Recall from theorem 4.7, there exists 0 6= θ ∈ Rn such that

〈θ , e−tABu∗(t)〉=max
a∈U
〈θ , e−tABa〉 ⇐⇒ θ T e−tABu∗(t) =max

a∈U

�

θ T e−tABa
	

Introduce the new operator, called the Hamiltonian

H(x , p, a) = 〈Ax , p〉+ 〈Ba, p〉= pT (Ax + Ba)

We can re-write the Potryagin maximum principle 4.7 as following

Theorem 4.10: Let u∗ be the optimal control in time T = T (x0) and x(.) is the corre-
sponding trajectory of the system (4.21), then there exists a absolutely continuous function
λ : [0, T] −→ Rn, is the costate function which is never vanish such that

• x(.) satisfies the ODE
x′(t) =∇pH(x(t),λ(t), u∗(t)) (ODE)

• λ(.) satisfies the adjoint equations ADJ

λ′(t) = −∇x H(x(t),λ(t), u∗(t)) (ADJ)

• We have the maximization principle

H(x(t),λ(t), u∗(t)) =max
a∈U

H(x(t),λ(t), a) (M)

Proof. Let θ in the theorem 4.7 and consider the control system
¨

λ′(t) = −ATλ(t)
λ(0) = θ

(4.22)

2Note that in this case we understand Rm asMm×1(R)
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Now let the solution is λ(t) = e−tAT
θ , so

�

λ(t)
�T
= θ T e−tA, now clearly from theorem 4.7

we get
θ T e−tABu∗(t) =max

a∈U

�

θ T e−tABa
	

So this implies that

λ(t)T Bu∗(t) =max
a∈U

λ(t)T Ba =⇒ λ(t)T
�

Ax(t) + Bu∗(t)
�

=max
a∈U

λ(t)T
�

Ax(t) + Ba
�

i.e,
H(x(t),λ(t), u∗(t)) =max

a∈U
H(x(t),λ(t), a)

therefore (M) is true. Now (ODE) is also true since

∇pH(x , p, a) =
∂

∂ p

�

p · (Ax + Ba)
�

= Ax + Ba =⇒∇pH(x(t),λ(t), u∗(t)) = x′(t)

Finally, we have

∇x H(x , p, a) =

�

∂ H
∂ x1
∂ H
∂ x2

�

(x , p, a) = AT · p =⇒∇x H(x(t),λ(t), u∗(t)) = ATλ(t) = −λ′(t)

Thus the proof is complete, because the absolutely continuous property of λ is trivial.

Similarly to above theorem, we introduce the minimization version of Potryagin Maximum
principle as follow, observe that if x0 is steered to 0 by the control u∗, which is respect to the
trajectory x(.) = y x0,u∗(.). Then 0 can be steered into x0 in time T by the reversed control
v∗(t) = u∗(T − t), in this case the corresponding trajectory is

z(t) = y x0,u∗(T − t) = x(T − t)

Also define the minimized Hamiltonian

H(x , p) =min
a∈U

�

p · (Ax + Ba)
�

=min
a∈U

H(x , p, a)

Theorem 4.11: Let u∗ be the optimal control in time T = T (x0) and x(.) is the corre-
sponding trajectory of the system (4.21), then there exists a absolutely continuous function
ψ : [0, T] −→ Rn, is the which is never vanish such that

(i) ψ′(t) =ψ(t) · AT .

(ii) H(x(T − t),ψ(t), u∗(T − t)) = H(x(T − t),ψ(t)) for a.e t ∈ [0, T].

(iii) The mapping t 7−→ H(x(T − t),ψ(t)) is constant for all t ∈ [0, T].

(iv) The vector ψ(T ) belong to the normal cone of R(T ) at x0, i.e ψ(T ) ∈ NR(T )(x0).

(v) For each t ∈ (0, T ), we also have the vector ψ(t) belong to the normal cone of R(t)
at x(T − t), i.e ψ(t) ∈ NR(t)(x(T − t)).
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Proof. Consider the following function, where λ is the costate function in theorem 4.10

ψ : [0, T] −→ Rn

t 7−→ −λ(T − t) = −e−(T−t)AT
θ

We have ψ′(t) = λ′(T − t), now from above theorem, we have

λ(T−t)T Bu∗(T−t) =max
a∈U

�

λ(T − t)T Ba
	

=⇒ −λ(T−t)T Bu∗(T−t) =min
a∈U

�

−λ(T − t)T Ba
	

i.e,

ψ(t)T Bu∗(T−t) =min
a∈U
ψ(t)T Ba =⇒ ψ(t)T ·

�

Ax(T−t)+Bu∗(T−t)
�

=min
a∈U
ψ(t)·

�

Ax(T−t)+Ba
�

In otherword, we have

H(x(T − t),ψ(t), u∗(T − t)) =min
a∈U

H(x(T − t),ψ(t), a) = H(x(T − t),ψ(t))

So (i) and (ii) is true. For (iii) by (ADJ) in above theorem, we have

ψ′(t) = λ′(T − t) = −∇x H(x(T − t),λ(T − t), u∗(T − t))

= ∇x H(x(T − t),ψ(t), u∗(T − t)) =∇x H(x(T − t),ψ(t))

So by (ODE) in above theorem, we have

∂

∂ t
H(x(T − t),ψ(t)) = −∇x H(x(T − t),ψ(t))

︸ ︷︷ ︸

ψ′(t)

x′(T − t) +∇pH(x(T − t),ψ(t))
︸ ︷︷ ︸

x′(T−t)

ψ′(t)

= −ψ′(t)x′(T − t) + x′(T − t)ψ′(t) = 0

So t 7−→ H(x(T − t),ψ(t)) is constant. Finally we have ψ(T ) = −λ(0) = −θ = ξ where ξ
is chosen in theorem 4.7, which is clearly the normal vector by our construction

〈ξ, y − x0〉 ≤ 0 ∀ y ∈ R(t)

So we have ψ(T ) ∈ NR(t)(x0).

