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1 Introduction

1.1 Classification of Differential Equations

Definition 1.1 A differential equation is an equation which contains derivatives of the
unknown (Usually it is a mathematical model of some physical phenomenon).

Example 1.
a) Model of population of ecology:

u̇(t) = ru(t)

(
1− u(t)

K

)
(ODE)

where

• r,K are given constants;

• t is time variable and u is an unknown function of t.

b) Model of traffic flow on a single road

ut(x, t) + f(u(x, t))x = 0 (PDE)

where

• t is time variable and x is state variable;

• f is a given flux;

• u is a unknown function of t and x.

Notations:

• u̇(t) =
du

dt
: ordinary derivative.

• ut =
∂u

∂t
, ux =

∂u

∂x
, utt =

∂2u

∂t2
, utx =

∂2u

∂t∂x
, uxx =

∂2u

∂x2
: partial derivatives.

There are two classes of differential equations:

• Ordinary differential equations (ODEs).

• Partial differential equations (PDEs).
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1.2 A review on ordinary differential equations

Definition 1.2 A ordinary differential equation is an equation with ordinary derivative
of the unknown u that depends only on one variable.

First order differential equations. Consider the ordinary differential equaition

u′(t) = f(t, u(t))

where f is a given function and u is an unknown of t.

Goal: Solve the above ODE.

1.2.1 Linear equations: Method of integrating factors

The function f(t, u) is linear function in u, we can write

f(t, u) = − p(t) · u+ q(t)

where p, q are given functions of t.

We will study the equation
u′(t) + p(t)u(t) = q(t) . (1.1)

Method of integrating factors.

Step 1: Compute the integrating factor

µ(t) = exp

(∫
p(t) dt

)
.

Step 2: The general solution is

u(t) =
1

µ(t)
·
[∫

µ(t)q(t) dt+ C

]
.

Example 2. Solving the following initial value problems

a) u′(t) + u(t) = e2t, u(0) = 1.

b) tu′(t)− u(t) = t2e−t for all t ≥ 1, u(1) = 1− e−1.

Answer. (a) We have
p(t) = 1, q(t) = e2t .

The integrating factor

µ(t) = exp

(∫
p(t) dt

)
= exp

(∫
1 dt

)
= et .
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The general solution

u(t) =
1

µ(t)
·
[∫

µ(t)q(t) dt+ C

]
=

1

et
·
[∫

e3t dt+ C

]
=

1

3
· e2t + C · e−t .

The initial condition implies that

1 = u(0) =
1

3
+ C =⇒ C =

2

3
.

The solution

u(t) =
1

3
· e2t +

2

3
· et .

(b). Rewrite the equation

u′(t)− 1

t
· u(t) = te−t .

We have

p(t) = − 1

t
and q(t) = te−t .

The integrating factor

µ(t) = exp

(∫
−1

t
dt

)
= e− ln(t) =

1

t
.

The general solution

u(t) =
1

µ(t)
·
[∫

µ(t)q(t) dt+ C

]
= t ·

[∫
e−t dt+ C

]
= − te−t + Ct .

The initial condition implies that

e−1 + 1 = u(1) = e−1 + C =⇒ C = 1 .

The solution
u(t) = − te−t + t .

1.2.2 Separable equations

Assume that f(t, u) can be separated

f(t, u) =
M(t)

N(u)
.

We will study the equation
du

dt
= f(t, u) =

M(t)

N(u)
. (1.2)
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Equivalently,

N(u)du = M(t)dt =⇒
∫
N(u) du =

∫
M(t) dt

and it yields an implicit formula for the solution u

Example 3. Consider the equation

u′(t) =
cos t

1− u2
, u(π/2) = 3 .

We can separate the variables

(1− u2)du = cos t dt =⇒
∫

(1− u2)du =

∫
cos t dt .

This yields

u− 1

3
u3 = sin(t) + C .

Since u(π/2) = 3, we have

3− 1

3
· 33 = 1 + C =⇒ C = − 7 .

The solution u is given implicitly as

u− 1

3
u3 = sin(t) + 7 .

1.2.3 Second Order Linear Equations

The general form of these equations is

a2(t)u′′(t) + at(t)u
′(t) + a0u(t) = b(t) .

where a0, a1, a2 and b are given functions and u is an unknown of t.

If b(t) ≡ 0, we call it homogeneous. Otherwise, it is called non-homogeneous.

1.2.4 Homogeneous equations with constant coefficients

The linear equation
au′′ + bu′ + cu = 0 (1.3)

where a, b, c are given constants.

The principle of superposition. If u1 and u2 are solutions of (1.3), then u = c1u1+c2u2

is also a solution of (1.3) for arbitrary constants c1, c2.

How to find u1 and u2?

The characteristic equation of (1.3)

ar2 + br + c = 0 . (1.4)
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Denote by
D = b2 − 4ac .

Three cases can occur:

• If D > 0 then (1.4) has two real roots

r1 =
−b+

√
D

2a
, r2 =

−b−
√
D

2a

Two particular solutions

u1(t) = er1t, u2(t) = er2t .

The general solution of (1.3) is

u(t) = c1 · er1t + c2 · er2t .

• If D = 0 then (1.4) has a repeated root

r1 = r2 = r̄ =
−b
2a

.

Two particular solutions

u1(t) = er̄t, u2(t) = ter̄t .

The general solution of (1.3) is

u(t) = c1 · er̄t + c2 · ter̄t .

• If D < 0 then (1.4) has two complex conjugate roots

r1 = α+ iβ, r2 = α− iβ

where

α =
−b
2a

and β =

√
|D|

2a
.

Two particular solutions

u1(t) = eαt · cos(βt), u2(t) = eαt · sin(βt) .

The general solution of (1.3) is

u(t) = c1e
αt cos(βt) + c2e

αt sin(βt) .

Example 4. Solve the second order linear ODE

u′′ + 3u′ + 2u = 0 with u(0) = 1, u′(0) = 2 .
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Answer. The characteristic equation

r2 + 3r + 2 = 0 .

Since D = 32 − 4 · 2 · 1 = 1 > 0, we have

r1 = − 1, r2 = − 2 .

The general solution
u(t) = c1e

−t + c2e
−2t .

Initial conditions imply that
1 = u(0) = c1 + c2

and
2 = u′(0) = − c1 − 2c2 .

Solving the system of algebra equations, we obtain

c1 = 4, c2 = − 3 .

The solution
u(t) = 4 · e−t − 2e−2t .

1.2.5 Cauchy-Euler equations

Consider the second order equation of the form

ax2u′′ + bxu′ + cu = 0 .

Try to look for particular solutions of the form u(x) = xr. This yields the characteristic
equation

ar(r − 1) + br + c = 0 .

This quadratic equation has two roots r1, r2. Three cases may occur:

• If r1 and r2 are two distinct real roots, then the general solution

u(x) = c1x
r1 + c2x

r2 .

• If r1 = r2 = r̄, then the general solution

u(x) = c1x
r̄ + c2x

r̄ lnx

• If r1 and r2 are two complex conjugate roots, i.e.,

r1 = α+ iβ, r2 = α− iβ .

then the general solution

u(x) = c1x
α sin(β lnx) + c2x

α cos(β lnx) .
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1.3 Partial Differential Equations.

Definition 1.3 A partial differential equation is an equation with partial derivatives of
the unknown u that depends on several variables.

Some basic concepts related to differential equations:

• Order of PDEs: the highest order of derivatives.

• Linear PDEs: the term with u and its derivatives are in a linear form.

• Nonlinear PDEs: the term with u and its derivatives are in a nonlinear form.

Example 1. Let u be a function of two variables t, x. Identify the order and linearity of
the following equations.

(a). ut + 2ux = 0

(b). utt = c2 · uxx (Wave equation)

(c). uxx + uyy = 0 (Laplace equation)

(d). ut = uxx + uyy (2D heat equation)

(e). ut +

(
u2

2

)
x

= 0 (Burger’s equation)

(f). uxx + uyy = f(x, y) (Poisson equation)

(g). utt − 4uxt + uxx + x3u+ tux = 0 .

Definition 1.4 The function u is a solution if it satisfies the equation and any boundary
or initial conditions.

Example 2. (a) Given any smooth functions F , the function

u(x, t)
.
= F (2t− x) for all (t, x) ∈ (0,∞)× R

is a solution of the equation in (a) of example 1.

Proof. Using the change rule, one computes that

ux(x, t) =
d

dx
F (2t−x) = −F ′(2t−x) and ut(x, t) =

d

dt
F (2t−x) = 2F ′(2t−x)

This implies that
ut + 2ux = 2F ′(2t− x)− 2F ′(2t− x) = 0 .

(b) Showing that the function

u(x, t) = ef(t) · g(x)
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solves the equation
u · utx = ut · ux

Proof. Using the change rule, one computes

ut =
d

dt
ef(t) · g(x) = f ′(t)ef(t)g(x), ux = ef(t) · d

dx
g(x) = ef(t)g′(x)

and

utx =
d

dt
ef(t) · d

dx
g(x) = f ′(t)g′(x)ef(t) .

Therefore

u · utx = ef(t)g(x) · f ′(t)g′(x)ef(t) = f ′(t)ef(t)g(x) · ef(t)g′(x) = ut · ux .

Definition 1.5 Let L be a differential operator. We say that

(H) The equation L(u) = 0 is homogeneous.

(NH) The quation L(u) = f is non-homogeneous for all f 6= 0.

The principle of superposition. Assume that L is a linear differential operator, i.e.,

L(u+ v) = L(u) + L(v) and L(λ · u) = λ · L(u) .

Then the followings hold:

(i) If u1 and u2 are solutions of the homogeneous equation

L(u) = 0

then u = λ1 · u1 + λ2 · u2 is also a solution for any λ1, λ2 ∈ R.

(ii) If u1 is a solution of the homogeneous equation L(u) = 0, and u2 is a solution of the
non-homogeneous equation L(u) = f , then u = u1 + u2 is a solution of L(u) = f .

Classification of PDEs. Consider the second order PDEs

Auxx +Buxt + Cutt + F (x, t, u, ux, ut) = 0 (1.5)

where A,B,C are given constants, F is a given function, and u is an unknown.

Denote by
∆ = B2 − 4AC .

There are three cases:

• If ∆ > 0 then (3.6) is hyperbolic;

• If ∆ < 0 then (3.6) is elliptic;

• If ∆ = 0 then (3.6) is parabolic.
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2 Scalar Conservation Laws

General form

ut +
d

dx
Φ(t, x, u) = g

where

• u is the density which depends on the time variable t ≥ 0 and the state variable
x ∈ R;

• Φ is a given flux;

• g is a given source term (external force).

Example 1. (Traffic flow) On a single road, let’s denote by

• u(x, t) is the traffic density at the location x at time t.

• v is the velocity of cars which depends on the traffic density.

• The flux
f(u)

.
= u · v(u)

describes the total number of cars crossing the location x at time t.

Giving two locations a and b on the road, the integral∫ b

a
u(x, t) dx = total number of cars in [a, b] at time t .

ρ

x

   

a b

= density of cars

We compute

d

dt

∫ b

a
u(x, t) dx = f(u(a, t))− f(u(b, t))

= −
∫ b

a

d

dx
f(u(x, t)) dx .

This implies that∫ b

a
ut(x, t) + f(u(x, t))x dx = 0 for all a < b .

A PDE for traffic flow
ut(x, t) + f(u(x, t))x = 0 . (2.1)

GOAL: describe the traffic density at time t .
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2.1 Linear advection equations

In this subsection, we will study linear advection equations of form

ut(x, t) + c(x, t) · ux(x, t)) = g(x, t, u)

where

• t is the time variable and x is the state variable;

• g is a given source term;

• c is a given speed of t and x

Goal: Find the density u at the location x and the time t.

2.1.1 Homogeneous linear advection equations with constant speed

Consider the Cauchy problem ut(x, t) + c · ux(x, t) = 0 ,

u(x, 0) = u0(x)
(2.2)

where

• c is a given constant speed;

• the function u0(x) is the initial data.

Observe that

d

dt
u(x0 + ct, t) = c · ux(x0 + ct, t) + ut(x0 + ct, t) = 0 .

Hence, u is constant along every line (x0 + ct, t). In particular, one has

u(t, x0 + ct) = u(x0, 0) = u0(x0) .

Set x = x0 + ct, we have x0 = x− ct. The solution is

u(x, t) = u0(x− ct) .

Remark. The general solution of (2.2) has form

u(x, t) = F (x− ct)

for smooth function F .

Example 1. Consider the Cauchy problem
ut(x, t) + 2 · ux(x, t) = 0 ,

u(x, 0) =
1

1 + x2
.
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Find u(x, 1).

Answer. c = 2 and u0(x) =
1

1 + x2
. Thus, the solution

u(x, t) =
1

1 + (x− 2t)2
.

In particular, we have

u(x, 1) =
1

1 + (x− 2)2
=

1

x2 − 4x+ 5
.

Example 2. Solve the initial value problem (IVP)
ut(x, t)− 3 · ux(x, t) = 0 ,

u(x, 0) =

 −1 if x > 0

1 if x ≤ 0 .

Answer. We have

c = − 3 and u0(x) =

 −1 if x > 0

1 if x ≤ 0 .

Thus, the solution is

u(x, t) = u0(x+ 3t) =

 −1 if x > −3t

1 if x ≤ −3t .

Example 3. Find the solution of the following initial value problem
ut(x, t)− 2 · ux(x, t) + 3u(x, t) = 0 ,

u(x, 0) = xe−x
2
.

Answer. Set v(x, 0) = e3tu(x, 0). We have

vx(x, 0) = e3tu(x, 0) and vt = e3t · [ut(x, t) + 3u(x, t)] .

Thus, 
vt(x, t)− 2 · vx(x, t) = 0 ,

v(x, 0) = v0(x) = xe−x
2
.
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Solving the above equation, we get

v(x, t) = v0(x+ 2t) = (x+ 2t)e−(x+2t)2 .

Recalling that
u(x, t) = e−3t · v(x, t) ,

the solution u is
u(x, t) = (x+ 2t)e−(x+2t)2−3t .

2.1.2 Non-homogeneous linear advection equations with constant speed

Consider the Cauchy problem ut(x, t) + c · ux(x, t) + a(t)u(x, t) = g(x, t) ,

u(0, x) = u0(x)
(2.3)

where

• c is a given constant speed;

• the function u0(x) is the initial data.

• a(t), g(x, t) are given functions.

How to solve (2.3)?

Answer. It is divided into several steps:

Step 1: Introduce new functions

v(x, 0)
.
= eµ(t) · u(x, t) and k(x, t)

.
= eµ(t)g(x, t)

where µ is the integrating factor

µ(t) =

∫ t

0
a(s) ds .

