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Abstract Lyapunov’s theorem is a classical result in convex analysis, concerning
the convexity of the range of nonatomic measures. Given a family of integrable vec-
tor functions on a compact set, this theorem allows to prove the equivalence between
the range of integral values obtained considering all possible set decompositions
and all possible convex combinations of the elements of the family. Lyapunov type
results have several applications in optimal control theory: they are used to prove
bang-bang properties and existence results without convexity assumptions. Here,
we use the dual approach to the Baire category method in order to provide a “quan-
titative” version of such kind of results applied to a countable family of integrable
functions.

1 Introduction

The use of Baire categories in the analysis of nonconvex differential inclusions
started with the seminal paper by A. Cellina [4]. These methods were later devel-
oped and adapted to various problems involving nonconvex ordinary and partial
differential inclusions, notably in a series of articles by F. S. De Blasi and G. Piani-
giani (see e.g. [6] and the bibliography therein). It is now known, for example, that
the set Sext of extremal solutions of a differential inclusion, associated to a Lipschitz
continuous multifunction with nonempty, compact and convex images, is residual
in the set of all solutions S, i.e. it contains the intersection of countably many open
dense subsets of S.
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The same problem has been more recently approached by A. Bressan [2] from a
“dual” point of view. The procedure is the following: introduce auxiliary functions
v belonging to some complete space V ; associate to each v ∈ V a nonempty subset
Sv ⊆ S; finally, show that the set of functions v ∈ V satisfying Sv ⊆ Sext is resid-
ual in V . An advantage of this approach with respect to the “direct” one is that it
could work even in the case when Sext is not dense in S. For the differential inclu-
sion problem mentioned above, this situation can appear when no Lipschitzianity
assumptions are imposed on the multifunction.

The dual approach was employed in [3] in order to derive an extension of the
classical bang-bang theorem in linear control theory. In very broad terms, it was
proved that for almost every v in a space of auxiliary functionals, there is a unique
control minimizing v and steering the system between two given points; further-
more, this control arc takes values almost everywhere within the extremal points
of the set of admissible controls. The classical proof of the bang-bang principle is
actually based on a Lyapunov type theorem (see [5]). This result can be stated as
follows. Consider a finite family of Lebesgue integrable functions f1, . . . , fm from a
compact subset K ⊂ IRd to IRn and the simplex of IRm

∆m
.
=

{
ζ = (ζ1, . . . ,ζm) ∈ IRm

∣∣∣ ζi ≥ 0 ∀ i = 1, . . . ,m,
m

∑
i=1

ζi = 1

}
.

Denote by M (K,∆m) the set of Lebesgue measurable functions from K to ∆m.
Then, for any θ = (θ1, . . . ,θm) ∈M (K,∆m) there exists a measurable partition
{E1, . . . ,Em} of K such that∫

E1

f1(x)dx+ . . .+
∫

Em

fm(x)dx =
m

∑
i=1

∫
K

θi(x) fi(x) dx .

An alternative “extremal” formulation of this theorem is the following. Given θ̄ =
(θ̄1, . . . , θ̄m) ∈M (K,∆m), denote

α
.
=
∫

K
θ̄1(x) f1(x)dx+ . . .+

∫
K

θ̄m(x) fm(x)dx ∈ IRn .

Let ∆ ext
m be the set of extreme points of ∆m. According to Lyapunov’s theorem, the

set

A ext
α

.
=

{
θ ∈M

(
K,∆ ext

m
) ∣∣∣ m

∑
i=1

∫
K

θi(x) fi(x) dx = α

}
is nonempty. In the present paper, we aim to provide an alternative proof of this
result based on the Baire category method, implying besides that A ext

α is actually
residual in the set{

θ ∈M (K,∆m)
∣∣∣ m

∑
i=1

∫
K

θi(x) fi(x) dx = α

}
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in a “dual” sense.
The equivalence between the range of integral values obtained considering all

possible set decompositions and all possible convex combinations of given vector
functions plays an important role in optimal control theory, that goes beyond the
application to the bang-bang theorem. For instance, it can be used to derive existence
theorems for optimal control problems without convexity assumptions (see e.g. [1,
7]).