(v) By the principle of optimality 2.69, for each t ∈ (0, t) we have

T (x(T − t)) = t =⇒ x(T − t) ∈ ∂R(T )

Doing similarly as the principle of optimality 2.69, we can find the corresponding optimal
control v of x(T − t) very fast. But in here we will find it by the optimal trajectory of x(0)
to see this fact more deeply. For s ∈ [0, t] we have

x(T − t + s) = e(T−t+s)Ax0 +

∫ T−t+s

0

e(T−t+s−δ)ABu∗(δ) dδ

= esAe(T−t)Ax0 +

∫ T−t

0

e(T−t+s−δ)ABu∗(δ) dδ+

∫ T−t+s

T−t

e(T−t+s−δ)ABu∗(δ) dδ

= esA

�

e(T−t)Ax0 +

∫ T−t

0

e(T−t−δ)ABu∗(δ) dδ

�

+

∫ s

0

e(s−η)ABu∗(η+ T − t) dη

= esAx(T − t) +

∫ s

0

e(s−η)ABu∗(η+ T − t) dη
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So if we define the new control

v(η) =

¨

u∗(η+ T − t) 0≤ η≤ t
0 otherwise

Thus, we have the optimal control v steer x(T − t) to the origin has the form

v(η) =





v1(η)
...

vm(η)



 where vi(η) = u∗i (η+ T − t) = −sign〈ζ, e−(η+T−t)Abi〉

Recall that ψ(s) = 〈ζ, e−(T−s)A〉, so we obtain

vi(η) = −sign〈ζ, e(T−t)Ae−ηAbi〉= −sign〈ψ(t), e−ηAbi〉

Now by theorem 4.9 we obtain ψ(t) ∈ NR(t)(x(T − t)).

Theorem 2.69 give us an image how we can reduce a initial point x0 ∈ ∂R(T ) into a point
x ′ also live in the trajectory x0 −→ 0 with x ′ ∈ ∂R(t) for t < T , and

x ′ = y x0,u∗(T − t) and T (x ′) = T (y x0,u∗(T − t)) = t

Similarly, we now establish something look similar to this, but expand outside R(T ). The
main tool used to prove is the structure of the optimal control, given by the maximum
principle above and the dynamic reverse system.

Definition 4.12: For 0 6= x ∈ R, we call x is an optimal point if for every t > T (x), we
can find some x t ∈ ∂R(t) and some control ut such that

y x t ,ut (t − T (x)) = x

Now using theorem 4.9, we will show that any non-zero point in R is optimal

Theorem 4.13 (Every point is optimal): If xα ∈ ∂R(α), then for every β > α, there exists
xβ ∈ ∂R(β) such that the optimal trajectory of xβ , which is respect to the optimal control
uβ , has the property

y xβ ,uβ (β −α) = xα (4.23)

Proof. Pick ζ ∈ NR(t)(xα). By theorem 4.10 and 4.11, setting θ = −ζ, the following func-
tions

λ : [0,α] −→ Rn ψ : [0,α] −→ Rn

t 7−→ 〈θ , e−tA〉 t 7−→ −λ(α− t) =



ζ, e(α−t)A
�

is well–defined and has the property ψ(α) = ζ. We defined the extension of ψ by Ψ :
[0,β] −→ Rn by natural way

Ψ : [0,β] −→ Rn

t −→



ζ, e(α−t)A
�
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One can see that Ψ is well-defined, and furthermore, for 0≤ t ≤ α then

Ψ(t)≡ψ(t) i.e Ψ|[0,α] =ψ

We can image that ψ is the adjoint function send each t into the normal vector ψ(t) of
R(t) of point y xα,uα(T − t), this fact is the consequence of theorem 4.11 and the principle
of optimality 2.69. Now by Pontryagin’s maximum principle, the control uα which steers
xα to the origin must have form

uα(t) =





u1(t)
...

um(t)



 where ui(t) = −sign〈ζ, e−tAbi〉= −sign〈ψ(α), e−tAbi〉

for all t ∈ [0,α]. This suggest that we can establish the new control uβ which steers xβ to
xα by

uβ(t) =





v1(t)
...

vm(t)



 where vi(t) = −sign〈Ψ(β), e−tAbi〉

for all 0≤ t ≤ β −α, where b1, b2, . . . , bm are columns of B. Now consider

xβ = −
∫ β

0

e−tABuβ(t) d t ∈ R(β) (4.24)

This construction is reasonable because as we already discuss above, if everything in our
theorem is true, then

Ψ(t) ∈ NR(t)(y
xβ ,uβ (β − t))

This is compatible with our consumption at t = α, since

ζ= Ψ(α) =ψ(α) ∈ NR(α)(y
xβ ,uβ (β −α)) = NR(α)(xα)

So all the rest is check that x ∈ ∂R(β) and the condition (4.23) is true.

(i) Check x ∈ ∂R(β), this is simply the consequence of theorem 4.9. Since Ψ(β) ∈
H(A, B) is clear and the formula (4.24) give us xβ ∈ R(β). So by theorem 4.9 we
have x ∈ ∂R(β) and Ψ(β) ∈ R(β).

(ii) Check the condition (4.23) is true , i.e y xβ ,uβ (β−α) = xα. It’s just a simple calculation
from the formula

y xβ ,uβ (t) = etAxβ +

∫ t

0

e(t−s)ABuβ(s) ds (4.25)

and the simple observe that for all t ∈ [0,α] we have Ψ(β) =



ζ, e(α−β)Abi

�

, so

uβi (t + β −α) = −sign



Ψ(β), e−(t+β−α)Abi

�

= −sign



ζ, e(α−β+t+β−α)Abi

�

= −sign



ζ, e−tAbi

�

= uαi (t)

This is true for all i = 1, 2, . . . , m, so

uβ(t + (β −α)) = uα(t) ∀ 0≤ t ≤ α (4.26)
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Now combine (4.24) and (4.25) we have

y xβ ,uβ (β −α) = −e(β−α)A
∫ β

0

e−sABuβ(s) ds+

∫ β−α

0

e(β−α−s)ABuβ(s) ds

= −
∫ β

0

e(β−α−s)ABuβ(s) ds+

∫ β−α

0

e(β−α−s)ABuβ(s) ds

= −
∫ β

β−α
e(β−α−s)ABuβ(s) ds

= −
∫ α

0

e(α−t)ABuβ(t + (β −α)) d t

= −
∫ α

0

e−tABuα(s) d t = xα

by changing variable s = t + (β −α) and using (4.26).

Thus, the proof is complete.

101





5 The regularity of minimum time function

As we discuss through two former examples, we see that in general the minimum time
function is not smooth in the whole domain R, indeed, recall the rocket road car problem,
we will prove that the minimum time function is even non-Lipschitz.