We compute that

vx(x, t) = eµ(t) · u(x, t), vt(x, t) = eµ(t) · [ut(x, t) + a(t)u(x, t)]

and
u(x, 0) = eµ(0) · u(x, 0) = u0(x) .

Thus, v is the solution of  vt(x, t) + c · vx(x, t) = k(x, t) ,

v(x, 0) = u0(x) .
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Step 2: Set V (x, t) = v(x+ ct, t). We have

Vt = vt + cvx = k(x+ ct, t) .

Solving the ordinary different equation in time t

Vt(x, t) = k(x+ ct, t) with V (x, 0) = u0(x)

we obtain that

V (x, t) = u0(x) +

∫ t

0
k(x+ cs, s) ds .

Step 3: The general solution

u(x, t) = e−µ(t) · v(x, t)

= e−µ(t) · V (x− ct, t) .

Example 1. a). Find the general solution

ut − 2ux + 2u = e−t .

b) Assume that u(x, 0) = e−x. Compute u(2, 1).

Answer. Step 1. We have

c = − 2, a = 2, g(t) = e−t .

The function

µ(t) =

∫ t

0
2 ds = 2t .

We set
v(x, t) = e2t · u(x, t) and k(t) = et .

Then, v(x, t) solves the PDE
vt − 2vx = et.

Step 2. Set V (x, t) = v(x− 2t, t). We have

Vt(x, t) = et .

Thus,

V (x, t) =

∫
es ds = et + F (x) .

Step 3. The general solution

u(x, t) = e−2tv(x, t) = e−2tV (x+ 2t, t)

= e−2tF (x+ 2t) + e−2t · et = = e−2tF (x+ 2t) + e−t.
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(b). The initial condition u(x, 0) = e−x implies that

e−x = F (x) + 1 =⇒ F (x) = e−x − 1 .

Thus,
u(x, t) = e−2t · e−(x+2t) + e−t − e−2t = e−x + e−t − e−2t .

In particular,
u(2, 1) = e−1 + e−2 − e−2 = e−1 .

Example 2. Find the solution of the Cauchy problem
ut(x, t) + 3 · ux(x, t) + 2t · u(x, t) = t ,

u(x, 0) = x+
1

2
.

Answer. Step 1. We have

c = − 2, a(t) = 2t and g(t) = t .

The function

µ(t) =

∫ t

0
2s ds = t2 .

We set
V (x, t) = et

2 · u(x, t) and k(t) = tet
2
.

Then, v is the solution of the Cauchy problem
vt + 3 · vx = tet

2
,

v(x, 0) = x+
1

2
.

Step 2. Set V (t, x) = v(t, x+ 3t). We have

Vt(x, t) = tet
2

and V (x, 0) = x+
1

2
.

Thus,

V (x, t) = x+
1

2
+

∫ t

0
ses

2
ds = x+

et
2

2
.

Step 3. The solution

u(x, t) = e−t
2
v(x, t) = e−t

2
V (x− 3t, t)

= e−t
2 · (x− 3t) +

1

2
.
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Example 3. Solve the initial value problem ut(x, t) + ux(x, t) + 3u(x, t) = xe−3t ,

u(x, 0) = x2 − 1 .

Answer. Step 1. We have

c = 1, a(t) = 3 and g(x, t) = xe−3t .

The function

µ(t) =

∫ t

0
3 ds = 3t .

We set
v(x, t) = e3t · u(x, t) and k(x, t) = x .

Then, v is the solution of the Cauchy problem vt(x, t) + vx(x, t) = k(x, t) ,

u(x, 0) = x2 − 1 .

Step 2. Set V (x, t) = v(x+ t, t). We have

Vt(x, t) = k(x+ t, t) = x+ t, V (x, 0) = x2 − 1 .

Thus,

V (x, t) = x2 − 1 +

∫ t

0
(x+ s) ds = x2 − 1 + xt+

t2

2
.

Step 3. The solution

u(x, t) = e−3tv(x, t) = e−3tV (x− t, t)

= e−3t ·
[
(x− t)2 − 1 + (x− t)t+

t2

2

]
= e−3t ·

[
x2 − xt+

t2

2
− 1

]
.

2.1.3 Homogeneous linear advection equations with nonconstant speed

Consider the Cauchy problem ut(x, t) + c(x, t) · ux(x, t) = 0 ,

u(x, 0) = u0(x)
(2.4)

where the speed c(x, 0) is a given function of x and t.

Goal: Find the solution u.
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• The method of characteristics. Let x(t) be the solution of

ẋ(t) = c(x, t), x(0) = x0 .

The curve (x(t), t) is called a characteristic curve.

Observe that

d

dt
u(x(t), t) = ut(x(t), t) + ẋ(t) · ux(x(t), t)

= ut(x(t), t) + c(x(t), t) · ux(x(t), t) = 0 .

This implies that the function u is constant along the characteristic curve (x(t), t). In
particular, we have

u(x(t), t) = u(x(0), t) = u0(x0) .

Therefore, the solution u can be solved backward along characteristic curves.

• How to solve the equation (2.4)?

Step 1. Solve the ODE
ẋ(t) = c(x, t)

and get the general solution of form

ξ(x, t) = C .

Step 2. The general solution is

u(x, t) = F (ξ(x, t))

for some smooth function F .

Step 3. Find F by using the initial condition.

Example 1. Find a general solution of the ODE

ut(x, t) + 2tux(x, t) = 0 .

Answer. Step 1. Solve the ODE
ẋ(t) = 2t

we obtain that
x(t) = t2 + C =⇒ x− t2 = C .

Thus,
ξ(x, t) = x− t2 .

Step 2. The general solution

u(x, t) = F (ξ(x, t)) = F (x− t2)

for some smooth function F .
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Example 2. Consider the first order linear PDE

ut + t2ux = 0 .

(a) Find u(x, t) if u(x, 0) = sinx.

(b) Find u(x, t) if u(x, 1) = e−x
2
.

Answer. Solve the ODE
ẋ(t) = t2

we obtain that

x(t) =
1

3
· t3 + C =⇒ x− t3

3
= C .

Thus,

ξ(x, t) = x− t3

3

and the general solution

u(x, t) = F (ξ(x, t)) = F (x− t3/3)

for some smooth function F .

(a). If u(x, 0) = sinx then
F (x) = sinx.

The solution
u(x, t) = sin(x− t3/3) .

(b). If u(x, 1) = e−x
2

then

F (x− 1/3) = e−x
2

=⇒ F (x) = e−(x+1/3)2 .

The solution

u(x, t) = F (x− t3/3) = e
−
(
x− t

3−1
3

)2

.

Example 3. Consider the initial value problem ut(x, t) + txux(x, t)) = 0 ,

u(x, 0) = e−x .

Find u(x, 2).

Answer. Solve the ODE

ẋ = tx =⇒ x = Ce
t2

2 =⇒ x · e−t2/2 = C .
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Thus,
ξ(x, t) = x · e−t2/2 .

The general solution
u(x, t) = F (ξ(x, t)) = F (xe−t

2/2) .

The initial data u(x, 0) = e−x implies that

F (x) = e−x .

Therefore, the solution

u(x, t) = F (xe−t
2/2) = e−xe

−t2/2
.

In particular,
u(x, 2) = e−xe

−2
.

2.1.4 Nonhomogeneous linear advection equations with nonconstant speed

Consider the Cauchy problem ut(x, t) + c(x, t) · ux(x, t) = g(x, t) ,

u(x, 0) = u0(x)
(2.5)

where

• the speed c(x, t) is a given function of x and t.

• g is a given source term of x and t.

Goal: Find the solution u.

As in the previous case, let x(t) be the characteristic associated with (2.5), i.e.,

ẋ(t) = c(x, t), x(0) = x0 .

We compute that

d

dt
u(x(t), t) = ut(x(t), t) + c(x(t), t) · ux(x(t), t) = g(x(t), t) .

This implies that

u(x(t), t) = u0(x0) +

∫ t

0
g(x(s), s) ds .

Therefore, the solution u can be solved backward along characteristic curves.

How to solve 2.5?

It is divided into three steps.
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Step 1: Solve the ODE
ẋ(t) = c(x, t)

and get the general solution of form

ξ(x, t) = C .

Step 2: Change of coordinate

u(x, t) = V (ξ(x, t), t) .

we then have
Vt(ξ, t) = f(x, t) = F (ξ, t)

where
f(x, t) = F (ξ(x, t), t) .

Step 3: Solve the ODE
Vt(ξ, t) = F (ξ, t)

to obtain V and then recover u(x, t) .

Example 1. Solve the initial value problem ut(x, t) + xux(x, t) = et ,

u(x, 0) = sinx

Answer.
Step 1. Solve the ODE

ẋ(t) = x(t) =⇒ x(t) = C · et =⇒ xe−t = C .

Thus,
ξ(x, t) = x · e−t .

Step 2. Set u(x, t) = V (ξ, t) = V (xe−t, t). We have

Vt(ξ, t) = et .

This implies that
V (ξ, t) = et + g(ξ) .

Thus, the general solution
u(x, t) = et + g(xe−t) .

Step 3. The initial data u(x, 0) = sinx yields

1 + g(x) = sinx =⇒ g(x) = sinx− 1 .

The solution
u(x, t) + et + sin(xe−t)− 1 .
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Example 2. Solve the following Cauchy problem ut(x, t) + 2tux(x, t) = x ,

u(x, 0) = e−x .

Answer.
Step 1. Solve the ODE

ẋ(t) = 2t =⇒ x(t) = t2 + C =⇒ x− t2 = C .

Thus,
ξ = x− t2 and x = ξ + t2

Step 2. Set u(x, t) = V (ξ, t). We have

Vt(ξ, t) = x = ξ + t2 .

This implies that

V (ξ, t) =

∫
ξ + t2 dt = ξt+

t3

3
+ g(ξ) .

Thus, the general solution

u(x, t) = V (x− t2) =
t3

3
+ (x− t2)t+ g(x− t2)

= −2t3

3
+ tx+ g(x− t2) .

Step 3. The initial data u(x, 0) = e−x yields

g(x) = e−x .

The solution

u(x, t) = − 2t3

3
+ tx+ et

2−x .

2.2 Nonlinear advection equations

Consider the first order nonlinear PDE ut + c(u) · ux = 0 ,

u(x, 0) = Φ(x)
(2.6)

where

• c(u) is a non constant speed which depends on u;

• Φ is a given initial data.

Goal: Find u(x, t).
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• The method of characteristics. Let x(t) be the solution of

ẋ(t) = c(u(x(t), t)), x(0) = β .

The curve (x(t), t) is called a characteristic curve.

Observe that

d

dt
u(x(t), t) = ut(x(t), t) + ẋ(t) · ux(x(t), t)

= ut(x(t), t) + c(u(x(t), t)) · ux(x(t), t) = 0 .

This implies that the function u is constant along the characteristic curve (x(t), t). In
particular, we have

u(x(t), t) = u(x(0), 0) = Φ(β) . (2.7)

Hence,
c(u(x(t), t)) = c(Φ(β)) ,

and it yields
x(t) = c(Φ(β)) · t+ β .

Recalling (2.7), we obtain the general formula for the solution

u(β + c(Φ(β))t, t) = Φ(β) .

Remark. The method can be applied as long as the solution is smooth.

Example 1. Consider the Burger’s equation with initial condition
ut +

(
u2

2

)
x

= 0 ,

u(x, 0) = x

Find u(x, 1).

Answer. Since c(u) = u and Φ(x) = x, one has

c(Φ(β)) = β .

Thus,
u(β + β · t, t) = Φ(β) = β .

Set x = β + β · t, we have

β =
x

1 + t
.

The solution
u(x, t) =

x

t+ 1
.
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In particular,

u(x, 1) =
x

2
.

Example 2. Consider the Burger’s equation with initial condition
ut +

(
u4

4

)
x

= 0 ,

u(x, 0) = x
1
3

Find u(x, 1).

Answer. Since c(u) = u3 and Φ(x) = x
1
3 , one has

c(Φ(β)) = β .

Thus,

u(β + β · t, t) = Φ(β) = β
1
3 .

Set x = β + β · t, we have

β =
x

1 + t
.

The solution

u(x, t) =

(
x

t+ 1

) 1
3

.

3 Linear 1D Partial Differential Equations in unbounded
domains

3.1 1D heat equation

The heat equation on a thin rod
ut(x, t) = α2 · uxx(x, t) + f(x, t) ,

u(x, 0) = Φ(x)

(3.1)

where

• α2: a given positive constant which is the diffusivity of the rod;

• Φ(x): a given initial temperature at point x;

• u(x, t): temperature at point x at time t

Goal: Find the presentation formula of u.
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3.1.1 Derivation of the 1d heat equation

Consider 1-D rod of length L such that

• Temperature at all points of a cross section is constant;

• Heat flows only in the x-direction;

• made of a single homogeneous conducting material.

Let us denote by

• ρ: density fo the rod;

• A: cross-section area if the rod;

• c: thermal capacity of the rod (measures the ability of the rod to store heat);

• k: thermal conductivity of the rod (measures the ability to conduct heat);

• g(x, t): external heat source.

Goal: Find u(x, t) the temperature at location x at time t.

Given any two point a and b with a < b, the integral∫ b

a
cρAu(x, t) dx = total amount heat in the interval [a, b] at time t.

We compute∫ b

a
cρAut(x, t) dx =

d

dt

∫ b

a
cρAu(x, t) dx

= [flux of heat crossing at a]−[flux of heat crossing at b]+[total heat generated in side [a, b]]

”By using the Fourier’s law”

= κA[ux(b, t)− ux(a, t)] +A ·
∫ b

a
g(x, t)dx .

”By using the mean value theorem”

= kA

∫ b

a
uxx(x, t) dx+A ·

∫ b

a
g(x, t)dt .

Thus, ∫ b

a
ut(x, t) dx =

k

cρ

∫ b

a
uxx(x, t) dx+

1

cρ
·
∫ b

a
g(x, t)dt

for all a < b. This implies the second order linear PDEs

ut = α2 · uxx + f(x, t) .

where

α2 .
=

k

cρ
and f(x, t)

.
=

g(x, t)

cρ
.
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3.1.2 Presentation formula of 1D heat equation without source

Consider the Cauchy problem
ut(x, t) = α2 · uxx(x, t) , x ∈ R, t > 0

u(x, 0) = Φ(x) x ∈ R .
(3.2)

Goal: Find the presentation formula of u.

1. Heat kernel or fundamental solution

ut(x, t) = α2 · uxx(x, t) . (3.3)

Observe that

• If u solves (3.3) then w
.
= ux also solves (3.3).