2 A dual approach to Lyapunov’s theorem

For any continuous function v : K → IRm, consider the constrained optimization
problem

Minimizeθ∈Aα

∫
K

θ(x) · v(x)dx (1)

over the set

Aα

.
=

{
θ ∈M (K,∆m)

∣∣∣ m

∑
i=1

∫
K

θi(x) fi(x) dx = α

}
, (2)

where θ(x) · v(x) .
= ∑

m
i=1 θi(x)vi(x) denotes an inner product. It is clear that (1)–(2)

admits at least a solution. Indeed, since θm = 1−∑
m−1
i=1 θi, the problem (1)–(2) is

equivalent to

Minimize
θ̃∈B

∫
K

m−1

∑
i=1

θ̃i(x)(vi(x)− vm(x))dx (3)

over the set

B
.
=
{

θ̃ ∈ L∞(K, IRm−1)
∣∣∣ θ̃i(x)≥ 0 ∀ i = 1, . . . ,m−1,

m−1

∑
i=1

θ̃i(x)≤ 1, a.e. x ∈ K,

m−1

∑
i=1

∫
K

θ̃i(x)
(

fi(x)− fm(x)
)

dx = α−
∫

K
fm(x) dx

}
. (4)

Thanks to Alaoglu’s theorem, for every sequence (θ̃ n)∞
n=1 ⊂ B, there exists a

subsequence (θ̃ nk)∞
k=1 converging weakly* to some θ̃ ∈ L∞(K, IRm−1) satisfying

‖θ̃‖L∞(K,IRm−1) ≤ 1. Hence

lim
nk→+∞

∫
K

m−1

∑
i=1

[θ̃
nk
i (x)− θ̃i(x)]wi(x) dx = 0 ∀w ∈ L1(K, IRm−1) (5)

yields
m−1

∑
i=1

∫
K

θ̃i(x)
(

fi(x)− fm(x)
)

dx = α−
∫

K
fm(x) dx .
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Since ∑
m−1
i=1 θ̃

nk
i (x) ≤ 1 for a.e. x ∈ K and θ̃

nk
i (x) ≥ 0 for a.e x ∈ K and any

i∈ {1,2, ...,m−1}, by a contradiction argument one obtains from (5) that θ̃ satisfies
the same properties. Therefore, the set B is weakly*-compact in L∞(K, IRm−1) and
it yields the existence of solutions to (3)–(4).

Let’s define

Vα

.
= {v ∈ C (K, IRm) | (1)− (2) has a unique solution} . (6)

Here, C (K, IRm) is the space of continuous function on K with values in IRm. Our
main result is stated as follows.

Theorem 1. Vα is a residual subset of C (K, IRm), i.e. it contains the intersection
of countably many open dense subsets of C (K, IRm). Moreover, for any v ∈ Vα ,
the unique optimal solution θ ∗ takes values in Ext (∆m) almost everywhere in the
compact set K.

The main ingredient in the proof of the above theorem is the following lemma.

Lemma 1. Let g : K → IRn be a Lebesgue integrable function. Then the set W g of
continuous functions w ∈ C (K, IR) such that

meas
({

x ∈ K | w(x) = λ ·g(x)
})

= 0 for all λ ∈ IRn (7)

is residual in C (K, IR).

Proof. For every positive integer N and every ε > 0, call W g
ε,N the set of all w ∈

C (K, IR) such that

meas
({

x ∈ K | w(x) = λ ·g(x)
})

< ε (8)

whenever λ ∈ [−N,N]n. The Lemma is proved once we show that, for every ε and
N, W g

ε,N is open and dense in C (K; IR).

1. We begin by proving that W g
ε,N is open. Fix w ∈ W g

ε,N . For any λ ∈ [−N,N]n,
define

ελ

.
= ε−meas

({
x ∈ K | w(x) = λ ·g(x)

})
> 0 . (9)

Using Lusin’s theorem, there exists a continuous function gλ : K 7→ IRn such that

meas
({

x ∈ K | gλ (x) 6= g(x)
})

< ελ/4 . (10)

Consider the compact set of IRn

Eλ

.
=
{

x ∈ K | w(x) = λ ·gλ (x)
}
.