As we already prove in 4.3.2, that is the boundary R(t) consist of two curves, one of them
have the following form

¨

x0 = t2
0 −

t2

2

v0 = t − 2t0

where t0 is the point in [0,1] such that the corresponding optimal control ua of (x0, v0) is

ua(s) =

¨

1 on [0, t0]
0 on (t0, 1]

Now assume T is Lipschitz in R = R2 in this case, then there exists a constant C > 0 such
that

|T (x)− T (y)| ≤ C‖x − y‖ ∀ x , y ∈ R =⇒ T (x)≤ C‖x‖ ∀ x ∈ R

Now for t > 0, we choose the points (x t
0, y t

0) ∈ R(n) which lie on the x-axis, i.e v t
0 = 0

v t
0 = t − 2t0 = 0=⇒ t0 =

t
2
==⇒ x t

0 =
t2

4
−

t2

2
= −

t2

4

Using sequence (x t
0, v t

0) =
�

− t2

4 , 0
�

∈ ∂R(t), we have

t = T (x t
0, v t

0)≤ C









�

−
t2

4
, 0
�









=
C t2

4
=⇒

4
C
≤ t

for all t > 0, let t −→ 0 we get a contradiction.

We want to study the regularity of the minimum time function T , with the following as-
sumption to ensure that T : Rn −→ R is continuous by theorem 3.11

Assumption
¨

rank G(A, B) = n (Rank-Kalman’s condition)

Re λ≤ 0 for each eigenvalue λ of A
(?)

In this case T : Rn −→ R. Our work is motivate by the following theorem in [3]

Theorem 5.1 (Giovanni Colombo, Antonio Marigonda, Peter R.Wolenski): Assume the
linear control system (2.25) has the target S be convex, and T is continuous on Rn\S, then
the epigraph epi(T ) has positive reach.

From this, in our case S = {0, } and under (?), we obtain
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Theorem 5.2: Assume the linear control system (2.25) satisfies (?), then

• The minimum time- function T is continuous from R= Rn −→ R.

• The epigraph epi(T ) has positive reach.

Theorem 5.3 (Giovanni Colombo, Khai T. Nguyen, Antonio Marigonda): Given f : Ω ⊂
Rn −→ R is continuous and Ω is open, assume

• f is continuous.

• The epigraph epi( f ) has positive reach

then the following set
S∞f = {x : f is not Lipschitz at x}

is satisfied

(i) S∞f is closed in Ω.

(ii) Ln(S∞f ) = 0, where Ln is the Lebesgue measure on Rn.

Under the assumption (?), we have Rn\S∞f is open, Ln(S∞f ) = 0, and

• T : Rn\S∞f is locally Lipschitz

• The epigraph epi(T ) has positive reach.

• Ln(S∞T ) = 0.

So by theorems 2.55 and 2.56, we obtain the following corollary

Corollary 5.4: Under the assumption (?), we have T : Rn\S∞f −→ R is locally semi-
convex. And as a consequence from the H.Rademacher’s theorem 2.9, we have T : Rn −→ R
is a.e twice differentiable.

This fact match perfectly with two example we already discussed former. So the main goal
of us is now study the set S∞T .

Main goal. Study the set S∞T .

In this section, we always assume the assumption (?) to ensure R= Rn.

5.1 Viscosity solutions for Linear control systems

Because the viscosity solution is related with the differentiability of the solution. We will
establish the Hamilton-Jacobi equation which has T as a viscosity solution.

Theorem 5.5: Define the minimized Hamiltonian

H(x , p) :=min
w∈U

�

p · (Ax + Bw)
�

∀ x ∈ R
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then T is a viscosity solution of Hamilton–Jacobi–Bellman equation

−H(x ,∇T (x))− 1= 0 ∀ x ∈ R\{0}

i.e,T is a viscosity solution of Hamilton–Jacobi–Bellman equation

−min
w∈U

�

p · (Ax + Bw)
�

− 1= 0 ∀ x ∈ R\{0} (5.1)

Proof. Let ϕ ∈ C1(R\{0}).

• Sub-solution. If T −ϕ attains a local maximum at a point x0 ∈ R\{0}, we will prove

−H(x ,∇ϕ(x))− 1≤ 0⇐⇒min
w∈U

�

∇ϕ(x0) · (Ax0 + Bw)
�

+ 1≥ 0 (5.2)

If (5.2) is not true, then there exists w ∈ U and θ > 0 such that

∇ϕ(x0) · (Ax0 + Bw) + 1< −2θ

Now let x(.) = y x0,w(.) be the unique solution of the linear system
¨

x ′(t) = (Ax0 + Bw) t ∈ [0,+∞)
x(0) = x0

Since Ax + Bw is bounded, and by continuity, there exists α > 0 such that

∇ϕ(x) · (Ax + Bw) + 1< −θ

wherever
|x − x0| ≤ α

Since x(.) = y x0,u(.) is continuous at 0, there exists s > 0 such that

t < s =⇒ |x(t)− x(0)|< α

Since T −ϕ attains local maximum at x0, we must have

T (x(s))− T (x(0))≤ ϕ(x(s))−ϕ(x(0)) =
∫ s

0

d
d t
ϕ(x(t)) d t

=

∫ s

0

∇ϕ(x(t)) · x ′(t) d t

=

∫ s

0

∇ϕ(x(t)) · (Ax(t) + Bw) d t

≤
∫ s

0

−(1+ θ ) d t = −s(1+ θ )< −s

But on the other hand, from the dynamic programming principle 2.68, we also have

T (x(0)) = T (x0)≤ s+ T (y x0,w(s)) = s+ T (x(s)) =⇒−s < T (x(s))− T (x(0))< −s

so this yields a contradiction, therefore (5.2) must be true, or T is a sub-solution of

−H(x ,∇T (x))− 1= 0 ∀ x ∈ R\{0}
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• Super-solution. If T − ϕ attains a local minimum at a point x0 ∈ R\{0}, we will
prove

−H(x ,∇ϕ(x))− 1≥ 0⇐⇒min
w∈U

�

∇ϕ(x0) · (Ax0 + Bw)
�

+ 1≤ 0 (5.3)

If (5.3) is not true, then there exists θ > 0 such that

∇ϕ(x0) · f (x0, w) + 1> 2θ ∀ w ∈ U

Again, by boundedness of f and continuity, there exists α > 0 such that

∇ϕ(x) · (Ax + Bw) + 1> θ ∀ w ∈ U

wherever
|x − x0| ≤ α

Since x(.) = y x0,u(.) is continuous at 0, there exists s > 0 such that

t < s =⇒ |x(t)− x(0)|< α

Pick u ∈ Uad is a arbitrary control, and let y x0,u(.) = x(.). Since T −ϕ attains local
minimum at x0, we must have