• If u(x, t) solves (3.3) then U(x, t) = u(λ ·x, λ2 · t) also solves (3.3) for every constant
λ ∈ R.

Thus, we will look for a solution with form

u(x, t) = v

(
x√
t

)
.

A direct computation yields

ut = − xt
−3
2

2
· v′
(
x√
t

)
and uxx =

1

t
· v′′

(
x√
t

)
.

From (3.2), we obtain that

v′′
(
x√
t

)
+

z

2α2
· v′
(
x√
t

)
= 0 .

Set
z =

x√
t

and w(z) = v′(z) ,

we have

w′ +
z

2α2
w = 0 =⇒ w(z) = Ce

−z2
4α2 .

Thus,

ux(x, t) = w

(
x√
t

)
= Ce−

x2

4α2t .

The heat kernel (fundamental solution) is

G(x, t) =
1√

4πα2t
· e−

x2

4α2t .

Properties of heat kernel.

1. G(x, t) solves (3.3);

2. For every t > 0, it holds ∫ ∞
−∞

G(x, t) dx = 1 .

3. As t→ 0+, G(·, t) converges to Dirac delta function δ0(·) .
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Theorem 3.1 Assume that Φ is bounded continuous function. The initial value problem
(3.2) has a unique smooth solution u(x, t) with

lim
|x|→+∞

u(x, t) = 0 t > 0 .

Moreover, u can be presented by

u(x, t) = G(·, t) ∗ Φ(x) =

∫ ∞
−∞

G(x− y, t) · Φ(y) dy .

for all (x, t) ∈ R× (0,+∞) .

Proof. 1. Let’s first show that u(x, t) solves (3.2. We compute

ut(x, t) =

∫ +∞

−∞
Gt(x− y, t) · Φ(y) dy ,

and

uxx(x, t) =

∫ +∞

−∞
Gxx(x− y, t) · Φ(y) dy ,

Since G is a fundamental solution of (3.3), we get

ut(x, t) = α2 · uxx(x, t) .

On the other hand, the third property (3) of G yields

u(x, 0) = lim
t→0+

G(·, t)∗Φ(x) =

∫ ∞
−∞

G(x−y, t)·Φ(y) dy =

∫ +∞

−∞
δ0(x−y)·Φ(y) dy = Φ(x) .

Thus, u is a solution of (3.2).

2. To complete the proof, we will show that (3.2) has at most one solution. Assume
by a contradiction that (3.2) has two different solutions u1 and u2. Set

v(x, t) = u2(x, t)− u1(x, t)

Then, v is a solution of

vt(x, t) = α2 · vxx(x, t), v(x, 0) = 0 .

Let’s consider the energy function

E(t) =

∫ ∞
−∞

v2(t, x) dx .

We compute

d

dt
E(t) = 2

∫ ∞
−∞

v(x, t) · vxx(x, t) dx = − 2

∫ ∞
−∞

v2
x(x, t) dx ≤ 0 .

The functon E(t) is decreasing. In particular

0 ≤ E(t) ≤ E(0) = 0 for all x ∈ [0,∞) .
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Thus, v(x, t) = 0 for all (x, t) ∈ R× [0,+∞), and it yields a contradiction.

Example 1. Consider the initial value problem
ut(x, t) = 4uxx(x, t) , x ∈ R, t > 0

u(x, 0) = sinx

Find the formula of the solution u.

Answer. We have
α2 = 4 and Φ(x) = sinx .

The heat kernel

G(x, t) =
1√

4πα2t
· e−

x2

4α2t =
1

4
√
πt
· e−

x2

16t .

The solution

u(x, t) =

∫ ∞
−∞

e−
(x−y)2

16t · sin y dy .

Example 2. Find the formula of the solution to the Cauchy problem
ut(x, t)− 2u = 9uxx(x, t) , x ∈ R, t > 0

u(x, 0) = e−x x ∈ R .

Answer. 1. Set v = e−2t · u. We compute

vt(x, t) = e−2t · (ut(x, t)− 2u(x, t)), vxx = e−2t · uxx

Thus, v is the solution to
vt(x, t) = 9vxx(x, t) , x ∈ R, t > 0

v(x, 0) = e−x .

2. The heat kernel is

G(x, t) =
1√

4πα2t
· e−

x2

4α2t =
1

6
√
πt
· e

−x2
36t

Thus,

v(x, t) =
1

6
√
πt·

∫ ∞
−∞

e
−(x−y)2

36t · e−y dy =
1

6
√
πt·

∫ ∞
−∞

e
−(x−y)2

36t
−y dy

The solution

u(x, t) = e2t · v(x, t) =
e2t

6
√
πt
·
∫ ∞
−∞

e
−(x−y)2

36t
−y dy .
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Example 3. Find the formula of the solution to the Cauchy problem
ut(x, t) + 2tu = 4uxx(x, t) , x ∈ R, t > 0

u(x, 0) =
1

1 + x2
.

Answer. 1. We compute

µ(t) =

∫ t

0
2s ds = t2 ,

and set
v(x, t) = et

2 · u(x, t) .

Then, v is the solution to
vt(x, t) = 4vxx(x, t) , x ∈ R, t > 0

v(x, 0) =
1

1 + x2
.

2. The heat kernel is

G(x, t) =
1√

4πα2t
· e−

x2

4α2t =
1

4
√
πt
· e

−x2
16t .

Thus,

v(x, t) =
1

4
√
πt
·
∫ ∞
−∞

e
−(x−y)2

16t · 1

1 + y2
dy .

The solution is

u(x, t) =
e−t

2

4
√
πt
·
∫ ∞
−∞

e
−(x−y)2

16t · 1

1 + y2
dy .

3.1.3 Semi-infinite domains

Consider the initial boundary value problem
ut(x, t) = α2 · uxx(x, t) , x > 0, t > 0

u(0, t) = 0 t > 0

u(x, 0) = Φ(x) x > 0 .

(3.4)

Goal: Find u(x, t) for any x, t > 0.

Answer. Let’s consider the odd extension of Φ which is defined as

Ψ(x) =


Φ(x) for all x > 0 ,

−Φ(−x) x < 0 ,
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with Ψ(0) = 0.

Let v be the solution of
vt(x, t) = α2vxx(x, t) , x > R, t > 0

v(x, 0) = Ψ(x) .

The heat Kernel

G(x, t) =
1√

4α2πt
· e

−x2
4α2t .

Thus,

v(x, t) =

∫ +∞

−∞
G(x− y, t) ·Ψ(y) dy

= −
∫ 0

−∞
G(x− y, t)Φ(−y) dy +

∫ ∞
0

G(x− y, t) · Φ(y) dy

=

∫ ∞
0

[
G(x− y)−G(x+ y)] · Φ(y) dy .

Therefore, the solution of (3.4) is

u(x, t) =

∫ ∞
0

[
G(x− y)−G(x+ y)] · Φ(y) dy for all x > 0, t > 0 .

Example 1. Consider the initial boundary value problem
ut(x, t) = 9 · uxx(x, t) , x ∈ R, t > 0 ,

u(0, t) = 0 t > 0 ,

u(x, 0) = e−x x > R .

Find the presentation formula of u(x, t) .

Answer. We have
α2 = 9 and Φ(x) = e−x .

Thus, the heat kernel is

G(x, t) =
1

6
√
πt
· e−

x2

36t

The solution is

u(x, t) =

∫ ∞
0

[G(x− y, t)−G(x+ y, t)] · Φ(y) dy

=
1

6
√
πt
·
∫ ∞

0

[
e−

(x−y)2
36t − e−

(x+y)2

36t

]
· e−y dy .

28



3.1.4 Sources and Duhamel’s principle

1. Duhamel’s principle for ODEs. Consider the first order ODEs with sources
y′(t) + a · y(t) = F (t) , t > 0 ,

y(0) = y0

(3.5)

where

• a and y0 are given constant;

• F (t) is a given external source;

Goal: Find the solution u(t).

Answer. Observe that

d

dt

[
eaty(t)

]
= eat · y′(t) + aeaty(t) = eat ·

[
y′(t) + a · y(t)

]
.

Thus,
d

dt

[
eaty(t)

]
= eat · F (t) ,

and this implies that

eat · y(t)− y0 =

∫ t

0
ea·sF (s) ds

The solution of (3.5) is

y(t) = e−at · y0 +

∫ t

0
ea(s−t) · F (s) ds

Example 1. Find the solution of the Cauchy problem
y′(t) + y(t) = e2t , t > 0 ,

y(0) = 2 .

Answer. We have

a = 1, y0 = 2 and F (t) = e2t .

Using the Duhamel’s principle, the solution is

y(t) = e−at · y0 +

∫ t

0
ea(s−t) · F (s) ds = 2e−t +

∫ t

0
e3s−t ds

= 2e−t +
1

3
e−t · [e3t − 1] =

5

3
· e−t +

1

3
· e2t .
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2. Duhamel’s principle for PDEs. Consider the linear PDEs
ut(x, t) +Au = f(x, t) , t > 0, x ∈ R ,

u(x, 0) = 0, x ∈ R ,
(3.6)

where

• A is a linear differential operators;

• f(x, t) is a given function of x and t;

• u(x, t) is an unknown of x and t.

Theorem 3.2 Let w(x, t, s) be the solution of
wt +Aw = 0 , t > 0, x ∈ R ,

w(x, 0, s) = f(x, s), x ∈ R ,

Then the function

u(x, t) =

∫ t

0
w(x, t− s, s) ds

is the solution of (3.6).

Proof. Using the fact that

d

dt

∫ t

0
K(t, s) ds = K(t, t) +

∫ t

0
Kt(t, s) ds ,

we compute that

ut(x, t) =
d

dt

∫ t

0
w(x, t− s, s) ds

= w(x, 0, t) +

∫ t

0
wt(x, t− s, s) ds

= f(x, t) +

∫ t

0
wt(x, t− s, s) ds .

On the other hand, the linear property of A implies that

Au(x, t) = A

∫ t

0
w(x, t− s, s) ds =

∫ t

0
Aw(x, t− s, s) ds .

Recalling that
wt +Aw = 0 ,

we then have

ut +Au = f(x, t) +

∫ t

0
wt(x, t− s, s) +Aw(x, t− s, s) ds = f(x, t) .
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On the other hand,

u(x, 0) =

∫ 0

0
w(x,−s, s) ds = 0 .

Thus, u is the solution to (3.6).

3. 1D Heat equation with sources. Consider the first order PDE with sources
ut(x, t) = α2 · uxx(x, t) + f(x, t) , t > 0, x ∈ R ,

u(x, 0) = 0, x ∈ R ,
(3.7)

where α is a given constant and f(x.t) is a given function of x and t.

Goal: Find the u(x, t) the temperature at point x at time t.

Answer. Rewrite the equation
ut(x, t)− α2 · uxx(x, t) = f(x, t) , t > 0, x ∈ R ,

u(x, 0) = 0, x ∈ R .
(3.8)

In this case, we have
Au = − α2 · uxx .

Step 1. Let w(x, t, τ) be the solution of
wt − α2 · w = 0 , t > 0, x ∈ R ,

w(x, 0, s) = f(x, s), x ∈ R .

We have

w(x, t, s) =

∫ +∞

−∞
G(x− y, t) · f(y, s) dy .

where the heat kernel

G(x, t) =
1√

4α2πt
· e−

x2

4α2t .

Step 2. Using the Duhamel’s principle, we obtain that

u(x, t) =

∫ t

0
w(x, t− s, s) ds

=

∫ t

0

∫ ∞
−∞

G(x− y, t− s) · f(y, s) dy ds .

Summary. The solution of (3.7) is

u(x, t) =

∫ t

0

∫ ∞
−∞

G(x− y, t− s) · f(y, s) dy ds ,
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where

G(x, t) =
1√

4α2πt
· e−

x2

4α2t .

Example 1. Find the presentation formula of the solution to
ut(x, t) = 4uxx(x, t) + e−xt , t > 0, x ∈ R ,

u(x, 0) = 0, x ∈ R ,

Answer. We have
α2 = 4 and f(x, t) = e−x · t .

The heat kernel

G(x, t) =
1

4
√
πt
· e

−x2
16t .

The solution

u(x, t) =

∫ t

0

∫ +∞

−∞
G(x− y, t− s) · f(y, s) ds

=

∫ t

0

∫ +∞

−∞

1

4
√
π(t− s)

· e
−(x−y)2
16(t−s) · e−y · s dy ds

=

∫ t

0

∫ +∞

−∞

s

4
√
π(t− s)

· e
−(x−y)2
16(t−s) −y .

4. More general case. Let’s consider the equation
ut(x, t) = α2 · uxx(x, t) + f(x, t) , t > 0, x ∈ R ,

u(x, 0) = φ(x), x ∈ R ,
(3.9)

Goal: Find the u(x, t) the temperature at point x at time t.

Answer. Using the superposition principle the solution

u = v + w

where v is the solution to
vt(x, t) = α2 · vxx(x, t) + f(x, t) , t > 0, x ∈ R ,

v(x, 0) = 0, x ∈ R ,

and w is the solution to
wt(x, t) = α2 · wxx(x, t) , t > 0, x ∈ R ,

w(x, 0) = φ(x), x ∈ R .
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We have

v(x, t) =

∫ t

0

∫ ∞
−∞

G(x− y, t− s) · f(y, s) dy ds ,

and

w(x, t) =

∫ ∞
−∞

G(x− y, t) · φ(y) dy .

The solution is

u(x, t) =

∫ t

0

∫ ∞
−∞

G(x− y, t− s) · f(y, s) dy ds+

∫ ∞
−∞

G(x− y, t) · φ(y) dy .

Example 2. Find the presentation formula for the solution of
4ut(x, t) = 9uxx(x, t)− 4 cos t , t > 0, x ∈ R ,

u(x, 0) = sinx, x ∈ R ,

Answer. Rewrite the equation

ut =
9

4
· uxx − cos t .

We have

α2 =
9

4
, f(t) = − cos t and φ(x) = sinx .

The heat kernel

G(x, t) =
1

3
√
πt
· e

−x2
9t .

The solution

u(x, t) =

∫ t

0

∫ ∞
−∞

G(x− y, t− s) · f(s) dy ds+

∫ ∞
−∞

G(x− y, t) · φ(y) dy

= −
∫ t

0

∫ ∞
−∞

1

3
√
π(t− s)

· e
−(x−y)2
9(t−s) · cos s dy ds+

∫ ∞
−∞

1

3
√
πt
· e

−(x−y)2
t · sin y dy.