By the regularity properties of Lebesgue measure, there exists a relatively open set
Oλ ⊂ K such that
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Eλ ⊆ Oλ and meas(Oλ\Eλ ) <
ελ

2
. (11)

By the continuity of gλ and w, one has

min
x∈K\Oλ

∣∣∣w(x)−λ ·gλ (x)
∣∣∣ .
= δλ > 0 .

For any function w̃ ∈ C (K, IR) such that

‖w̃−w‖∞ = sup
x∈K
|w̃(x)−w(x)| < rλ

.
=

δλ

3max{1,‖gλ‖∞}
,

it holds ∣∣∣w̃(x)−λ ·gλ (x)
∣∣∣ > 2

3
δλ ∀x ∈ K \Oλ .

In turn, if |λ̃ −λ | < rλ , this implies∣∣∣w̃(x)− λ̃ ·gλ (x)
∣∣∣ > δλ

3
> 0 ∀x ∈ K\Oλ

and it yields

meas
({

x ∈ K | w̃(x) = λ̃ ·gλ (x)
})
≤ meas(Oλ ) . (12)

By (9), (10), (11) and (12), if

‖w̃−w‖∞ < rλ and |λ̃ −λ | < rλ , (13)

then it holds

meas
({

x ∈ K | w̃(x) = λ̃ ·g(x)
})

(14)

< meas
({

x ∈ K | w̃(x) = λ̃ ·gλ (x)
})

+
ελ

4

≤ meas(Oλ )+
ελ

4
< meas(Eλ )+

3
4

ελ

< meas
({

x ∈ K | w(x) = λ ·g(x)
})

+
1
4

ελ +
3
4

ελ = ε .

Repeating the above construction, for every λ ∈ [−N,N]n there exists rλ > 0 so
that the inequalities (13) imply (14). Since the set [−N,N]n is compact, we can
select a finite family {λ 1, ...,λ M}⊂ [−N,N]n such that the corresponding open balls
B
(
λ k,r

λ k
)

satisfy

[−N,N]n ⊂
M⋃

k=1

B
(
λ

k,r
λ k
)
.

Setting r .
= min1≤k≤M r

λ k , for every w̃ ∈ B
(
w,r
)

and λ ∈ [−N,N]n we obtain
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meas
({

x ∈ K | w̃(x) = λ ·g(x)
})

< ε .

Therefore, B
(
w,r
)
⊆W g

ε,N , proving that the set W g
ε,N is open in C (K, IR).

2. It remains to prove that each W g
ε,N is dense in C (K; IR). Relying on Lusin’s

theorem, it is not restrictive to assume that g is continuous. Given any η > 0 and
w̃ ∈ C (K, IR), we will construct a function w ∈W g

ε,N , satisfying

‖w− w̃‖∞ < η . (15)

For simplicity, without loss of generality we will assume that K = [0,1]d . Let’s
choose an integer m sufficiently large so that md ≥ n+1 and h .

= 1
m satisfies

hd <
ε

2n
(16)

and
(x,x′) ∈ K2 , |x− x′| ≤ h

√
d =⇒

∣∣w̃(x)− w̃(x′)
∣∣ < η

2
. (17)

We adopt the following notation: a vector y∈ (IRm)d will be indexed by y = (y j) j∈{0,...,m−1}d .
For every ξ ∈ [0,h]d , λ ∈ [−N,N]n and y ∈ (IRm)d , define

x j,ξ
.
= ξ +h j , j ∈ {0, . . . ,m−1}d

and
Jλ ,ξ (y)

.
=
{

j ∈ {0, . . . ,m−1}d
∣∣∣ y j = λ ·g(x j,ξ )

}
. (18)

We claim that the set

Y (ξ ) .
=
{

y ∈ (IRm)d
∣∣∣ #Jλ ,ξ (y) ≤ n, ∀λ ∈ [−N,N]n

}
is dense in (IRm)d . Indeed, the complementary of Y (ξ ) is contained in the union of
a finite family of proper hyperspaces: for every collection of indexes

J = { j1, . . . , jn+1} ⊂ {0, . . . ,m−1}d ,

let us define the projection

ΠJ : (IRm)d 7→ IRn+1 , ΠJ(y)
.
= (y j1 , . . . ,y jn+1) ,

and the linear operator

AJ : IRn 7→ IRn+1 , AJ(λ )
.
=
(
λ ·g(xξ , j1), . . . ,λ ·g(xξ , jn+1

)
)
.