T (x(s))− T (x(0))≥ ϕ(x(s))−ϕ(x(0)) =
∫ s

0

d
d t
ϕ(x(t)) d t

=

∫ s

0

∇ϕ(x(t)) · x ′(t) d t

=

∫ s

0

∇ϕ(x(t)) · (Ax(t) + Bu(t)) d t

≥
∫ s

0

(−1+ θ ) d t = s(−1+ θ )

Thus, it implies that

T (x0) + sθ < T (x(s)) + s⇐⇒ T (x0) + sθ < s+ T (y x0,u(s)) ∀ u ∈ Uad

Taking the infimum both sides over all control u ∈ Uad , we see that

T (x0) + sθ ≤ inf
u∈Uad

�

s+ T (y x0,u(s))
�

= T (x0)

according to the dynamic programming principle 2.68. Thus this yields a contradic-
tion, therefore (5.3) must be true, or T is a super-solution of

−H(x ,∇T (x))− 1= 0 ∀ x ∈ R\{0}
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From this fact, we can see that if T is differentiable at x0 ∈ ∂R(T ), then we must have

H(x0,∇T (x0)) = −1=max
a∈U
〈∇T (x0), Ax0 + Ba〉 =⇒ ∇T (x0) 6= 0

In case ∂R(T ) is smooth3, then clearly∇T (x0) is the normal vector of ∂R(T ) at x0. So this
suggest us to study H(x0,ζ) where ζ the normal vector of ∂R(T ) at x0 in general case.

Theorem 5.6: Let T = T (x0) and ζ ∈ NR(T )(x0), then

H(x0,ζ)≤ 0

Proof. Since ζ ∈ NR(T )(x0) and R(T ) is convex and closed, we have

〈ζ, y − x〉 ≤ 0 ∀ y ∈ R(T )

Let u∗(.) is an optimal control and x(.) = y x0,u∗(.) be the corresponding trajectory, Now
because x(t) ∈ R(T ) for all t ∈ [0, T] we have

〈ζ,x(t)− x0〉= 〈ζ,x(t)− x(0)〉〉 ≤ 0 ∀ t ∈ [0, T] (5.4)

By theorem 2.71, there exists M = M(T ) such that ‖x(t)− x(0)‖ ≤ M t for all t ∈ [0, T],
also observe that4

x(t)− x(0) =

∫ t

0

x′(s) ds =

∫ t

0

�

Ax(s) + Bu∗(s)
�

ds

=

∫ t

0

A(x(s)− x(0)) ds+

∫ t

0

�

Ax0 + Bu∗(s)
�

ds

So by multiply two side with ζ and using (5.4), we have
�

ζ,

∫ t

0

A(x(s)− x(0)) ds

�

+

�

ζ,

∫ t

0

�

Ax0 + Bu∗(s)
�

ds

�

≤ 0 (5.5)

Our desire is prove H(x0,ζ)≤ 0, assume the converse hold, then

H(x0,ζ) =min
a∈U
〈ζ, Ax0 + Ba〉= ε > 0

since U = [−1,1]m is compact. And thus we can assume the minimum hold at a = u ∈ U .
In this case

tε ≤
�

ζ,

∫ t

0

�

Ax0 + Bu∗(s)
�

ds

�

(5.6)

3That is at every point x ∈ ∂R(T ), there exists a differentiable map α : (−ε,ε) −→ ∂R(T ) such that
α(0) = x

4In this case, the control u∗ is optimal, so by maximum principle it must have finite switching time, denoted
by 0 ≤ a1 ≤ a2 ≤ . . . ≤ an = T , then on each interval [ai , ai+1], u∗ is a constant, so x′(.) is continuous on
each interval, and the fundamental theorem of calculus can be use here. And we can obtain the this formula
straight–forward here.
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Now using (5.5) and (5.6) and the fact that ‖x(s)− x(0)‖ ≤ Ms for all s ∈ [0, T], we have

tε ≤
�

ζ,

∫ t

0

�

Ax0 + Bu∗(s)
�

ds

�

≤
�

ζ,

∫ t

0

A
�

x(0)− x(s)
�

ds

�

≤ ‖ζ‖.‖A‖
∫ t

0

‖x(s)− x(0)‖ d t

≤ ‖ζ‖.‖A‖
∫ t

0

Ms d t = ‖ζ‖.‖A‖.M .
t2

2

From this we have
ε ≤ ‖ζ‖‖A‖M

t
2

∀ t ∈ (0, T )

It give a contradiction if we let t −→ 0. Thus we conclude that H(x0,ζ)≤ 0.

5.2 Non-Lipschitz points of the minimum time functions

We begin with the characteristic of non-Lipschitz point.

Proposition 5.7: Let Ω ⊂ Rn be open and f : Ω −→ R is continuous such that epi( f ) has
positive reach, then f is non-Lipschitz at x , i.e f is strictly continuous at x if and only if
there exists a non-zero vector ζ ∈ Rn such that

(ζ, 0) ∈ N P
epi( f )(x , f (x))

Proof. It’s well study in theorem 9.13 of [1] that in case epi( f ) has positive reach, then f
is non-Lipschitz at x if and only if ∂∞ f (x) contains a non-zero vector ζ ∈ Rn, combine this
fact with definition 2.25, we can see that

ζ ∈ ∂∞ f (x)⇐⇒ (ζ, 0) ∈ N P
epi( f )(x , f (x))

In particular, by theorem 5.2 we obtain

Corollary 5.8: Under the assumption (?), the minimum time function T is non-Lipschitz
at x if and only if there exists a non-zero vector ζ ∈ Rn such that

(ζ, 0) ∈ N P
epi(T )(x , T (x))

Now we prove the main result about non-Lipschitz points of T .

Theorem 5.9: Let x0 6= 0 in the control system (??), and a non-zero vector ζ ∈ Rn, then

ζ ∈ ∂∞T (x0) if and only if H(x0,ζ) = 0 and ζ ∈ NR(T )(x0)

Proof. Denote T = T (x0) as usual.