3.2 1D wave equation

The motion equation of vibrating string
utt(x, t) = c2 · uxx(x, t) + f(x, t) ,

u(x, 0) = g(x) ,

ut(x, 0) = h(x)

(3.1)

where
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• c2 is the wave number which is computed by

c2 =
T

ρ
.

Here T is the tension of the string and ρ is the density such that ρ∆x is the mass of
the string segment.

• f(x, t) is a given external force applied along the string at x at time t;

• g(x) is the initial position of the string at point x;

• h(x) is the initial standing velocity of the string at point x;

Goal: Find u(x, t) the position of string at point x at time t.

3.2.1 General solution

Consider the 1D wave equation
utt = c2 · uxx (3.2)

Observe that the above equation can be rewritten as

d

dt
[ut − c · ux] + c · d

dx
[ut − c · ux] = 0 .

Set w
.
= ut − c · ux. Then w solves the linear advection equation

wt + c · wx = 0 .

Thus,
w(x, t) = F1(x− ct)

for some smooth function F1. This implies that

ut(x, t)− c · ux(x, t) = F1(x− ct) .

Similarly, we have that

ut(x, t) + c · ux(x, t) = G1(x+ ct) .

Thus,

ut(x, t) =
1

2
· [F1(x− ct) +G1(x+ ct)].

Solving this equation, one gets

u(x, t) = G(x+ ct) + F (x− ct) .

Summary. The general solution of the wave equation

utt(x, t) = c2 · uxx(x, t)

is
u(x, t) = G(x+ ct) + F (x− ct) .
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Here G(x + ct) is the left traveling wave and F (x − ct) is the right traveling wave with
speed c.

Example 1. Find the general solution of

4 · utt(x, t)− 9 · uxx(x, t) = 0 .

Answer. Rewrite the equation

utt(x, t) =
9

4
· uxx(x, t) =⇒ c =

3

2
.

The general solution is

u(x, t) = F (x− 3/2t) +G(x+ 3/2t)

for some smooth function F and G.

3.2.2 D’Alembert’s formula

Consider the Cauchy problem
utt(x, t) = c2 · uxx(x, t), for all x ∈ R, t > 0

u(x, 0) = f(x), for all x ∈ R ,

ut(x, 0) = g(x), for all x ∈ R ,

(3.3)

where c is a given constant speed, f is a given initial position and g is a given initial
standing velocity.

Goal: Find u(x, t).

Answer. From the previous subsection, the general solution of the 1-D wave equation is

u(x, t) = F (x− ct) +G(x+ ct) .

At time t = 0, we have
u(x, 0) = f(x)

ut(x, 0) = g(x)
=⇒


F (x) +G(x) = f(x)

−cF ′(x) + cG′(x) = g(x) .

for all x ∈ R. This implies

F (x− ct) +G(x− ct) = f(x− ct)

F (x+ ct) +G(x+ ct) = f(x+ ct)

G′(x)− F ′(x) =
1

c
· g(x) .
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Integrating both sides of the last ODE from x− ct to x+ ct, we have∫ x+ct

x−ct
G′(y)− F ′(y) dy =

1

c
·
∫ x+ct

x−ct
g(y) dy .

and it yields

G(x+ ct)−G(x− ct) + F (x− ct)− F (x+ ct) =
1

c
·
∫ x+ct

x−ct
g(y) dy .

The D’Alembert’s formula for u

u(x, t) =
1

2
· [f(x+ ct) + f(x− ct)] +

1

2c
·
∫ x+ct

x−ct
g(y) dy .

Example 2. Solve the Cauchy problem
9utt(x, t)− 16uxx(x, t) = 0, x ∈ R, t > 0 ,

u(x, 0) = e−x, x ∈ R

ut(x, 0) = x, x ∈ R

Answer. Rewrite the equation

utt(x, t) =

(
4

3

)2

· uxx(x, t).

We have

c =
4

3
, f(x) = e−x and g(x) = x .

Using the D’Alembert’s formula, we obtain

u(x, t) =
1

2
· [f(x− ct) + f(x+ ct)] +

1

2c
·
∫ x+ct

x−ct
g(y) dy

=
1

2
·
[
ex−

4
3
·t + ex+ 4

3
·t
]

+
3

8
·
∫ x+ 4

3
·t

x− 4
3
·t
y dy

=
1

2
·
[
ex−

4
3
·t + ex+ 4

3
·t
]

+ xt .

Example 3. Solve the Cauchy problem
4utt(x, t)− 25uxx(x, t) = 0, x ∈ R, t > 0 ,

u(x, 0) = 1
x2+1

, x ∈ R

ut(x, 0) = xe−x
2
, x ∈ R
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Answer.

utt(x, t) =

(
5

2

)2

· uxx(x, t).

We have

c =
5

2
, f(x) =

1

x2 + 1
and g(x) = xe−x .

u(x, t) =
1

2
· [f(x− ct) + f(x+ ct)] +

1

2c
·
∫ x+ct

x−ct
g(y) dy

=
1

2
·
[

1

(x− 5/2t)2 + 1
+

1

(x+ 5/2t)2 + 1

]
+

1

5
·
∫ x+ 5

2
·t

x− 5
2
·t
ye−y

2
dy

=
1

2
·
[

1

(x− 5/2t)2 + 1
+

1

(x+ 5/2t)2 + 1

]
− 1

10
·
[
e−(x−5/2t)2 − e−(x+5/2t)2

]
.

2. Special case If the initial velocity g = 0 then the solution of (3.5) is

u(x, t) =
1

2
· [f(x− ct) + f(x+ ct)] .

Example 4. Consider the IVP

utt(x, t)− 4uxx(x, t) = 0, x ∈ R, t > 0 ,

u(x, 0) =


0, x /∈ [−1, 1] ,

1− |x| x ∈ [−1, 1] ,

ut(x, 0) = 0, x ∈ R .

(a) Find u(x, 1/4).

(b) Find u(x,1/2).

(c) Find u(x,3/4).

Answer. We have

c = 2, g(x) = 0 and f(x) =


0, x /∈ [−1, 1] ,

1− |x| x ∈ [−1, 1] ,

.

The solution

u(x, t) =
1

2
· [f(x− 2t) + f(x+ 2t)] .

(a) Find u(x, 1/4).

37



3/20 x1−1

1/2

t

x=2t+1

x=2t−1
x=−2t+1

x=−2t−1

t=1/4

−3/2 −1/2 1/2

The solution at time t = 1/4 is

u(x, 1/4) =
1

2
· [f(x− 1/2) + f(x+ 1/2)]

=



0, x ∈ (−∞,−3/2) ∪ (3/2,∞) ,

1

2
· [1− |x+ 1/2|], x ∈ [−3/2.− 1/2)

1

2
· [2− |x+ 1/2| − |x− 1/2|], x ∈ [−1/2.1/2]

1

2
· [1− |x− 1/2|], x ∈ [1/2, 3/2) .

(b) Find u(x, 1/2).

20 x1−1

1/2

t

x=2t+1

x=2t−1
x=−2t+1

x=−2t−1

t=1/2

−2

The solution at time t = 1/2 is

u(x, 1/2) =
1

2
· [f(x− 1) + f(x+ 1)]
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=



0, x ∈ (−∞,−2) ∪ (2,∞) ,

1

2
· [1− |x+ 1|], x ∈ [−2, 0]

1

2
· [1− |x− 1/2|], x ∈ [0, 2] .

(c) Find u(x, 3/4).

1/20 1−1/2

1/2

t

x=−2t+1
x=2t−1

x=2t+1

x=−2t−1

t=3/4

−5/2 x5/2

The solution at time t = 3/4 is

u(x, 3/4) =
1

2
· [f(x− 3/2) + f(x+ 3/2)]

=



0, x ∈ (−∞,−3/2) ∪ (−1/2, 1/2) ∪ (3/2,∞) ,

1

2
· [1− |x+ 3/2|], x ∈ [−3/2,−1/2]

1

2
· [1− |x− 3/2|], x ∈ [1/2, 3/2] .

3.2.3 1 D wave equation with sources

Consider the 1-D wave equation with sources
utt(x, t) = c2 · uxx(x, t) + f(x, t), for all x ∈ R, t > 0

u(x, 0) = ut(x, 0) = 0, for all x ∈ R .
(3.4)

Goal: Find u(x, t).
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Answer. Step 1. Fix s ≥ 0, let w(x, t, s) be the solution of
wtt(x, t, s) = c2 · wxx(x, t, s), for all x ∈ R, t > 0

w(x, 0, s) = 0, for all x ∈ R ,

wt(x, 0, s) = f(x, s), for all x ∈ R .

(3.5)

The D’Alembert’s formula yields

w(x, t, s) =
1

2c
·
∫ x+ct

x−ct
f(y, s) dy .

Step 2. Apply the Duhamel’s principle, we obtain that

u(x, t) =

∫ t

0
w(x, t− s, s) ds

=
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds .

Example 1. Solve the initial value problem
utt(x, t) = 4 · uxx(x, t) + xet, for all x ∈ R, t > 0

u(x, 0) = ut(x, 0) = 0, for all x ∈ R .

Answer. We have
c = 2 and f(x, t) = xet .

The solution is

u(x, t) =
1

4
·
∫ t

0

∫ x+2(t−s)

x−2(t−s)
yes dy ds

=
1

4
·
∫ t

0
es ·

[1

2
· y2
]∣∣∣x+2(t−s)

x−2(t−s)
ds

= x ·
∫ t

0
es(t− s) ds = x · (et − t− 1) .

2. We are now ready to study the general case in (3.1)
utt(x, t) = c2 · uxx(x, t) + f(x, t) ,

u(x, 0) = g(x) ,

ut(x, 0) = h(x)
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Goal. Find u(x, t).

Answer. 1. The superposition-principle yields

u = v1 + v2

where v1 is the solution of
vtt(x, t) = c2 · vxx(x, t) + f(x, t), for all x ∈ R, t > 0

v(x, 0) = vt(x, 0) = 0, for all x ∈ R .

and v2 is the solution of
vtt(x, t) = c2 · vxx, for all x ∈ R, t > 0

v(x, 0) = g(x), vt(x, 0) = h(x) for all x ∈ R .

2. From the previous results, we have

v1(x, t) =
1

2c
·
∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds

and

v2(x) =
1

2
· [g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct
h(y) dy .

The solution is

u(x, t) =
1

2
· [g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct
h(y) dy+

1

2c
·
∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds .

Example 2. Solve the following wave equation
4utt(x, t) = 9 · uxx(x, t) + x , for all x ∈ R, t ≥ 0

u(x, 0) = 1 , for all x ∈ R ,

ut(x, 0) = e−x for all x ∈ R .

Answer. Rewrite the equation

utt =
9

4
uxx +

x

4
.

We have

c =
3

2
, f = x, g = 1 and h = e−x .

The solution

u(x, t) =
1

2
· [g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct
h(y) dy +

1

2c
·
∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds
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= 1 +
1

3
·
∫ x+3/2t

x−3/2t
e−y dy +

1

3
·
∫ t

0

∫ x−3/2(t−s)

x−3/2(t−s)
y dy ds

= 1 +
1

3
·
[
e3/2t−x − e−x−3/2t

]
+ 2x ·

∫ t

0
(t− s) ds

= 1 +
1

3
·
[
e3/2t−x − e−x−3/2t

]
+ xt2 .

3.3 Laplace Transform

In this subsection, we will introduce an important transform which is a very powerful tool
to convert ODEs into algebraic equation and PDEs into ODEs.

Definition 3.3 Given a piecewise continuous function u such that

|u(t)| ≤ C · eat

for some constant a. The Laplace transform of u is defined as

L{u}(s) = U(s) =

∫ ∞
0

u(t)e−st dt

Inverse Laplace transform

L−1{U(s)} = u(t) if U(s) = L{u}(s) .

Example 1. Find the Laplace transform of

u(t) = eat for all t ∈ R .

Answer. From the definition, we compute

U(s) =

∫ +∞

0
eat · e−st dt =

∫ +∞

0
e(a−s)t · dt

=
1

a− s
· e(a−s)t

∣∣∣∞
0

=
1

s− a

for all s > a. Therefore, the Laplace transform

L{u}(s) = U(s) =
1

s− a
for all s > a .

1. Properties of Laplace transform Given two functions u, v, the followings hold:

(i) Linearity
L{c1 · u+ c2 · v}(s) = c1 · L{u}(s) + c2 · L{v}(s) ;
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(ii) First derivative
L{u′}(s) = s · L{u}(s)− u(0) ;

Second derivative

L{u′}(s) = s2 · L{u}(s)− su(0)− u′(0) ;

(iii) Shift theorem

L{eat · u} = U(s− a) where U(s) = L{u}(s .

Theorem 3.4 (Convolution theorem) Let u and v be piecewise continuous functions
and

|u(t)|, |v(t)| ≤ eat for all t ∈ R .

Denote by

(u ∗ v)(t) =

∫ t

0
u(t− τ) · v(τ) dτ .

Then

L{u ∗ v}(s) = U(s) · V (s) where U(s) = L{u}, V (s) = L{v} .

Moreover,
L−1{U(s)V (s)} = (u ∗ v)(t) .

Proof. By the definition, we have

L{u ∗ v}(s) =

∫ ∞
0

(u ∗ v)(t) · e−st dt

=

∫ ∞
0

[∫ t

0
u(t− τ) · v(τ) dτ

]
ds

=

∫ ∞
0

∫ t

0

(
u(t− τ) · e−s(t−τ)

)
·
(
v(τ) · e−sτ

)
dτdt .

Thanks to the Fubini’s theorem, it holds∫ ∞
0

∫ t

0

(
u(t− τ) · e−s(t−τ)

)
·
(
v(τ) · e−sτ

)
dτ dt

=

∫ ∞
0

∫ ∞
τ

(
u(t− τ) · e−s(t−τ)

)
·
(
v(τ) · e−sτ

)
dt dτ

=

(∫ ∞
0

v(τ) · e−sτ dτ
)
·
(∫ t

0
u(t) · e−st dt

)
= U(s) · V (s) .

Example 2. Find inverse Laplace transform

F (s) =
1

s · (s2 + 1)
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Answer. Let’s consider

U(s) =
1

s
and V (s) =

1

s2 + 1
.

We have

L−1{U(s)} = L−1

{
1

s

}
= 1 and L−1{V (s)} = L−1

{
1

1 + s2

}
.

Using the convolution’s theorem

L−1{F (s)} = LU(s)·V (s) = (1 ∗ sin(t))(t)

=

∫ t

0
sin(τ) dτ = − cos(τ)

∣∣∣t
0

= 1− cos(t) .

Example 3. Find inverse Laplace transform

F (s) =
1

(s+ 1) · (1 + s2)
.