Then

(IRm)d\Y (ξ ) ⊂
⋃

{J⊂{0,...,m−1}d | #J=n+1}

{
y ∈ (IRm)d | ΠJ(y) ∈ AJ(IRn)

}
.
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For any ξ ∈ [0,h]d and j ∈ {0, . . . ,m−1}d , define

ỹ j(ξ )
.
= w̃(x j,ξ ) .

By the density of Y (ξ ) in (IRm)d , we can find y(ξ ) ∈ Y (ξ ) satisfying∣∣y j(ξ )− ỹ j(ξ )
∣∣ <

η

2
∀ j ∈ {0, . . . ,m−1}d . (19)

On the other hand, fixed any ξ ∈ [0,h]d and λ ∈ [−N,N]n, there exist rλ ,δλ > 0
such that

inf
λ ′∈B(λ ,rλ )

∣∣y j(ξ )−λ
′ ·g(x j,ξ )

∣∣ > δλ ∀ j ∈ {0, . . . ,m−1}d\Jλ ,ξ (y(ξ )) .

As in the previous step, let {λ 1, ...,λ M} ⊂ [−N,N]n be a finite family such that

[−N,N]n ⊂
M⋃

k=1

Bn

(
λ

k,r
λ k

)
.

Set δ
.
=mink∈{1,2,...,M} δk. For any λ ∈ [−N,N]n, there exists an index k∈{1, . . . ,M}

such that∣∣y j(ξ )−λ ·g(x j,ξ )
∣∣ > δ ∀ j ∈ {0, . . . ,m−1}d\J

ξ ,λ k(y(ξ )) .

Thus, by the uniform continuity of g and the uniformly bound of λ , there exists a
neighborhood N (ξ ) of ξ (independent on λ ) such that

∣∣y j(ξ )−λ ·g(x j,ξ ′)
∣∣ >

δ

2
∀ j ∈ {0, . . . ,m−1}d\J

ξ ,λ k(y(ξ )),ξ ′ ∈N (ξ ) .

In particular, recalling (18), we obtain that

Jξ ′,λ (y(ξ ))⊂ J
ξ ,λ k(y(ξ )) ∀ξ

′ ∈N (ξ ) ,

and this yields

#Jλ ,ξ ′(y(ξ )) ≤ n ∀λ ∈ [−N,N]n, ∀ξ
′ ∈N (ξ ) . (20)

Cover the set [0,h[d with finitely many disjoint neighborhoods {N (ξk)}k=1,...,` and
define a piecewise constant function w : [0,1[d 7→ IR by setting

w(x) .
= y j(ξk) if x ∈N (ξk)+h j , k = 1, . . . , ` , j ∈ {0, . . . ,m−1}d .

For any x ∈ [0,1[d , let k ∈ {1, . . . , `} and j ∈ {0, . . . ,m− 1}d be such that x ∈
N (ξk)+ h j. Then, x and x j,ξk

belong to [0,h[d+h j. Recalling (17) and (19), we
have

|w(x)− w̃(x)| ≤ |y j(ξk)− ỹ j(ξk)| + |w̃(xξk, j)− w̃(x)| < η
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and it yields (15).

Moreover, by (16), (18) and (20), we obtain

meas
({

x ∈ K | w(x) = λ ·g(x)
})

= meas

 ⋃
j∈{0,...,m−1}d

{
x ∈ [0,h[d+h j | w(x) = λ ·g(x)

}
= meas

 ⋃
j∈{0,...,m−1}d

⋃̀
k=1

{
x ∈N (ξk)+h j | y j(ξk) = λ ·g(x)

}
≤

`

∑
k=1

meas

 ⋃
j∈{0,...,m−1}d

{
ξ
′ ∈N (ξk) | y j(ξk) = λ ·g(x j,ξ ′)

}
≤

`

∑
k=1

n ·meas
(
N (ξk)

)
= nhd <

ε

2

for every λ ∈ [−N,N]n.