108



(i) Assume ζ ∈ ∂∞T (x0), i.e (ζ, 0) ∈ N P
epi(T)(x0, T ), equivalently, for any (z, s) ∈ Rn ×R

such that T (z)≤ s, exists σ = σ(ζ, x0)> 0 such that

〈(ζ, 0), (z, s)− (x0, T )〉 ≤ σ
�

‖z − x0‖2 + |s− T |2
�

(5.7)

Take z ∈ R(T ) and s = T , then substituting into above function

〈ζ, z − x0〉 ≤ σ‖z − x0‖2 ∀ z ∈ R(T )

This equation implies that ζ ∈ N P
R(T )(x0). But recall that R(T ) is convex, so by using

proposition 2.24 we have

ζ ∈ N P
R(t)(x0) = NR(t)(x0)

Now we will check H(x0,ζ) = 0. By theorem 5.6, H(x0,ζ) ≤ 0. Since U = [−1, 1]m

is compact, there exists w ∈ U such that

H(x0,ζ) =min
a∈U
〈ζ, Ax0 + Ba〉= 〈ζ, Ax0 + Bw〉 (5.8)

Now consider the control system
¨

z′(t) = −Az(t)− Bw
z(0) = x0

We observe that the z′(0) = −(Ax0 + Bw). We can choose time ε so small to ensure
that z(t) is not reach to the origin in [0, 2ε]. Fix any t ∈ (0,ε), we define

y(s) = z(t − s) ∀; s ∈ [0, t]

then clearly y(.) is the trajectory isn’t reach to 0 in [0, t]. By Dynamic Programming
Principle 2.68, we have

T (z(t)) = T (y(0))≤ t + T (y(t)) = t + T (z(0)) = t + T (x0) = t + T

Substitute this fact into the condition ζ ∈ ∂∞T (x0), i.e (5.7), with y = z(t) and
s = T + t ≥ T (z(t))

〈ζ, z(t)− z(0)〉 ≤ σ
�

‖z(t)− z(0)‖2 + t2
�

≤ σ(M + 1)t2

Thus


ζ,
z(t)− z(0)

t

·

≤ σ(M + 1)t

Letting t −→ 0+, we have

〈ζ, z′(0)〉 ≤ 0 ⇐⇒ 〈ζ, Ax0 + Bw〉 ≥ 0

So we conclude that H(x0,ζ)≥ 0. Therefore we have H(x0,ζ) = 0.
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(ii) Now assume H(x0,ζ) = 0 and ζ ∈ NR(T )(x0). We need to show that (ζ, 0) ∈ N P
epi(x0, T ),

i.e, there exists σ > 0 such that

〈ζ, z − x0〉 ≤ σ
�

‖z − x‖2 + |β − T |2
�

(5.9)

for all (z,β) ∈ epi(T )∩ B((x , T ), T ), i.e T (z)≤ β and

‖z − x‖2 + |β − T |2 < T 2 =⇒ β < 2T (5.10)

Here we have used the locally definition of proximal cone. Observe that we only need
to prove (5.9) when T (z) = β . There are two cases

– If T (z)≤ T , then z ∈ R(T ), since ζ ∈ NR(T )(x0), we have

〈ζ, z − x0〉 ≤ 0

because R(T ) is convex, so (5.9) is true.

– If T < T (z) = β . Let’s call the optimal control which steers x0 to the origin
in time T is u(.) : [0, T] −→ U . Now by theorem 4.13, x0 is an optimal point
so there exists x ′ ∈ R with T (x ′) = β , with the corresponding optimal control
v(.) : [0,β] −→ U such that

x(β − T ) = y x ′,v(β − T ) = x0 (5.11)

By theorem 4.11, there exists a absolutely continuous functionψ : [0,β] −→ Rn

such that






ψ′(t) =ψ(t) · AT

ψ(T ) = ζ
ψ(β) ∈ NR(β)(x ′)

(5.12)

we also know ψ(t) = e−(T−t)AT
ζ, and furthermore it has the property for all

t ∈ [0,β]

H(x(β − t),ψ(t)) = 〈ψ(t), Ax(β − t) + Bv(β − t)〉= H(x0,ζ) = 0 (5.13)

On the other hand, for t ∈ [0,β], since (5.10) we have T < β < 2T , so

|T−t|=

¨

T − t ≤ T ∀ 0≤ t ≤ T
t − T ≤ β − T < T ∀ T ≤ t ≤ β

=⇒ |T−t| ≤ T ∀ t ∈ [0,β]

Thus we have

‖ψ(t)‖= ‖e−(T−t)AT
ζ‖ ≤ ‖ζ‖ · e|T−t|·‖A‖ ≤ ‖ζ‖ · eT ·‖A‖ ≤ ‖ζ‖ · e2T ·‖A‖ (5.14)

Now we have

〈ζ, z − x0〉= 〈ψ(β), z − x ′〉+ 〈ζ−ψ(β), z − x ′〉+ 〈ζ, x ′ − x0〉 (5.15)
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• For the first term, since ψ(β) ∈ NR(β)(x ′), and z ∈ R(β), so

〈ψ(β), z − x ′〉 ≤ 0 (5.16)

since R(β) is convex.

• For the second term, by the locally Lipschitz property of the trajectory y x ′,v(.)
in theorem 2.71, we have



y x ′,v(β − T )− y x ′,v(0)


≤ 2‖B‖e2β‖A‖(β − T )≤ ‖B‖e4T‖A‖(β − T )

Using this fact, we have

‖z − x ′‖ ≤ ‖z − x0‖+ ‖x0 − x ′‖= ‖z − x0‖+


y x ′,v(β − T )− y x ′,v(0)




≤ ‖z − x0‖+ 2‖B‖e4T‖A‖|β − T | (5.17)

From the formula of ψ in (5.12) and (5.14) we have

‖ψ(β)−ψ(T )‖=











∫ β

T

ψ′(s) ds











≤ ‖A‖
∫ β

T

‖ψ(s)‖ ds ≤ ‖A‖
∫ β

T

‖ζ‖e2T‖A‖ ds

= ‖A‖‖ζ‖e2T‖A‖(β − T ) (5.18)

Apply (5.17) and (5.18) into the second term, we have the estimate

〈ζ−ψ(β), z − x ′〉 ≤ ‖Ψ(T )−ψ(β)‖ · ‖z − x ′‖

≤ ‖A‖‖ζ‖e2T‖A‖|β − T | ·
�

‖z − x0‖+ 2‖B‖e4T‖A‖|β − T |
�

≤ ‖A‖‖ζ‖e2T‖A‖‖z − x0‖|β − T |+ 2‖A‖.‖B‖‖ζ‖e6T‖A‖|β − T |2

≤ C1

�

‖z − x0‖2 + |β − T |2
�

(5.19)

where C1 is a constant5 just depend on T and ζ (and ‖A‖, ‖B‖).