Proof. Let’s consider

U(s) =
1

s+ 1
and V (s) =

1

s2 + 1

We have

L−1{U(s)} = L−1

{
1

1 + s

}
= e−t and L−1{V (s)} = L−1

{
1

1 + s2

}
.

Using the convolution’s theorem

L−1{F (s)} = L−1{U(s) · V (s)} = (e−t ∗ sin(t))(t) =

∫ t

0
et−τ · sin(τ) dτ

=
1− e−t(1 + cos(t))

2
.

Example 4. (Application to ODEs) Using Laplace transform to solve the Cauchy
problem

3u′(t) + 2u(t) = sin(t) with u(0) = 3 .

Answer.
Step 1. Set U(s)

.
= L{u}. By talking the Laplace transform in both side of the ODE, we

have

L{sin t} = L{3u′ + 2u}

= 3 · L{u′}+ 2 · L{u}
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= 3 · [s · U(s)− u(0)] + 2 · U(s) = 3sU(s)− 9 + 2U .

This implies that

U(s) =
9

3s+ 2
+

F (s)

3s+ 2
where F (s) = L{sin t} .

Step 2. Using the convolution’s theorem, we recover the solution

u(t) = L−1

{
9

3s+ 2

}
+ L−1

{
V (s)

3s+ 2

}
= 3 · L−1

{
1

s+ 2
3

}
+

1

3
· L−1

{
V (s) · 1

s+ 2
3

}

= 3 · e
−2

3
t

+
1

3
·
(
e−

2
3
t ∗ sin(t)

)
(t)

= 3 · e
−2

3
t

+
1

3
·
∫ t

0
e
−2

3
(t− τ)

· sin(τ) dτ

=
42

13
· e
−2

3
t

+
6 sin(t)− 9 cos(t)

39
·

2. Heat equation in the semi-domain. Given u(x, t), denote by

U(x, s)
.
= L{u(x, t)} =

∫ ∞
0

u(x, t) · e−st dt

One has
L{ux} = Ux(x, s), L{uxx} = Uxx(x, s)

and
L{ut} = sU(x, s)− u(x, 0) .

Example 5. Consider the heat equation with boundary condition
ut(x, t) = uxx(x, t) , for all x > 0, t > 0

u(x, 0) = 0 , for all x > 0 ,

u(0, t) = f(t) for all t > 0 .

Find a bounded solution u.

Answer. Step 1. Set U(x, s)
.
= L{u(x, t)}. We have

L{ut} = L{uxx} ⇐⇒ sU(x, s)− u(x, 0) = Uxx(x, s) .

Since u(x, 0) = 0, we obtain the second order ODE

Uxx(x, s)− s · U(x, s) = 0 .
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Solving the above equation, we obtain that

U(x, s) = a(s) · e−
√
s·x + b(s) · e

√
s·x .

On the other hand,
U(0, s) = L{f(t)} .

= F (s) .

This implies that
a(s) + b(s) = F (s) .

Since the solution u is bounded, we have b(s) = 0 for all s > 0 and it yields

a(s) = F (s) for all s > 0 .

Thus,
U(x, s) = F (s) · e−

√
s·x .

Step 2. Recall that

L−1
(
e−
√
s·x
)

=
x√
4πt3

· e−
x2

4t
.
= g(t) .

Using the convolution’s theorem, we obtain

u(x, t) = L−1{U(x, s)} = L−1
(
e−
√
sx · F (s)

)
= (g ∗ f)(t) =

∫ t

0

x√
4π(t− τ)3

e
− x2

4(t−τ) · f(τ) dτ .

3.4 The Fourier Transform

In this subsection, we will introduce several useful properties of Fourier transform and to
apply them to solve linear PDEs.

Definition 3.5 Let f : R → R be an integrable function. The Fourier function of f is
denoted by

F{f}(ξ) = F (ξ) =
1

2π
·
∫ ∞
−∞

f(x) · e−ixξ dx .

The new function F is defined on (−∞,∞) and may or may not be a complex value func-
tion.

1. Common Fourier transforms.

• If f(x) =


e−x, for all x ≥ 0

−ex , for all x < 0

then F{f} = −i ·
√

2

π
· ξ

1 + ξ2
;

• If f(x) =


1, for all x ≥ 0

0 , for all x < 0

then F{f} =

√
2

π
· sin ξ

ξ
;
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• If f(x) = e−x
2

then F (ξ) =
1√
2
· e−

ξ2

4

2. Properties of Fourier Transform. Given g and f two integrable functions, the
followings hold:

(i) Linearity.
F{a · f + b · g} = a · F{f}+ b · F{g};

(ii) First derivative

F{f ′} =
1√
2π

∫ ∞
−∞

f ′ · e−ixξ dx = iξF{f};

Second derivative

F{f ′′} =
1√
2π

∫ ∞
−∞

f ′′ · e−ixξ dx = − ξ2F{f};

(iii) Convolution’s theorem. Here, we denote by

(f ∗ g)(x) =
1√
2π
·
∫ ∞
−∞

f(x− y)g(y) dy .

Then
F{f ∗ g} = F{f} · F{g} .

Inverse Fourier Transform

F−1{F} =
1√
2π
·
∫ +∞

−∞
F (ξ) · eixξ dξ = f(x)

where
f(x) = F{F}(x) .

Thus,
F−1{F(f) · F{g}}(x) = (f ∗ g)(x) .

3. An application to PDEs. Let us use the Fourier Transform to derive a general
formula for 1-D heat equation

ut(x, t) = α2 · uxx(x, t) for all x ∈ R, t > 0 (3.6)

with the initial data
u(x, 0) = φ(x) for all x ∈ R .

Step 1. Denote by

U(ξ, t) = F{u(x, t)} =
1√
2π
·
∫ +∞

−∞
u(x, t) · e−ixξ dx .

One has that

Ut(ξ, t) = F{u(x, t)} and Ut(ξ, t) = − ξ2 · F{uxx(x, t)}
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Taking the Fourier transform in both sides of (3.6), we get

Ut(ξ, t) = = −α2ξ2U(ξ, t), U(ξ, 0) = Φ(ξ)

where
Φ(ξ) = F{φ} .

Step 2. Solving the above ODE, we obtain that

U(ξ, t) = Φ(ξ) · e−α2ξ2t .

Step 3. The solution is

u(x, t) = F−1{U(ξ, t)}(x)

= F−1{e−α2ξ2t · Φ(ξ)}(x)

= F−1

{
F
{

1

α
√

2t
· e−

x2

4α2t

}
F{φ}

}
(x)

=

(
1

α
√

2t
· e−

x2

4α2t

)
∗ φ

=
1

2α
√
πt
·
∫ ∞
−∞

e−
(x−y)2

4α2t · φ(y) dy .

4 Orthogonal expansions

4.1 Inner product spaces and orthogonal basis

In this subsection, we study basic concepts in infinite dimensional vector space and definite
the Fourier series.

I. Norm spaces.

Definition 4.1 The set H is a real vector space if the followings holds

(i) α · f ∈ H for all α ∈ R, f ∈ H;

(ii) f + g ∈ H for all f, g ∈ H .

Example 1. The sets

(a) Rn = {v | v is a column real vector with n components};

(b) Pn = {f(x) | f(x) is a a polynomial with degree ≤ n};

(c) L1(a, b) =

{
f(x) :

∫ b

a
|f(x)| dx < +∞

}
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are vector spaces.

Inner product. We introduce 〈·, ·〉 an inner product on H which satisfies the follow-
ing properties:

(i) Symmetry
〈f, g〉 = 〈g, f〉 for all f, g ∈ H ;

(ii) Linearity

〈α · f, g〉 = α · 〈f, g〉 and 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉

for all α ∈ R and f, g, h ∈ H;

(iii) Positive-definiteness
〈f, f〉 ≥ 0 for all f ∈ H

and
〈f, f〉 = 0 ⇐⇒ f = 0 .

Norm. The length of f is defined by

‖f‖ =
√
〈f, f〉;

We say that f and g are orthogonal

f ⊥ g if and only if 〈f, g〉 = 0 .

Definition 4.2 The subset B ⊂ H is orthogonal if

f ⊥ g for all f 6= g ∈ B .

Example 2. Consider

R3 = = {v | v is a column real vector with 3 components} .

The inner product

〈v, w〉 = v · w =

n∑
i=1

viwi

where

v =

v1

v2

v3

 and w =

w1

w2

w3

 .

The norm of v is

‖v‖ =
√
〈v, v〉 =

√
v2

1 + v2
2 + v2

3 .

The set B = {e1, e2, e3} where

e1 =

1
0
0

 , e2 =

0
1
0

 and e3 =

0
0
1


are orthogonal.
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Lemma 4.3 Let {f1, f2, ..., fn} be orthogonal in H. If

f =
n∑
i=1

αi · fi = α1 · f1 + α2 · f2 + ...+ αn · fn

then the coefficients αi are computed as

αi =
〈f, fi〉
〈fi, fi〉

for all i ∈ {1, 2, ..., n} .

Proof. Using the linearity property of the inner product, we have

〈f, fi〉 =

〈
n∑
j=1

αj · fj , fi

〉
=

n∑
j=1

αj · 〈fj , fi〉 .

Recalling that the set {f1, f2, ..., fn} is orthogonal, it holds

〈fj , fi〉 = 0 for all j 6= i .

Therefore,
〈f, fi〉 = αi · 〈fi, fi〉 for all i ∈ {1, 2, ..., n} .

II. L2(a, b) space. Given two real number a < b, we denote by

L2(a, b)
.
=

{
f : (a, b)→ R :

∫ b

a
|f(x)|2 dx < +∞

}
.

It is clear that L2(a, b) is a vector space. Indeed, for any α ∈ R and f, g ∈ L2(a, b), it
holds ∫ b

a
|αf(x)|2 dx = |α|2 ·

∫ b

a
|f(x)|2 dx < +∞

and it yields α · f ∈ L2(a, b).

On the other hand, we have∫ b

a
|f(x) + g(x)|2 dx ≤ 2 ·

[∫ b

a
|f(x)|2 + |g(x)|2

]
dx < +∞ .

By the definition, the function (f + g) is L2(a, b).

Let us now introduce the inner product for L2(R) space. Given f, g in L2(a, b), the
inner product of f and g is defined as

〈f, g〉 .
=

∫ b

a
f(x)g(x) dx .

The L2−norm of f is

‖f‖L2 =
√
〈f, f〉 =

(∫ b

a
|f(x)|2 dx

) 1
2

.
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Cauchy-Schwarz inequality.

〈f, g〉 ≤ ‖f‖L2 · ‖g‖L2 for all f, g ∈ L2(a, b) .

Example 3. Consider three functions

f1(x) = 1, f2(x) = sin(x) and f3(x) = cos(x) .

(a). Show that f1, f2, f3 are in L2(0, 2π).

(b) Compute the L2−norm of fi for i ∈ {1, 2.3}.

(c) Is the set {f1, f2, f3} orthogonal?

Answer. (a) and (b). We compute that∫ 2π

0
|f1(x)|2 dx =

∫ 2π

0
1 dx = 2π < +∞ .

Thus, f1 is in L2(0, 2π) and

‖f1‖L2 =

(∫ 2π

0
|f1(x)|2 dx

) 1
2

=
√

2π .

Similarly, we compute∫ 2π

0
|f2(x)|2 dx =

∫ 2π

0
sin2 x dx =

1

2

∫ 2π

0
(1− cos(2x)) dx = π < +∞

and ∫ 2π

0
|f3(x)|2 dx =

∫ 2π

0
cos2 x dx =

1

2

∫ 2π

0
(1 + cos(2x)) dx = π < +∞ .

Thus, f2 and f3 are in L2(0, 2π) and

‖f2‖L2 = ‖f3‖L2 =
√
π .

(c). We compute

〈f1, f2〉 =

∫ 2π

0
f1(x) · f2(x) dx =

∫ 2π

0
sin(x) dx = − cos(x)

∣∣∣2π
0

= 0 ,

〈f1, f3〉 =

∫ 2π

0
f1(x) · f3(x) dx =

∫ 2π

0
cos(x) dx = − sin(x)

∣∣∣2π
0

= 0 ,

and

〈f2, f3〉 =

∫ 2π

0
f1(x) · f3(x) dx =

∫ 2π

0
sin(x) cos(x) dx

=
1

2
·
∫ 2π

0
sin(2x) dx = − 1

4

∫ 2π

0
cos(2x) dx = 0 .
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This implies that
f1 ⊥ f2, f1 ⊥ f3 and f2 ⊥ f3 .

Therefore, the set {f1, f2, f3} is orthogonal.

Example 4. Let f(x) = x2 and g(x) = 1 + x on [0, 1].

(a) Compute ‖f‖2L2 , ‖g‖2L2 and 〈f, g〉;

(b) Compute ‖2f + g‖L2 .

Answer. (a). We compute

‖f‖2L2 = 〈f, f〉 =

∫ 1

0
x4 dx =

1

5
,

‖g‖2L2 = 〈g, g〉 =

∫ 1

0
(1 + x)2 dx = 1,

and

〈f, g〉 =

∫ 1

0
x2(1 + x) dx =

∫ 1

0
x2 + x3 dx =

1

3
+

1

4
=

7

12
.

(b). We have that

‖2f + g‖2L2 = 〈2f + g, 2f + g〉
= 4 · 〈f, f〉+ 4 · 〈f, g〉+ 〈g, g〉

=
4

5
+ 4 · 7

12
+ 1 =

62

15
.

Thus, the norm

‖2f + g‖L2 =

√
62

15
.

Definition 4.4 The set of function {f1, f2, ..., fn} ⊂ L2(a, b) is called orthonormal system
on the interval (a, b) if

(i) the norm ‖fi‖L2 = 1 for all i ∈ {1, 2, ..., n};

(ii) For any i 6= j ∈ {1, 2, ..., n}, it holds

〈fi , fj〉 = 0 .

Example 5. The set
{√

2
π · sinx,

√
2
π · sin 2x, ...,

√
2
π · sinnx

}
is an orthonormal system

on the interval [0, π].

Answer. For any k ∈ {1, 2, ..., n}, we compute that

‖ sin kx‖2L2 =
2

π
·
∫ π

0
sin2 kx =

1

π
·
∫ π

0
1− cos(2kx) dx = 1
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and it yields ‖ sin kx‖L2 = 1.

On the other hand, for any k 6= m ∈ {1, 2, ..., n}, we have

〈sin kx, sinmx〉 =

∫ π

0
sin(kx) · sin(mx) dx

=
1

2
·
∫ π

0
[cos([k −m]x)− cos([k +m]x)] = 0

and it yields that
(√

2
π · sin kx

)
and

(√
2
π · sinmx

)
are orthogonal.