Finally, by Lusin’s theorem, we then modify w on a set of measure < ε/2 and make
it continuous on the entire set K and still satisfying (15). Then w ∈W g

ε,N ∩B(w̃,η)

and the set W g
ε,N is dense in C (K, IR). ut

We are now going to prove our main theorem.

Proof of Theorem 1. It is divided into 2 steps:
1. Fix v = (v1, . . . ,vm) ∈ C (K, IRm) and let θ ∗ = (θ ∗1 , . . . ,θ

∗
m) be a solution of the

optimization problem (1)–(2). We claim that if θ ∗ is not extremal, then it is not the
unique solution of (1)–(2) and there exist two indexes i1 6= i2 ∈ {1, . . . ,m} and a
Lagrange multiplier λ = (λ1, . . . ,λn) ∈ IRn satisfying

meas
({

x ∈ K | vi1(x)− vi2(x) = λ ·
(

fi1(x)− fi2(x)
)})

> 0 . (21)

Indeed, if θ ∗ is non-extremal then the set

K1 = {x ∈ K | 0 < θ
∗
i (x)< 1 for some i ∈ {1, . . . ,m}}

has a positive Lebesgue measure. Since ∑
m
i θ ∗(x) = 1 for all x ∈ K, we can deduce

that there exist two different indexes i1, i2 ∈ {1, . . . ,m} such that

meas
({

x ∈ K | 0 < θ
∗
i (x)< 1 , ∀ i ∈ {i1, i2}

})
> 0 .

Observe that
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meas
({

x ∈ K | 0 < θ
∗
i (x)< 1 , ∀ i ∈ {i1, i2}

})
= meas

(
+∞⋃
n=3

{
x ∈ K

∣∣∣ 1
n
< θ

∗
i (x)< 1− 1

n
, ∀ i ∈ {i1, i2}

})
,

there exists n0 ≥ 3 such that the set

K̃ =

{
x ∈ K

∣∣∣ 1
n0

< θ
∗
i (x)< 1− 1

n0
, ∀ i ∈ {i1, i2}

}
has a positive Lebesgue measure.

Consider the auxiliary optimization problem

Minimizeξ∈A0

∫
K̃

ξ (x)
(
vi1(x)− vi2(x)

)
dx , (22)

where

A0
.
=

{
ξ ∈M (K̃, [−1,1])

∣∣∣ ∫
K̃

ξ (x)
(

fi1(x)− fi2(x)
)

dx = 0
}
. (23)

Observe that ξ ∗ ≡ 0 is an optimal solution of (22) - (23). Indeed, for any ξ ∈ A0,
define the mapping θ̃ : K 7→ IRm by

θ̃(x) .
=

{
θ ∗(x)+ 1

n0
ξ (x)

(
ei1 − ei2

)
if x ∈ K̃

θ ∗(x) if x ∈ K \ K̃ ,

where {e1, . . . ,em} is the canonical basis of IRm. Clearly, θ̃ belongs to Aα . Thus,∫
K

θ̃(x) · v(x)dx ≥
∫

K
θ
∗(x) · v(x)dx

and it implies that ∫
K̃

ξ (x)
(
vi1(x)− vi2(x)

)
dx ≥ 0 . (24)

Now let’s consider the vector subspace Y of IRn generated by{∫
K̃

ξ (x)
(

fi1(x)− fi2(x)
)

dx
∣∣∣ ξ ∈M (K̃, [−1,1])

}
and define two convex subsets of IR×Y

A .
=
{
(a0,0) ∈ IR×Y

∣∣ a0 < 0
}
,

and B the set of elements of the form

(b0, b̄) =
(∫

K̃
ξ (x)

(
vi1(x)− vi2(x)

)
dx ,

∫
K̃

ξ (x)
(

fi1(x)− fi2(x)
)

dx
)
,
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with ξ varying in M (K̃, [−1,1]). Recalling (24), one has that A∩B = /0. Thanks to
hyperplane separation theorem, there exists (λ0, λ̄ ) ∈

(
[0,+∞)×Y

)
\{(0,0)} such

that
λ0a0 ≤ λ0b0 + λ̄ · b̄ ∀a0 < 0,(b0, b̄) ∈ B .