• For the third term, we have some observations

1. Firstly, for any s ∈ [0,β − T], by proposition 2.70 we have

‖x(s)‖ ≤
‖B‖
‖A‖

e(β−s)‖A‖ ≤
‖B‖
‖A‖

eβ‖A‖ ≤
‖B‖
‖A‖

e2T‖A‖

So using this fact, we have for any s ∈ [0,β − T]

‖x′(s)‖= ‖Ax(s) + Bv(s)‖ ≤ ‖A‖ · ‖x(s)‖+ ‖B‖= ‖B‖(e2T‖A‖ + 1)

2. For any s ∈ [0,β − T], by using (5.14) we have

‖ψ(β − s)−ψ(T )‖ ≤
∫ β−s

T

‖ψ′(t)‖ d t ≤ ‖A‖
∫ β−s

T

‖ψ(t)‖ d t

≤ ‖A‖‖ζ‖e2T‖A‖(β − T − s)

5We have used the AM-GM inequality x y ≤ x2+y2

2 for ‖z − x0‖ and |β − T |
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3. For any s ∈ [0,β], by using (5.13) we have

〈ψ(β − s),x′(s)〉=
¬

ψ(β − s), Ax(s) + Bv(s)
¶

= 0 (5.20)

We can summarize these facts by saying that there exists constants C2, C3

just depend on T,ζ,‖A‖,‖B‖ such that for any s ∈ [0,β − T] then

‖x′(s)‖ ≤ C2 and ‖ψ(β − s)−ψ(T )‖ ≤ C3(β − T − s)

So combine these fact we have
∫ β−T

0




ψ(β − s)−ψ(T ),x′(s)
�

ds ≤
∫ β−T

0

‖ψ(β − s)−ψ(T )‖ · ‖x′(s)‖ ds

≤ C2C3

∫ β−T

0

(β − T − s) ds

=
C2C3

2
|β − T |2 (5.21)

Now we estimate the third term, observe that

〈ζ, x ′ − x0〉=
¬

ζ,x(0)− x(β − T )
¶

= −

®

ζ,

∫ β−T

0

x′(s) ds

¸

= −

®

ψ(β − s),

∫ β−T

0

x′(s) ds

¸

+

®

ψ(β − s)−ψ(T ),
∫ β−T

0

x′(s) ds

¸

= −
∫ β−T

0

〈ψ(β − s),x′(s)〉 ds+

∫ β−T

0




ψ(β − s)−ψ(T ),x′(s)
�

ds

Now from (5.20) and (5.21) we conclude that

〈ζ, x ′ − x0〉 ≤
C2C3

2
|β − T |2 (5.22)

Putting together (5.16), (5.19) and (5.22) and substitute into (5.15) we con-
clude that there exists a constant C > 0 just depend on T,ζ,‖A‖,‖B‖ such that

〈ζ, z − x0〉 ≤ C

�

‖z − x0‖2 + |β − T |2
�

i.e, (5.9) is true.

The proof is complete.

By this result, we will establish the detailed structure of the set of all non-Lipschitz points
S∞T of T . A point x0 ∈ S∞T if and only if there exists 0 6= ζ ∈ NR(T (x0))(x0) such that

H(x0,ζ) = 0

First we will establish the explicit formula for the minimized Hamiltonian H(x , p)
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Proposition 5.10 (The explicit formula of minimized Hamiltonian): Assume x0 ∈ ∂R(T ),
let u∗ ∈ Uad be the optimal control which is respect to x0, then x can be presented as

x0 = −
∫ T

0

e−sABu∗(s) ds (5.23)

Then

H(x0,ζ) = −
m
∑

i=1

�

�




ζ, e−TAbi

��

�

Proof. By maximum principle 4.8, the control u∗ is unique (in sense almost every where)
and there exists 0 6= ζ ∈ NR(T ) such that

u∗(t) =





u∗1(t)
...

u∗m(t)



 and u∗i (t) = −sign



ζ, e−tAbi

�

for t ∈ [0, T]. Combine with (5.23) we have

x0 =
m
∑

i=1

∫ T

0

e−sAbisign 〈ζ, e−sAbi〉 ds

and thus

〈ζ, Ax0〉=
m
∑

i=1

∫ T

0




ζ, Ae−sAbisign 〈ζ, e−sAbi〉
�

ds

So by definition of the minimized Hamiltonian, we have

H(x0,ζ) = 〈ζ, Ax0〉+min
u∈U
〈ζ, Bu〉= 〈ζ, Ax0〉+ min

ui∈[−1,1]

m
∑

i=1

〈ζ, biui〉= 〈ζ, Ax0〉 −
m
∑

i=1

|〈ζ, bi〉|

=
m
∑

i=1

�

∫ T

0

¬

ζ, Ae−sAbi sign 〈ζ, e−sAbi〉
¶

ds− |〈ζ, bi〉|

�

=
m
∑

i=1

Hi(x0,ζ) (5.24)

where

Hi(x0,ζ) =

∫ T

0

¬

ζ, Ae−sAbi sign 〈ζ, e−sAbi〉
¶

ds− |〈ζ, bi〉|

and

gi : [0, T] −→ R
s 7−→ 〈ζ, e−sAbi〉

then similarly to the proof of proposition 4.2, gi can only equal to zero in finite point
in [0, T], we can assume 0 ≤ s1 ≤ s2 ≤ . . . ≤ sk−1 ≤ sk ≤ T and gi only vanish at
s1, s2, . . . , sk−1, sk. Then on each [si, si+1], sign gi(s) is a constant 1 or -1. Assume

sign(gi(s)) = α on [s1, s2] =⇒ sign(gi(s)) = α(−1) j−1 on [s j, s j+1]
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Furthermore

g ′i : [0, T] −→ R
s 7−→ g ′i(s) = −〈ζ, Ae−sAbi〉

By this notion, Hi(x0,ζ) can be rewrite as

Hi(x0,ζ) = −
∫ T

0

g ′i(s) · sign (gi(s)) ds− |〈ζ, bi〉|

= −
∫ s1

0

g ′i(s)sign(gi(s)) ds−
k−1
∑

j=1

(−1) j−1α

∫ s j+1

s j

g ′i(s) ds−
∫ T

sk

g ′i(s)sign(gi(s)) ds− |〈ζ, bi〉|

= −
∫ s1

0

g ′i(s)sign(gi(s)) ds+α
k−1
∑

j=0

(−1) j
�

gi(s j+1)− g(s j)
�

−
∫ T

sk

g ′(s)sign(gi(s)) ds− |〈ζ, bi〉|

= −
∫ s1

0

g ′i(s)sign(gi(s)) ds−
∫ T

sk

g ′i(s)sign(g(s)) ds− |〈ζ, bi〉|

since gi(s j) = 0 for all j = 1, 2 . . . , k.