III. Orthogonal expasions. Given a orthonormal system of functions F = {f1, f2, ..., fn, ...}
in the space L2(a, b). Can any function f ∈ L2(a, b) be expanded in a infinite series of F

f =
+∞∑
n=1

cn · fn

where cn are real coefficients.

Theorem 4.5 Let f ∈ L2(a, b) and F = {f1, f2, ..., fn, ...} be an orthonormal system of
L2(a, b). Assume that

f =
+∞∑
n=1

cn · fn .

Then

cn = 〈f, fn〉 and ‖f‖2L2 =
+∞∑
n=1

c2
n .

Proof. For any n ∈ {1, 2...}, it holds

〈fn , fk〉 = 0 for all n 6= k .

We have

〈fn , f〉 =

〈
fn ,

∞∑
k=1

ck · fk

〉

= cn · 〈fn , fn〉+
∞∑

n6=k=1

ck · 〈fn , fk〉 = cn · ‖fn‖2L2 = cn .

Therefore,

‖f‖2L2 = 〈f , f〉 =

〈 ∞∑
k=1

ck · fk , f

〉

=
∞∑
k=1

ck · 〈fk, f〉 =
2∑

k=1

|ck|2 .
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Remark. The series

+∞∑
n=1

cn · fn is called the generalized Fourier series of f and cn are

called the Fourier coefficients.

Definition 4.6 An orthonomal system {f1, f2, ...fn, ...} ⊂ L2(a.b) is said complete if and
only if

〈f, fn〉 = 0 for all n =⇒ f = 0 .

Theorem 4.7 (Fourier expansion) Assume that {f1, f2, ..., fn, ...} is a complete orthonor-
mal system in L2(a, b). Then for any f ∈ L2(a, b), it holds

f =
∞∑
n=1

cn · fn ,

where the coefficient
cn = 〈f, fn〉 for all n = 1, 2, ...

Proof. 1. Let’s consider

Sn =
n∑
k=1

ck · fk .

The orthogonal property of {f1, f2, ..., fn, ...} yields

〈f, Sn〉 = ‖Sn‖2L2 =
n∑
k=1

|ck|2 .

Using the Cauchy-Schwarz inequality, we have that

‖Sn‖2L2 =
n∑
k=1

|ck|2 ≤ ‖f‖2L2 .

Therefore, we can show that Sn converges to g in L2(a, b) and it yields

g =
∞∑
n=1

cn · fn .

2. It remains to show that f = g. One can check that

〈f − g, fn〉 = 0 for all n = 1, 2, ...

Thus, the completeness implies that f − g = 0.
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4.2 Classical Fourier series

1. Given ` > 0, denote by

L2(−`, `) =

{
f : (−`, `)→ R

∣∣∣ ∫ `

−`
|f(x)|2 dx

}
.

The following holds:

Lemma 4.8 The trigonometric set

F =
{

1, sin
(mπx

`

)
, cos

(mπx
`

) ∣∣∣ m = 1, 2, ....
}

is a complete orthogonal in L2(−`, `).

From the above Lemma and Theorem 4.7, one can show that for any f ∈ L2(−`, `), then
f can be expressed by an infinite sum functions in F . More precisely,

Definition 4.9 For any function f ∈ L2(−`, `), its Fourier series is

f ' a0

2
+
∞∑
m=1

(
am · cos

mπx

`
+ bm · sin

mπx

`

)
where am and bm are Fourier coefficients and computed by

an =
1

`
·
∫ `

−`
f(x) · cos

mπx

`
dx

and

bn =
1

`
·
∫ `

−`
f(x) · sin mπx

`
dx

for all m = 0, 1, 2, ... .

Example 1. Find the Fourier series of the function

f(x) =


−1, −π < x < 0

1, 0 < x < π

(4.1)

in L2(−π, π).

Answer. We have ` = π. The Fourier series of f in L2(−π, π) is

f(x) ' a0

2
+

∞∑
m=1

(am · cosmx+ bm · sinmx) .

The Fourier coefficients are computed by

a0 =
1

π
·
∫ π

−π
f(x) dx =

1

π
·
[∫ 0

−π
−1 dx+

∫ π

0
1 dx

]
= 0 ,
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am =
1

π
·
∫ π

−π
f(x) · cosmx dx =

1

π
·
[
−
∫ 0

−π
cosmx dx+

∫ π

0
cosmx dx

]
= 0 ,

and

bm =
1

π
·
∫ π

−π
f(x) · sinmx dx =

1

π
·
[
−
∫ 0

−π
sinx dx+

∫ π

0
sinx dx

]

=
1

π
·
[
−
∫ 0

−π
sinmx dx+

∫ π

0
sinmx dx

]
=

1

mπ
· [2− cos(−mπ)− cos(mπ)]

=
2

mπ
· [1− cos(mπ)] =

2

mπ
· [1− (−1)m] .

Therefore,

f(x) '
∞∑
m=1

2 · (1− (−1)m)

mπ
· sinmx .

Example 2. Find a Fourier series for the function

f(x) = x for all x ∈ (−2, 2)

in L2(−2, 2).

Answer. We have that ` = 2. The Fourier series of f in L2(−2, 2) is

f(x) ' a0

2
+

+∞∑
m=1

[
am · cos

mπx

2
+ bm · sin

mπx

2

]
.

The Fourier coefficients are computed by

am =
1

2
·
∫ 2

−2
x cos

mπx

2
dx = 0

and

bm =
1

2
·
∫ 2

−2
x sin

mπx

2
dx =

−4

mπ
· cos (mπ) =

4

mπ
· (−1)m+1

for all m = 0, 1, .... Thus,

f(x) ' 4

π
·
∞∑
m=1

(−1)m+1

m
· sin mπx

2
.

2. Fourier sine and Fourier cosine. Given a function f : (−`, `) → R in L2(−`, `),
the followings hold:

• f is even if f(x) = f(−x) for all x ∈ (0, `). In this case, we have∫ `

−`
f(x) dx = 2 ·

∫ `

0
f(x) dx .

56



• f is odd if f(x) = −f(−x) for all x ∈ (−0, `). In this case, we have∫ `

−`
f(x) dx = 0 .

Fourier cosine. If the function f is even on (−`, `), then

f(x) ' a0

2
+
∞∑
m=1

am · cos
mπx

`

where the Fourier coefficients

am =
2

`
·
∫ `

0
f(x) · cos

mπx

`
dx .

Fourier sine. If the function f is odd on (−`, `), then

f(x) '
∞∑
m=1

bm · cos
mπx

`

where the Fourier coefficients

bm =
2

`
·
∫ `

0
f(x) · sin mπx

`
dx .

3. Periodic functions on R and half-range expansion. Given a real function f :
R→ R, we say that f is periodic with a period P if

f(x+ P ) = f(x) x ∈ R .

Assume that f : R→ R is periodic with period 2l. Then the Fourier series of f in L2(−`, `)
is

f(x) ' a0

2
+

∞∑
m=1

[
am cos

mπx

`
+ bm sin

mπx

`

]
where am and bm are Fourier coefficients and computed by

an =
1

`
·
∫ `

−`
f(x) · cos

mπx

`
dx

and

bn =
1

`
·
∫ `

−`
f(x) · sin mπx

`
dx

for all m = 0, 1, 2, ... .

Even periodic extension. Given f : (0, `), we can extend f onto (−`, `) such that

f(x) = f(−x) for all x ∈ (0, `) .

Then extend f into a periodic with period P = 2`, i.e.,

f(x) = f(x+ 2`) for all x ∈ R .

Odd periodic extension. Given f : (0, `), we can extend f onto R such that
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(i) (Odd function) f(−x) = −f(x) for all x ∈ (0, `);

(ii) (Periodic function) f(x) = f(x+ 2`) for all x ∈ R .

Example 3. Let f(x) = x for x ∈ (0, 1). Sketch 3 periods of the even and the odd and
compute the corresponding Fourier sine and cosine.

Answer. 1. Even extension. We have

feven '
a0

2
+
∞∑
m=1

am · cosmπx .

The Fourier coefficients are computed by

a0 = 2 ·
∫ 1

0
xdx = 1 ,

and

am = 2 ·
∫ 1

0
x · cosmπx dx =

2 · ((−1)m − 1)

m2π2
for all m = 1, 2...

Therefore,

feven '
1

2
+

2

π2
·
∞∑
m=1

(−1)m − 1

m2
cosmπx .

2. Odd extension. We have

fodd '
∞∑
m=1

bm · sinmπx .

The Fourier coefficients are computed by

bm = 2 ·
∫ 1

0
x · sin(mπx) dx =

2 · (−1)m+1

mπ
.

Therefore,

fodd '
2

π
·
∞∑
m=1

(−1)m

m
· sin(mπx) .

4. Properties of Fourier series. Given f(x) and g(x) in L2(−`, `). Assume that

f ' a0

2
+
∞∑
m=1

(
am · cos

mπx

`
+ bm · sin

mπx

`

)
and

g ' c0

2
+

∞∑
m=1

(
cm · cos

mπx

`
+ dm · sin

mπx

`

)
.

Then the followings hold:
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• For any α ∈ R,

α · f ' αa0

2
+
∞∑
m=1

(
αam · cos

mπx

`
+ αbm · sin

mπx

`

)
.

• The Fourier series of the function f + g is

f + g ' (a0 + c0)

2
+

∞∑
m=1

[
(am + cm) · cos

mπx

`
+ (bm + dm) · sin mπx

`

]
.

Theorem 4.10 (Convergence theorem) Let f be in L2(−l, l) and piecewise smooth func-
tion and

f ' a0

2
+
∞∑
m=1

(
am · cos

mπx

`
+ bm · sin

mπx

`

)
.

Then it holds

(1). The Fourier series converges to f(x) at all points x where f is continuous;

(2.) The Fourier series converges to

1

2
· [f(x−) + f(x+)]

at points x where f is discontinuous .

Example 4. Given the function f : R→ R such that f is periodic with period 2π and

f(x) =


0, −π < x < 0

4, 0 < x < π .

(a). Find the Fourier series of f in L2(−π, π).

(b). Indicate the function that the Fourier series of f converges to.

Answer. (a) Let g : (−π, π) be such that

g(x) = 2 for all x ∈ (−π, π) .

We have

h
.
=

f − g
2

=


−1, −π < x < 0

1, 0 < x < π

.

From example 1, the Fourier series of h is

h '
∞∑
m=1

2 · (1− (−1)m)

mπ
· sinmx .
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Recalling that f = g + 2h, the Fourier series of f is

f ' 2 +
∞∑
m=1

4 · (1− (−1)m)

mπ
· sinmx .

(b) Observe that f is continuous at x ∈ R\kπ. Therefore, by using the convergence
theorem

• The Fourier series of f converges to f at x ∈ R\kπ ;

• The Fourier series of f converges to 2 at x = kπ for all k ∈ Z.

4.3 Sturm-Liouville problems

Let us consider a regular Sturm-Liouville system

[−p(x)y′]′ + q(x)y = λw(x)y, x ∈ (a, b) (4.2)

with boundary conditions 
α1y(a) + α2y

′(a) = 0

β1y(b) + β2y
′(b) = 0

. (4.3)

Here

• αi, βi for i ∈ {1, 2} are given constants such that α2
i + β2

i > 0;

• p(x), w(x) > 0 and q(x) are given functions.

• y and λ are unknown function and unknown constant.

Goal: Find λ ∈ R such that the ODE (4.2) with boundary conditions (4.3) has a non-
trivial solution yλ(x) .

This type of problem is called eigenvalue problem.

Does any λ ∈ R, the ODE (4.2) with boundary conditions (4.3) always admits a non-
trivial solution?

Example 1. Solve the two points boundary problem y′′ + y = 0 ,

y(0) = 0, y(π) = 2 .

Answer. Characteristic equation

r2 + 1 = 0 .

Two complex conjugate roots

r1 = i and r2 = − i .
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The general solution
y(x) = c1 · cos(x) + c2 · sin(x) .

The first boundary condition y(0) = 0 implies that c1 = 0 and it yields

y(x) = c2 · sin(x) .

The second boundary condition y(π) = 2 implies that

2 = y(π) = c2 · sin(π) = 0

and it yields a contradiction. Thus, the ODE does not have any solution.

Definition 4.11 Assume that with λ ∈ R, the ODE (4.2) with boundary conditions (4.3)
has a nontrivial solution yλ(x). Then

• λ is called an eigenvalue;

• yλ(x) is called an corresponding eigenfunction.

(λ, yλ) is called an eigen-pair of (4.2)-(4.3) .

1. Two points boundary problems with constant coefficients. Let’s consider the
second order linear ODE with constant coefficients

y′′ + λ · y = 0,

α1 · y(a) + α2 · y′(a) = 0,

β1 · y(b) + β2 · y′(b) = 0.

Goal: Find all eigenpairs the above two points boundary problem.

Example 2. Consider the linear second order ODE

y′′(x) + λ · y(x) = 0

with Dirichlet boundary condition

y(0) = y(π) = 0 .

Find all eigenvalues and corresponding eigenfunctions .

Answer. The characteristic equation

r2 + λ = 0

Three cases are consider:
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• If λ < 0 then
r1 =

√
|λ| and r2 = −

√
|λ| .

The general solution

y = c1 · e−
√
|λ|·x + c2 · e

√
|λ|·x .

The boundary conditions y(0) = y(π) = 0 implies that

c1 + c2 = 0 and c1 · e−
√
|λ|·π + c2 · e

√
|λ|·π

and it yields c1 = c2 = 0. Thus, y = 0 (trivial solution).

• If λ = 0 then
y′′ = 0 =⇒ y = c1 · x+ c2 .

The boundary conditions y(0) = y(π) = 0 implies that

c2 = 0 and c1 · π + c2 = 0

and it yields c1 = c2 = 0. Thus, y = 0 (trivial solution).

• If λ > 0 then λ = k2 for k > 0. The characteristic equation admit two complex roots

r1 = k · i and r2 = − k · i .

The general solution

y(x) = c1 · cos(kx) + c2 · sin(kx) .

Boundary conditions

y(0) = 0 =⇒ c1 = 0 =⇒ y(x) = c2 · sin(kx)

and thus
y(π) = 0 =⇒ c2 · sin(kπ) = 0 .

Since we are looking for nontrivial solution, we have

sin(kπ) = 0 =⇒ k = n for all n = 1, 2, ...

Thus,
λ = n2 and y(x) = c2 · sin(nx) n = 1, 2, ...

Eigenvalues and eigenfunctions λn = n2

yn(x) = sin(nx)
for n = 1, 2, ...