Observe that λ0 6= 0, otherwise we have

λ̄ ·
∫

K̃
ξ (x)

(
fi1(x)− fi2(x)

)
dx ≥ 0 ∀ξ ∈M (K̃, [−1,1]) ,

that is impossible, since 0 6= λ̄ ∈ Y . Setting λ =−λ̄/λ0, we obtain∫
K̃

ξ (x)
(
vi1(x)− vi2(x)

)
dx−λ ·

∫
K̃

ξ (x)
(

fi1(x)− fi2(x)
)

dx ≥ lim
a0→0−

a0 = 0

for every ξ ∈M (K̃, [−1,1]). This yields

vi1(x)− vi2(x) = λ ·
(

fi1(x)− fi2(x)
)

a.e. x ∈ K̃

and consequently (21).

In order to see that θ ∗ is not the unique solution of (1)–(2), consider a function
ξ ∈A0 such that

meas
({

x ∈ K̃
∣∣∣ ξ (x) 6= 0

})
> 0 .

Therefore, the following mappings

θ̃
±(x) .

=

{
θ ∗(x)± 1

n0
ξ (x)

(
ei1 − ei2

)
if x ∈ K̃

θ ∗(x) if x ∈ K \ K̃

belong to Aα , satisfy θ̃+ 6≡ θ̃− and

min
{∫

K
θ̃
−(x) · v(x)dx,

∫
K

θ̃
+(x) · v(x)dx

}
≤
∫

K
θ
∗(x) · v(x)dx .

2. Remark that if the problem (1)–(2) admits two distinct solutions θ ∗ and θ ∗∗, then
their convex combination

θ̃
.
=

θ ∗+θ ∗∗

2
is still a solution and it is not extremal. Therefore, by the previous step, Vα contains
the set of functions v = (v1, . . . ,vm) ∈ C (K, IRm) satisfying

meas
({

x ∈ K | vi1(x)− vi2(x) = λ ·
(

fi1(x)− fi2(x)
)})

= 0 ∀ i1 6= i2, λ ∈ IRn .

For any Lebesgue integrable function g : K→ IRn, define W g as in the statement of
Lemma 1. We then have
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Vα ⊃
⋂

i1 6=i2∈{1,...,m}

{
v = (v1 . . . ,vm) ∈ C (K, IRm)

∣∣∣ vi1 − vi2 ∈W fi1− fi2
}
.

By Lemma 1, the set W fi1− fi2 is residual in C (K, IR) for all i1 6= i2 ∈ {1,2, ...,m},
i.e., there exists a family of open and dense subsets

{
W

fi1− fi2
k

}
k∈IN

of C (K, IR)

satisfying ⋂
k∈IN

W
fi1− fi2

k ⊂ W fi1− fi2 .

Hence we obtain

Vα ⊃
⋂

i1 6=i2∈{1,...,m}

{
v ∈ C (K, IRm)

∣∣∣ vi1 − vi2 ∈
⋂

k∈IN

W
fi1− fi2

k

}
⊃

⋂
i1 6=i2∈{1,...,m} ,k∈IN

{
v ∈ C (K, IRm)

∣∣∣ vi1 − vi2 ∈W
fi1− fi2

k

}
.

Moreover, it is not difficult to verify that the sets of the last intersection are open
and dense. Therefore we can conclude that Vα contains the intersection of countably
many open dense subsets of C (K, IRm), i.e. it is residual. ut

With similar techniques we can deal with a countable family of integrable func-
tions. Let ( fi)

∞
i=1 be a family of Lebesgue integrable functions from K ⊂ IRd to IRn

satisfying ∫
K

sup
i
‖ fi(x)‖dx < ∞ , (25)

where ‖ · ‖ is the norm in IRn. Let (θ̄i)
∞
i=1 be a family of measurable functions from

K to [0,+∞) such that
∞

∑
i=1

θ̄i(x) = 1 ∀x ∈ K .

We can consider θ̄ = (θ̄i)
∞
i=1 as an element of the space L∞(K, `∞), where `∞ is the

space of bounded real sequences. Call

α
.
=
∫

K

∞

∑
i=1

θ̄i(x) fi(x)dx .