• If gi(0) 6= 0 and gi(T ) 6= 0, then signg(s) = signg(0) for all s ∈ [0, s1), similarly
signg(s) = signg(T ) for all s ∈ (sk, T], therefore

Hi(x0,ζ) = gi(0)sign(gi(0))− gi(T )sign(gi(T ))− gi(0)sign(gi(0)) = −|gi(T )|

• If gi(0) = 0 and gi(T ) 6= 0, then signg(s) = signg(T ) for all s ∈ (sk, T], therefore

Hi(x0,ζ) = −gi(T )sign(gi(T )) = −|gi(T )|

• If gi(0) 6= 0 and gi(T ) = 0, then signg(s) = signg(0) for all s ∈ [0, s1), therefore

Hi(x0,ζ) = gi(0)sign(gi(0))− gi(0)sign(gi(0)) = 0= −|gi(T )|

• If gi(0) = 0 and gi(T ) = 0, then 〈ζ, bi〉= gi(0) = 0= 〈ζ, e−TAbi〉, so

Hi(x0,ζ) = 0= −|gi(T )|

Therefore in general, we always have

Hi(x0,ζ) = −|gi(T )|= −
�

�




ζ, e−TAbi

��

�

and now combine this fact with (5.24) we conclude that

H(x0,ζ) =
m
∑

i=1

Hi(x0,ζ) = −
m
∑

i=1

�

�




ζ, e−TAbi

��

�

and the proof is complete.
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With this formula of H, we conclude that

Theorem 5.11: Assume B = [b1, b2, . . . , bm] are m columns, under the assumption (?),
setting

S=

¨

x ∈ Rn :
∃ T > 0

∃ ζ ∈ Rn\{0} s.t 〈ζ, e−TAbi〉= 0 ∀ i = 1, m and x =
m
∑

i=1

∫ T

0

e−sAbisign〈ζ, e−sAbi〉 ds

«

S′ =
�

x ∈ Rn,∃ T > 0 s.t x ∈ ∂R(T ) and 0 6= ζ ∈ NR(T )(x) for which H(x ,ζ) = 0
	

then S∞T = S= S′. I.e, T is non-Lipschitz at x if and only if x ∈ S.

Proof. Let x 6= 0 be a non-Lipschitz point of T , set T = T (x) > 0, then clearly x ∈ ∂R(T ).
By corollary 5.8 there exists a non–zero vector ζ ∈ Rn such that

(ζ, 0) ∈ N P
epi(T )(x , T )⇐⇒ 〈ζ, y − x〉 ≤ σ(ζ, x)

�

‖y − x‖2 + |β − T |2
�

for all (y,β) ∈ epi(T ), where σ(ζ, x)> 0. Let β = T , we obtain

(ζ, 0) ∈ N P
epi(T )(x , T )⇐⇒ 〈ζ, y − x〉 ≤ σ(ζ, x)‖y − x‖2

i.e, ζ ∈ NR(T )(x). Now by theorem 5.9 we obtain H(x ,ζ) = 0. So

S∞T ⊆ S′ (5.25)

Now let u∗ is the optimal control which steers x to the origin in time T . By corollary 4.8, u
is unique and furthermore, it has the form

u(t) =





u1(t)
...

um(t)



 where ui(t) = −sign〈ζ, e−tAbi〉

Consequently,

x = −
∫ T

0

e−sABu(s) ds =
m
∑

i=1

∫ T

0

e−sAbisign〈ζ, e−sAbi〉 ds

On the other hand, by proposition 5.10, we have

H(x ,ζ) = −
m
∑

i=1

�

�




ζ.e−TAbi

��

�= 0=⇒ 〈ζ, e−TAbi〉= 0 ∀ i = 1, m

Therefore we have
S′ ⊆ S (5.26)

Now if x ∈ S, then there exists T > 0 and 0 6= ζ ∈ Rn such that 〈ζ, e−TAbi〉 = 0 for all
i = 1, m, and

x =
m
∑

i=1

∫ T

0

e−sAbisign〈ζ, e−sAbi〉 ds
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then the control u which steer x to the origin in time T has form

u(t) =





u1(t)
...

um(t)



 where ui(t) = −sign〈ζ, e−tAbi〉

By theorem 4.9, the control u is optimal, T (x) = T , and ζ ∈ NR(T )(x). By proposition 5.10,
〈ζ, e−TAbi〉= 0 for all i = 1, m implies H(x ,ζ) = 0. So by theorem 5.9 we conclude that

ζ ∈ ∂∞T (x)

so by corollary 5.8 we have T is non–Lipschitz at x , i.e

S ⊆ S∞T (5.27)

Finally, combine (5.25), (5.26) and (5.27) we obtain S= S′ = S∞T .

Now recall theorem 4.11, we obtain the following result

Theorem 5.12: Under the assumption (?). If x0 ∈ ∂R(T ), let u∗ ∈ Uad is the correspond-
ing optimal control and x(.) = y x0,u∗(.) is the corresponding trajectory. If x0 ∈ S, i.e T is
non-Lipschitz at x0, then x(T − t) ∈ S for all t ∈ [0, T].

Proof. Since T is non-Lipschitz at x0, there exists a non-zero vector ζ ∈ NR(T )(x0) such that
H(x0,ζ) = 0. Let ψ : [0, T] −→ Rn is the function in theorem 4.11 such that ψ(T ) = ζ,
then

H(x(T − t),ψ(t)) = H(x0,ζ) = 0 ∀ t ∈ [0, T]

Furthermore, theorem 4.11 states that

0 6=ψ(t) ∈ NR(t)(x(T − t)) ∀ t ∈ (0, T )

So by theorem 5.9 and 5.11 we obtain x(T − t) ∈ S for all t ∈ [0, T].

Similarly, under the assumption (?), by using theorem 4.13 we obtain the following result.