Example 3. Consider the linear second order ODE

y′′(x)− λ · y(x) = 0
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with Neumann boundary condition

y′(0) = y′(2) = 0 .

Find all eigenvalues and corresponding eigenfunctions .

Answer. The characteristic equation

r2 − λ = 0

It is quite similar to the previous example, one show that if λ > 0 then the above ODE
has only a trivial solution.

If λ = 0 then the solution

y(x) = 1 for all x ∈ [0, 2] .

We only need to consider λ < 0. In this case, one can write

λ = − k2 for k > 0 .

The general solution
y(x) = c1 · cos(kx) + c2 · sin(kx) .

Boundary conditions

y′(0) = 0 =⇒ c2 = 0 =⇒ y(x) = c1 · cos(kx)

and thus

y′(2) = 0 =⇒ −c2k · sin(2k) = 0 =⇒ sin(2k) = 0 .

Therefore,
2k = nπ for all n = 1, 2...

Eigenvalues and eigenfunctions λn = − n2π2

4

yn(x) = cos
(
nπ
2 · x

) for n = 0, 1, 2...

Example 4. Find all positive eigenvalues and corresponding eigenfunctions y′′ + λ · y = 0 ,

y′(0) = 0, y(π) + y′(π) = 0 .

Answer. Set λ = k2. The general solution

y(x) = c1 · cos(kx) + c2 · sin(kx) .
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Boundary conditions

y′(0) = 0 =⇒ c2 = 0 =⇒ y(x) = c1 · cos(kx)

and thus

y(π) + y′(π) = 0 =⇒ c1 cos(kπ)− c1k · sin(kπ) = 0 .

This implies that
1

k
= tan(kπ) .

Eigenvalues and eigenfunctions λn = ρ2
n

yn(x) = cos (ρnx)
for n = 1, 2, ...

where ρn are positive solutions of the equation
1

ρ
= tan(ρπ)

2. General theory of Sturm-Liouville problems. Let’s reconsider the regular Sturm-
Liouville system

[−p(x)y′]′ + q(x)y = λw(x)y, x ∈ (a, b) (4.4)

with boundary conditions 
α1y(a) + α2y

′(a) = 0

β1y(b) + β2y
′(b) = 0.

. (4.5)

The second order linear differential operator

L[y] =
1

w(x)
·
(
−
[
p(x)y′

]′
+ q(x) · y

)
.

The ODE (4.4) can be rewritten as

L[y] = λ · y .

Denote by

H =
{
f ∈ L2(a, b)

∣∣∣ f satisfies the boundary condition (4.5)
}
.

Lemma 4.12 The operator L is a self-adjoint operator on H, i.e.,

〈L[y1], y2〉 = 〈y1, L[y2]〉 for all y1, y2 ∈ H .

Answer. By using the integrating by parts, a direct computation yields∫ b

a
L[y1](x) · y2(x) dx =

∫ b

a
y1(x) · L[y2](x) dx
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Lemma 4.13 Let (λ1, y1) and (λ2, y2) be eigenpairs of (4.4)-(4.5). If λ1 6= λ2 then y1 are
y2 are orthogonal in H .

Answer. By the definition of eigen-pairs, we have

L[y1] = λ1 · y1 and L[y2] = λ2 · y2

In particular, this implies that

〈L[y1], y2〉 = λ1 · 〈y1, y2〉

and
〈y1, L[y2]〉 = λ2 · 〈y1, y2〉 .

Since L is self-adjoint, we obtain

λ1 · 〈y1, y2〉 = λ2 · 〈y1, y2〉

and this yields 〈y1, y2〉 = 0.

Lemma 4.14 An eigenvalue λ has a unique corresponding eigenfunction up to a constant
multiple, i.e., if y1 and y2 are corresponding eigenfunctions of λ then

y2 = c · y1 for all x ∈ (a, b) . (4.6)

Answer. Introduce the Wronskian of two functions

W [y1, y2] = y1y
′
2 − y′1y2,

we compute that
d

dx

(
y1

y2

)
=

y′2y1 − y1y
′
2

y2
1

=
W [y1, y2]

y2
1

.

On the other hand, a direct computation yields

d

dx
(p ·W ) = [py1y

′
2]′ − [py′1y2]′

= [py′2]′ · y1 − [py′1]′ · y2

= (q · y2 − L[y2]) · y1 − (q · y1 − L[y1]) · y2

= y2 · L[y1]− y1L[y2] .

Thus, if y1 and y2 are corresponding eigenfunctions of λ then

d

dx
(p ·W ) (x) = y2 · L[y1]− y1L[y2] = 0,

and this yields
(p ·W )(x) = constant = c for all x ∈ (a, b).

However, the Wronskian of these function

W [y1, y2](a) = y1(a)y′2(a)− y′1(a)y2(a) = 0

because y1 and y2 satisfies the same boundary condition at a. Thus,

W [y1, y2](x) = 0 for all x ∈ (a, b),

the two functions must be linearly dependent.

We conclude this subsection with a main theorem.
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Theorem 4.15 Consider the Sturm-Liouville problems

[−p(x)y′]′ + q(x)y = λw(x)y, x ∈ (a, b)

with boundary conditions 
α1y(a) + α2y(a) = 0

β1y(b) + β2y(b) = 0

.

with α2
1 + α2

2 6= 0 and β2
1 + β2

2 6= 0. Then the followings hold:

(i) There are countably infinite number of real eigenvalues

λ1 < λ2 < ... < λn < ... and lim
n→∞

λn = +∞ .

(ii) For each eigenvalue λi, there is a unique corresponding eigenfunction up to a constant
multiple.

(iii) Given λi and λj such that λi 6= λj, the corresponding eigenfunctions yi and yj are
orthogonal.

(iv) For any u ∈ H, one has

u =
+∞∑
n=1

cn · yn

where the coefficients are computed by

cn =
〈u, yn〉
‖yn‖2

for all n ∈ Z+ .

5 Linear Partial differential equations on bounded domains

Consider a linear PDEs on a bounded domain in R2

A(u(x, y)) = 0 for all (x, y) ∈ Ω ⊂ R2 . (5.1)

where

• A is a given linear differential operator

• u is an unknown of variables x and y.

Our goal is to derive the general formula of solution u to (5.1) by using the method of
separation of variables.

Method of separation of variables.

• Step 1: Seek for solutions of the form

u(x, y) = F (x) ·G(y)

where F is an unknown of x and G an unknown of y .

Plug u = FG into the PDE (5.1), one obtains ODEs for F and G. Together with
boundary conditions, the ODE becomes Sturm-Liouville problems.
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• Step 2: Solve Sturm-Liouville problems to obtain eigen-functions Fn and Gn. Thus,
particular solution of (5.1) is

un(x, y) = Fn(x) ·Gn(y) .

• Step 3: The set of particular solutions {u1, u2, ..., un, . . . } is a complete and orthog-
onal in a suitable space. Therefore, the general solution is

u =
+∞∑
n=1

cn · un

where the constant cn will be the coefficients of the Fourier series of initial data or
boundary data.

5.1 1-D heat equation on bounded domain

1. Dirichlet boundary condition. Consider the 1-D heat equation with Dirichlet
boundary condition

ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

u(0, t) = u(L, t) = 0, t > 0 ,

u(x, 0) = f(x), for all x ∈ [0, L] ,

where

• c is a given constant which is the diffusivity of the rod;

• L is the length of the rod;

• f is the given initial temperature.

Goal: Find u(x, t) the temperature at point x ∈ (0, L) at time t > 0.

Answer. It is divided into several steps:

Step 1: (Separating variable) Seek solutions for the form

u(x, t) = F (x) ·G(t) .

We compute
ut = F (x) ·G′(t), uxx = F ′′(x) ·G(t) .

Plug these into the heat equation, we obtain

F (x) ·G′(t) = c2 · F ′′(x) ·G(t) .

This implies that
F ′′(x)

F (x)
=

G′(t)

c2G(t)
= constant = − λ .
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The ODEs of F and G
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

G′(t) + λc2G(t) = 0, t ≥ 0 .

Step 2: Solve for F and G. The boundary conditions

u(0, t) = F (0) ·G(t) = 0 =⇒ F (0) = 0 ,

and
u(L, t) = F (L) ·G(t) = 0 =⇒ F (L) = 0 .

Two points boundary problem (Sturm-Liouville problem)
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

F (0) = F (L) = 0 .

Eigenvalues and corresponding eigenfunctions
λn =

n2π2

L2

Fn(x) = sin
(nπ
L
· x
) for n = 1, 2, ...

For any n ≥ 1, the equation

G′(t) + λnc
2 ·G(t) = 0 .

and the general solution
Gn(t) = e−c

2λnt .

Step 3. (Find the general solution). Particular solutions of the above 1-D heat equation

un(x, t) = Fn(x) ·Gn(t) = e
−n

2c2π2

L2
· t
· sin

(nπ
L
· x
)
.

The general solution

u(x, t) =
∞∑
n=1

cn · un(x, t)

=

∞∑
n=1

cn · e
−n

2c2π2

L2
· t
· sin

(nπ
L
· x
)
.

Step 4: Find cn by the initial conditions

u(x, 0) = f(x) =

∞∑
n=1

cn · sin
(nπ
L
· x
)
.
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The cn are coefficients of Fourier sine for the odd extension of f

cn =
2

L
·
∫ L

0
f(x) · sin

(nπx
L

)
dx .

Summary. 1-D heat equation with Dirichlet boundary condition
ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

u(0, t) = u(L, t) = 0, t > 0 ,

u(x, 0) = f(x), x ∈ [0, L] ,

The general solution

u(x, t) =

∞∑
n=1

cn · e
−n

2c2π2

L2
· t
· sin

(nπ
L
· x
)

where the coefficients are computed by

f(x) =
∞∑
n=1

cn · sin
(nπ
L
· x
)
,

or

cn =
2

L
·
∫ L

0
f(x) · sin

(nπx
L

)
dx .

Discussion of the solution

• The solution is harmonic oscillation in x and exponential decay in t .

• As time t goes to +∞, the solution u(t, x) goes to 0 for all x ∈ R .

Example 1. Solve the following 1-D heat equation
ut(x, t) = uxx(x, t) , x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0, t > 0 ,

u(x, 0) = 10 sin(πx) + 5 sin(3πx), for all x ∈ [0, 1] .

Answer. We have

c = 1, L = 1 and f(x) = 10 sin(πx) + 5 sin(3πx) .

The general solution

u(x, t) =

∞∑
n=1

cn · e−n
2π2t · sin(nπx) .
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The initial data implies that

10 sin(πx) + 5 sin(3πx) = f(x) =
∞∑
n=1

cn · sin(nπx)

Comparing the coefficients, we obtain

c1 = 10, c3 = 5 and cn = 0 for all n 6= 1, 3 .

The solution is

u(x, t) = 10 · e−π2·t · sin(πx) + 5 · e−9π2t · sin(3πx) .

Example 2. Consider the 1-D heat equation
ut(x, t)− u = 4uxx(x, t) , x ∈ (0, 3π), t > 0

u(0, t) = u(3π, t) = 0, t > 0 ,

u(x, 0) = sinx− 2 sin 2x+ 3 sin 3x, for all x ∈ [0, 3π] .

Find the temperature at x = π
2 at time t = 1 .

Answer. 1. Set
v = e−t · u .

We compute
vt = e−t · [ut − u] and vxx = e−t · uxx .

Thus, v is the solution of
vt(x, t) = 4vxx(x, t) , x ∈ (0, 3π), t > 0

v(0, t) = v(3π, t) = 0, t ≥ 0 ,

v(x, 0) = sinx− 2 sin 2x+ 3 sin 3x, for all x ∈ [0, 3π] .

2. Solve for v. We have

c = 2, L = 3π and f(x) = sinx− 2 sin 2x+ 3 sin 3x .

The general solution is

v(x, t) =

∞∑
n=1

cn · e−
4n2

9
·t · sin nx

3
.

The initial condition implies that

∞∑
n=1

cn · sin
nx

3
= sinx− 2 sin 2x+ 3 sin 3x .
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Compare the coefficients, we obtain that

c3 = 1, c6 = − 2, c9 = 3 and cn = 0 for all n 6= 3, 6, 9 .

Thus,
v(x, t) = e−4t · sinx− 2e−16t · sin(2x) + 3e−36t · sin 3x .

3. The solution is

u(x, t) = et · v(x, t) = e−3t · sinx− 2e−15t · sin(2x) + 3e−35t · sin 3x .

In particular,

u(π/2, 1) = e
−3
2 − 3e−

35
2 .

2. Neumann boundary condition. Consider the 1-D heat equation with Neumann
boundary condition

ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

ux(0, t) = ux(L, t) = 0, t > 0 ,

u(x, 0) = f(x), x ∈ [0, L] ,

Goal: Find u(x, t).

Answer. 1. Seek for solutions for the form

u(x, t) = F (x) ·G(t) .

ODEs for F and G 
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

G′(t) + λc2G(t) = 0, t ≥ 0 .

2. Solve for F and G. The boundary conditions

ux(0, t) = F ′(0) ·G(t) = 0 =⇒ F ′(0) = 0 ,

and
ux(L, t) = F ′(L) ·G(t) = 0 =⇒ F ′(L) = 0 .

Two points boundary problem (Sturm-Liouville problem)
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

F ′(0) = F ′(L) = 0 .

Eigenvalues and corresponding eigenfunctions
λn =

n2π2

L2

Fn(x) = cos
(nπ
L
· x
) for n = 0, 1, 2, ...
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Solve for G. For any n ∈ N,
G′(t) + c2λnG(t) = 0 .

Thus,

Gn(t) = e
−n

2π2c2

L2
· t
, n = 0, 1, 2, ...

3. Particular solutions of the above heat equation

un(x, t) = Fn(x) ·Gn(t) = e
−
n2πc2

L2
· t
· cos

(nπ
L
· x
)
, n = 0, 1, 2, ...

The general solution

u(x, t) = c0 +

+∞∑
n=1

cn · e
−n

2π2c2

L2
· t
· cos

(nπ
L
· x
)
.

4. The initial condition implies that

f(x) = c0 +
+∞∑
n=1

cn · cos
(nπ
L
· x
)

and it yields

c0 =
1

L
·
∫ L

0
f(x) dx

and

cn =
2

L
·
∫ L

0
f(x) · cos

(nπx
L

)
dx .