Thanks to (25) and dominated convergence, α ∈ IRn. Given v ∈ C (K, `1), consider
the problem

Minimizeθ∈Aα

∫
K

∞

∑
i=1

θi(x)vi(x)dx (26)

over the set

Aα

.
=
{

θ ∈ L∞(K, `∞)
∣∣∣ θi(x)≥ 0 ∀ i ∈ IN ,

∞

∑
i=1

θi(x) = 1, a.e. x ∈ K,
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K

∞

∑
i=1

θi(x) fi(x) dx = α

}
. (27)

This problem admits at least a solution, since it is equivalent to

Minimize
θ̃∈B

∫
K

∞

∑
i=1

θ̃i(x)
(
vi+1(x)− v1(x)

)
dx

over the set

B
.
=
{

θ̃ ∈ L∞(K, `∞)
∣∣∣ θ̃i(x)≥ 0 ∀ i ∈ IN ,

∞

∑
i=1

θ̃i(x)≤ 1, a.e. x ∈ K,

∞

∑
i=1

∫
K

θ̃i(x)
(

fi+1(x)− f1(x)
)

dx = α−
∫

K
f1(x) dx

}
and B is weakly*-compact in L∞(K, `∞).

Theorem 2. Assume (25). Then the set

Vα

.
=
{

v ∈ C (K, `1) | (26)− (27) has a unique solution
}
. (28)

is residual in C (K, `1). Moreover, for any v ∈ Vα , the unique optimal solution θ ∗

verifies θ ∗i (x) ∈ {0,1} for almost every x ∈ K and every i.

Proof. The proof is similar to the one of Theorem 1. Fix v ∈ C (K, `1) and let θ ∗ ∈
L∞(K, `∞) be a solution of the optimization problem (26)–(27). If θ ∗ does not verify
θ ∗i (x)∈{0,1} for almost every x∈K and every i, then it is possible to show as above
that θ ∗ is not the unique solution of (26)–(27). We claim that there exist two indexes
i1 6= i2 and λ = (λ1, . . . ,λn) ∈ IRn satisfying

meas
({

x ∈ K | vi1(x)− vi2(x) = λ ·
(

fi1(x)− fi2(x)
)})

> 0 . (29)

Indeed, if θ ∗ is non-extremal, we have

0 < meas
({

x ∈ K | 0 < θ
∗
i (x)< 1 for some i

}
= meas

(⋃
I∈IN

+∞⋃
n=3

{
x ∈ K

∣∣∣ 1
n
< θ

∗
i (x)< 1− 1

n
, ∀ i ∈ {i1, i2}, some i1 6= i2 ≤ I

})
.

Consequently, there exist i1 6= i2 and n0 ≥ 3 such that the set

K̃ =

{
x ∈ K

∣∣∣ 1
n0

< θ
∗
i (x)< 1− 1

n0
, ∀ i ∈ {i1, i2}

}
has a positive Lebesgue measure. As in the proof of Theorem 1, one can verify that
ξ ∗ ≡ 0 is an optimal solution of the auxiliary problem (22) - (23) and that it satisfies
the necessary condition (29) for some Lagrange multiplier λ = (λ1, . . . ,λn) ∈ IRn.
Therefore, if we denote by W fi1− fi2 is the set of functions w ∈ C (K, IR) such that
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meas
({

x ∈ K | w(x) = λ · ( fi1(x)− fi2(x))
})

= 0 for all λ ∈ IRn ,

we obtain
Vα ⊃

⋂
i1 6=i2

{
v ∈ C (K, `1)

∣∣∣ vi1 − vi2 ∈W fi1− fi2
}
.

By Lemma 1, for all i1 6= i2 the set W fi1− fi2 is residual in C (K, IR), i.e., there exists

a family of open and dense subsets
{

W
fi1− fi2

k

}
k∈IN

of C (K, IR) satisfying

⋂
k∈IN

W
fi1− fi2

k ⊂ W fi1− fi2 .

Hence we obtain

Vα ⊃
⋂

i1 6=i2

{
v ∈ C (K, `1)

∣∣∣ vi1 − vi2 ∈
⋂

k∈IN

W
fi1− fi2

k

}
⊃

⋂
i1 6=i2 ,k∈IN

{
v ∈ C (K, `1)

∣∣∣ vi1 − vi2 ∈W
fi1− fi2

k

}
.

Consequently, Vα is residual in C (K, `1). ut
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