Theorem 5.13: Under the assumption (?), if xα ∈ ∂R(α), assume T is non–Lipschitz at
xα, then by theorem 5.9, there exists a non-zero vector ζ ∈ NR(α)(xα) such that H(xα,ζ) = 0.
By theorem 4.13, setting

Ψ : [0,∞) −→ Rn

t 7−→ 〈ζ, e(α−t)Abi〉

and for any β > α, setting the control uβ : [0,β] −→ Rm by

uβ(t) =





v1(t)
...

vm(t)



 where vi(t) = −sign〈ψ(β), e−tAbi〉

and

xβ = −
∫ β

0

e−tABuβ(t) d t

Then H(xβ ,Ψ(β)) = 0 for all β > α. In particular, xβ ∈ S for all β > α.

116



Proof. By theorem 4.13, xβ ∈ ∂R(β), and furthermore

y xβ ,uβ (β −α) = xα

Now doing similarly to theorem 5.12, we obtain Ψ(β) ∈ NR(β)(xβ) and by theorem 4.11,
we have

H(xβ ,Ψ(β)) = H(y xβ ,uβ (β − t),Ψ(t)) = H(xα,ζ) = 0

Thus by theorem 5.9 and 5.11, we conclude that xβ ∈ S.

Above theorems give us a method to calculate the set S in some cases. That is we only
need to calculate some point of x0 ∈ S that lie in particular ∂R(T ), then using the extended
trajectory inside and outside R(T ), we easily obtain all non-Lipschitz points of T that lie in
a trajectory pass through x0. But some simple case, we can doing straight-forward, as in
the example Rocket car problem following.

5.2.1 Application to the Rocket Rail road car problem

Recall the Rocker Rail Road car problem,
¨

z′(t) = A · z(t) + b · u(t)
z(0) = (x0, v0)T

where u(t) ∈ U = [−1, 1] and

z(t) =
�

x(t)
v(t)

�

A=
�

0 1
0 0

�

b =
�

0
1

�

We have know that in this problem the assumption (?) hold, so R= Rn. Also we have

e−tA =
�

1 −t
0 1

�

∀ t > 0

Now using theorem 5.11, on the boundary R(t), we find x t
0 such that there exists ζ ∈

NR(t)(x t
0) and 〈ζ, e−tAb〉= 0. Assume ζ= (ζ1,ζ2) then

〈ζ, e−tAb〉=
�

ζ1 ζ2

�

·
�

1 −t
0 1

�

·
�

0
1

�

= −tζ1 + ζ2 = 0

We can choose the ζ= (1, t) and ζ= (−1,−t) in this case, note that the difference on ‖ζ‖
doesn’t have any effect.

• Case ζ= (1, t). Now we calculate the optimal control by

u(s) = −sign 〈ζ, e−sAb〉= −sign(−s+ t) = −1

since s ∈ [0, t]. So, the corresponding point x t
0 is

x t
0 =

∫ t

0

e−sAbsign〈ζ, e−sAb〉 ds =

∫ t

0

�

s
−1

�

ds =

�

t2

2
−t

�

This is just the curve (S1) : x = v2

2 , v < 0.
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• Case ζ= (−1,−t). Now we calculate the optimal control by

u(s) = −sign 〈ζ, e−sAb〉= −sign(s− t) = 1

since s ∈ [0, t]. So, the corresponding point x t
0 is

x t
0 =

∫ t

0

e−sAbsign〈ζ, e−sAb〉 ds =

∫ t

0

�

−s
1

�

ds =

�

− t2

2
t

�

This is just the curve (S2) : x = − v2

2 , v > 0.

So we conclude that in this problem, the set of all non–Lipschitz points of T is

S= S1 ∪ S2 ∪ {0}

since S is closed.

5.2.2 Application to the Harmonic Oscillator problem

Recall the Harmonic Oscillator problem

z′(t) =
�

v(t)
v′(t)

�

z(0) =
�

x0

v0

�

=⇒

¨

z′(t) = A · z(t) + b · u(t)
z(0) = (x0, v0)T = z0

where u(t) ∈ U = [−1, 1] and

z(t) =
�

x(t)
v(t)

�

A=
�

0 1
−1 0

�

b =
�

0
1

�

Under the assumption (?), R= Rn and

e−tA =
�

cos t − sin t
sin t cos t

�

∀ t > 0

Now using theorem 5.11, on the boundary R(t), we find x t
0 such that there exists ζ ∈

NR(t)(x t
0) and 〈ζ, e−tAb〉= 0. Assume ζ= (ζ1,ζ2) then

〈ζ, e−tAb〉=
�

ζ1 ζ2

�

·
�

cos t − sin t
sin t cos t

�

·
�

0
1

�

= − sin s · ζ+ cos s · ζ2 = 0 (5.28)

We can choose the ‖ζ‖ = 1, and assume ζ = (ζ1,ζ2) = (− cosδ, sinδ), where 0 ≤ δ < 2π.
Then (5.28) implies

sin(t +δ) = 0

And thus, we must have δ = −t + kπ, where k ∈ Z, so

0≤ δ < 2π=⇒
t
π
≤ k <

t
π
+ 2=⇒ k =

l t
π

m

or
l t
π

m

+ 1
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and thus

ζ1 = (ζ1,ζ2) = (− cosδ, sinδ) =
�

− cos
�

−t +
l t
π

m

π
�

, sin
�

−t +
l t
π

m

π
��

or

ζ2 = (ζ1,ζ2) = (− cosδ, sinδ) =
�

− cos
�

−t +π+
l t
π

m

π
�

, sin
�

−t +π+
l t
π

m

π
��

=
�

cos
�

−t +
l t
π

m

π
�

,− sin
�

−t +
l t
π

m

π
��

= −ζ1

This fact is compatible with the fact that R(t) is symmetric through the origin. So we just
need to find the trajectory with ζ1, then the rest is the symmetric part. Now we using this
fact to calculate the corresponding optimal control, for s ∈ [0, t], we have

u1(s) = −sign〈ζ1, e−sAb〉= −sign sin(δ+ s) = −sign sin
�

s− t +
l t
π

m

π
�

Now using this fact to calculate z(t) given by

z1(t) = −
∫ t

0

e−sAbu1(s) ds =

∫ t

0

�

− sin s
cos s

�

sign sin
�

s− t +
l t
π

m

π
�

ds

Using this formula, we can draw S as follow

Figure 30: Set of non-Lipschitz points S∞T in Harmonic Oscillator problem

As we can see, S consists of two curves, which are symmetric through the origin. Further-
more, these curves are tangent to the boundary ∂R(t) for any t > 0.
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