Summary. 1-D heat equation with Neumann boundary condition
ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

ux(0, t) = ux(L, t) = 0, t ≥ 0 ,

u(x, 0) = f(x), x ∈ [0, L] ,

The general solution

u(x, t) = c0 +

+∞∑
n=1

cn · e−
n2πc2

L2 ·t · cos
(nπ
L
· x
)

where the coefficients can be computed by

f(x) = c0 +
+∞∑
n=1

cn · cos
(nπ
L
· x
)
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or

c0 =
1

L
·
∫ L

0
f(x) dx

and

cn =
2

L
·
∫ L

0
f(x) · cos

(nπx
L

)
dx .

Discussion of the solution

• The solution is harmonic oscillation in x and exponential decay in t .

• As time t goes to +∞, the solution u(t, x) goes to the average value of the initial
temperature

lim
t→+∞

u(t, x) =
1

L
·
∫ L

0
f(x) dx .

Example 3. Solve the heat equation with Neumann boundary condition
ut(x, t) = 9 · uxx(x, t) , x ∈ (0, 2π), t > 0

ux(0, t) = ux(2π, t) = 0, t ≥ 0 ,

u(x, 0) = 2 + 1
2 · cosx− 3 · cos 3x, x ∈ [0, L] ,

Answer. We have

c = 3, L = 2π and f(x) = 2 +
1

2
· cosx− 3 cos 3x .

The general solution is

u(x, t) = c0 +
+∞∑
n=1

cn · e
−9n2

4
t
· cos

(n
2
· x
)

Initial condition

f(x) = c0 +
+∞∑
n=1

cn · cos
(n

2
· x
)

= 2 +
1

2
· cosx− 3 cos 3x .

Compare the coefficients, we get

c0 = 2, c2 =
1

2
, c6 = − 3 and cn = 0 for all n 6= 0, 2, 6 .

The solution is

u(x, t) = 2 +
1

2
e−9t cosx− 3e−81t cos 3x .

3. Steady state of heat equation. Consider the 1-D heat equation
ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

Boundary Conditions .
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As t→ +∞, solution does not change in time anymore, as it reaches a steady state. Call
it U(x). Informally,

U(x) = lim
t→+∞

u(t, x) for all x ∈ [0, L] .

Goal: How to find U(x)?

Since U does not depend on time t and satisfies the heat equation, one has

Ut = 0 and Uxx = 0 .

Thus,
U(x) = Ax+B

where constants A and B are identified by boundary conditions.

Example 4. Find the steady state of the heat equation
ut(x, t) = 4 · uxx(x, t) , x ∈ (0, 2), t > 0

u(0, t) = 1 u(2, t) = 3 .

Answer. We have
U(x) = Ax+B .

The boundary conditions imply that

U(0) = 1, and U(2) = 3 .

Thus,
B = 1 and 2A+B = 3

and it yields B = 1 and A = 1 . The steady state is

U(x) = x+ 1 .

Example 5. Find the steady state of the heat equation
ut(x, t) = 4 · uxx(x, t) , x ∈ (0, 1), t > 0

u(0, t) + u′(0, t) = 1 u(1, t)− u′(1, t) = 2 .

Answer. We have
U(x) = Ax+B .

The boundary conditions imply that

U(0) + U ′(0) = 1, and U ′(1)− U(1) = 2 .
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Thus,
A+B = 1 and −B = 2

and it yields A = 3 and B = −2 . The steady state is

U(x) = 3x− 2 .

4. Non-homogeneous boundary conditions. Let’s consider the heat equation with
non-homogeneous boundary conditions

ut(x, t) = c2 · uxx(x, t) , x ∈ (0, L), t > 0

Nonhomogeneous boundary conditions ,

u(x, 0) = f(x), x ∈ [0, L] ,

How to solve?

Step 1: Find the steady state U(x).

Step 2. Set v(x, t) = u(x, t)− U(x). Then v is the solution of
vt(x, t) = c2 · vxx(x, t) , x ∈ (0, L), t > 0

Homogeneous boundary conditions ,

v(x, 0) = f(x)− U(x), x ∈ [0, L] ,

Solve for v.

Step 3. The solution is
u(x, t) = U(x) + v(x, t) .

Example 6. Solve the heat equation with non-homogeneous condition

ut(x, t) = 4 · uxx(x, t) , x ∈ (0, π), t > 0

u(0, t) = 1, u(π, t) = 3, t > 0 ,

u(x, 0) =
2

π
· x+ ex + 1, x ∈ [0, π] ,

Answer. Step 1. Find a steady state

U(x) = ax+ b .

Initial condition implies that

U(0) = 1 =⇒ b = 1
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and
U(π) = 3 =⇒ aπ + b = 3 .

Thus, a =
2

π
, b = 1 and the steady state

U(x) =
2

π
· x+ 1 .

Step 2. Set v(x, t)
.
= u(x, t) − U(x). Then v is the solution of the heat equation with

Dirichlet boundary conditions
vt(x, t) = 4 · vxx(x, t) , x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0, t > 0 ,

v(x, 0) = u(x, 0)− U(x) = ex, x ∈ [0, π] .

We have
c = 2 and f(x) = ex .

The general solution is

v(x, t) =
∞∑
n=1

cn · e−4n2t · sinnx

where

cn =
2

π
·
∫ π

0
ex · sin(nx) dx, for all n = 1, 2, ...

Step 3. The solution is

u(x, t) = U(x) + v(x, t) = U(x) =
2

π
· x+ 1 +

∞∑
n=1

cn · e−4n2t · sinnx

where

cn =
2

π
·
∫ π

0
ex · sin(nx) dx =

n(1− eπ · (−1)n)

n2 + 1
, for all n = 1, 2, ...

Example 7. Find the solution of the 1-D heat equation with non-homogeneous boundary
condition 

ut(x, t) = uxx(x, t) , x ∈ (0, 2), t > 0

ux(0, t) = ux(2, t) = 1, t ≥ 0 ,

u(x, 0) =
cos(πx)

π
+ 2 cos(2πx) + x+ 1, x ∈ [0, 2] ,

Answer. 1. Find a steady state

U(x) = ax+ b .

76



Initial condition implies that

Ux(0) = Ux(2) = 1 =⇒ a = 1 .

Thus,
U(x) = x+ b .

Choose b = 0, we have that U(x) = x.

2. Set v(x, t)
.
= u(x, t)−U(x). Then v is the solution of the heat equation with Neumnann

boundary condition

vt(x, t) = vxx(x, t) , x ∈ (0, 1), t > 0

vx(0, t) = vx(2, t) = 0, t > 0 ,

v(x, 0) = u(x, 0)− U(x) =
cos(πx)

π
+ 2 cos(2πx), x ∈ [0, 2] .

We have

c = 1 and f(x) = 1 +
cos(πx)

π
+ 2 cos(2πx) .

The general solution

v(x, t) = c0 +

∞∑
n=1

cne
−n

2π2

4
t
· cos

(nπ
2
x
)
.

Initial condition implies that

1 +
cos(πx)

π
+ 2 cos(2πx) = c0 +

∞∑
n=1

cn · cos
(nπ

2
x
)

and it yields

c0 = 1, c2 =
1

π
, c4 = 2 and cn = 0 for all n 6= 0, 2, 4 .

Thus,

w(x, t) = 1 +
1

π
e−π

2t cos(πx) + 2−4π2t cos(2πx) .

3. The solution is

u(x, t) = w(x, t) + U(x) = 1 + x+
1

π
e−π

2t cos(πx) + 2−4π2t cos(2πx) .
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5.2 1-D Wave equation on bounded domain

Consider 1-D wave equation in an interval [0, L]
utt(x, t) = c2 · uxx(x, t), for all x ∈ [0, L], t > 0

u(0, t) = u(L, t) = 0, for all t ≥ 0 ,

u(x, 0) = f(x), ut(x, 0) = g(x) for all x ∈ [0, L] ,

(5.2)

where

• L is the length of the string;

• c2 =
T

ρ
with tensor T and density ρ.

Find u(x, t).

How to solve?

Step 1. (Separate variables) Look for a solution of form

u(x, t) = F (x) ·G(t) .

We compute
utt = F (x) ·G′′(t) and uxx = F ′′(x) ·G(t)

Plug these into (5.2), we get

F (x) ·G′′(t) = c2 · F ′′(x) ·G(t)

and it yields
F ′′(x)

F (x)
=

G′′(t)

c2 ·G(t)
= − λ .

Thus, F and G are solutions of the ODEs
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

G′′(t) + λc2G(t) = 0, t ≥ 0 .

Step 2. Solve for F and G. The boundary conditions

u(0, t) = F (0) ·G(t) = 0 =⇒ F (0) = 0 ,

and
u(L, t) = F (L) ·G(t) = 0 =⇒ F (L) = 0 .

Two points boundary problem (Sturm-Liouville problem)
F ′′(x) + λ · F (x) = 0, x ∈ (0, L),

F (0) = F (L) = 0 .
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Eigenvalues and corresponding eigenfunctions
λn =

n2π2

L2

Fn(x) = sin
(nπ
L
· x
) for n = 1, 2, ...

Solve for G. For any n, we have

G′′(t) +
n2c2π2

L2
·G(t) = 0 .

Thus,

Gn(t) = cn · cos
(ncπ
L
· t
)

+ dn · sin
(ncπ
L
· t
)
.

Particular solution

un(x, t) = Fn(x) ·Gn(t) =
[
cn · cos

(ncπ
L
· t
)

+ dn · sin
(ncπ
L
· t
)]
· sin

(nπ
L
· x
)
.

Step 3. General solution

u(x, t) =

+∞∑
n=1

[
cn · cos

(ncπ
L
· t
)

+ dn · sin
(ncπ
L
· t
)]
· sin

(nπ
L
· x
)

where

f(x) =
∞∑
n=1

cn · sin
(nπ
L
· x
)

and

g(x) =

∞∑
n=1

ncπ

L
· dn · sin

(nπ
L
· x
)

Therefore,

cn =
2

L
·
∫ L

0
f(x) · sin

(nπ
L
· x
)
dx and dn =

2

ncπ
·
∫ L

0
g(x) · sin

(nπ
L
· x
)
dx .

Remark. If g = 0 then dn = 0 and

u(x, t) =

+∞∑
n=1

cn · cos
(ncπ
L
· t
)
· sin

(nπ
L
· x
)
.

If f = 0 then cn = 0 and

u(x, t) =

+∞∑
n=1

dn · sin
(ncπ
L
· t
)
· sin

(nπ
L
· x
)
.
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Example 1. Find the solution of the following equation

utt(x, t) = 9 · uxx(x, t), for all x ∈ [0, π], t > 0

u(0, t) = u(π, t) = 0, for all t ≥ 0 ,

u(x, 0) = sinx− sin(3x) for all x ∈ [0, π] ,

ut(x, 0) = sin(2x) + 5 sin(4x) for all x ∈ [0, π] .

Answer. We have

c = 3, L = π, f(x) = sinx− sin(3x) and g(x) = sin(2x) + 5 sin(4x) .

The general solution is

u(x, t) =

∞∑
n=1

[cn · cos(3nt) + dn sin(3nt)] · sin(nx)] .

The coefficients are computed by

sin(x)− sin(3x) =

∞∑
n=1

cn · sin(nx)

and

sin(2x) + 5 sin(4x) =

+∞∑
n=1

3ndn · sin(nx) .

This implies

c1 = 1, c3 = − 1, cn = 0 for all n 6= 1, 3

and

d2 =
1

6
, d4 =

5

12
, dn = 0 for all n 6= 2, 4 .

The solution is

u(x, t) = cos(3t) · sinx+
1

6
sin(6t) sin(2x)− cos(9t) sin(3x) +

5

12
sin(12t) sin(4x) .

Example 2. Find the solution of the following equation

utt(x, t) = 9 · uxx(x, t) + t, for all x ∈ [0, π], t > 0,

u(0, t) = u(π, t) = 0 for all t ≥ 0 ,

u(x, 0) = sinx− sin(3x) for all x ∈ [0, π] ,

ut(x, 0) = − x(x− π)

18
+ sin(2x) + 5 sin(4x) for all x ∈ [0, π] .
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Answer. Set v = u+
x(x− π)

18
· t, we compute

vtt = utt and vxx = uxx +
t

9
,

v(0, t) = u(0, t) = 0, v(π, t) = u(π, t) = 0,

and

vt(x, 0) = ut(x, 0) +
x(x− π)

18
= sin(2x) + 5 sin(4x), v(x, 0) = sinx− sin(3x).

Thus, v solves the equation

vtt(x, t) = 9 · vxx(x, t), for all x ∈ [0, π], t > 0

v(0, t) = 0, v(π, t) = 0 for all t ≥ 0 ,

v(x, 0) = sinx− sin(3x) for all x ∈ [0, π] ,

vt(x, 0) = sin(2x) + 5 sin(4x) for all x ∈ [0, π] .

Thus,

v(x, t) = cos(3t) · sinx+
1

6
sin(6t) sin(2x)− cos(9t) sin(3x) +

5

12
sin(12t) sin(4x)

and this yields

u(x, t) = − x(x− π)t

18
+ cos(3t) · sinx

+
1

6
sin(6t) · sin(2x)− cos(9t) · sin(3x) +

5

12
sin(12t) · sin(4x).

Example 3. Solve the nonhomogeneous PDE with given boundary and initial conditions

utt(x, t) = uxx(x, t) + x, for all x ∈ [0, 1], t > 0

u(0, t) = 0, u(1, t) = 0 for all t > 0 ,

u(x, 0) = − x3

6
+
x

6
+ sin(πx)− 2 sin(3πx), ut(x, 0) = 0

Answer. 1. By superposition principle, we have

u(x, t) = v(x, t) + w(x)

where w is the solution of 
w′′(x) = − x,

w(0) = w(1) = 0.
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and v is the solution of
vtt(x, t) = vxx(x, t), for all x ∈ [0, 1], t > 0

v(0, t) = 0, v(1, t) = 0 for all t > 0 ,

v(x, 0) = u(0, x)− w(x), vt(x, 0) = 0 for all x ∈ [0, 1]

2. Solve for w, we get

w(x) = − x3

6
+
x

6
for all x ∈ [0, 1].

To solve for v, we have

c = 1, L = 1, g(x) = 0 and f(x) = u(0, x)−w(x) = sin(πx)−2 sin(3πx)

The general solution is

v(x, t) =
+∞∑
n=1

cn · cos (nπt) · sin (nπx)

with

sin(πx)− 2 sin(3πx) =

+∞∑
n=1

cn · sin (nπx) .

Compare the coefficients, we get

c1 = 1, c3 = − 2 and cn = 0 for all n 6= 1, 3,

and this yields

v(x, t) = cos (πt) · sin (πx)− 2 cos (3πt) · sin (3πx) .

Thus, the solution is

u(x, t) = − x3

6
+
x

6
+ cos (πt) · sin (πx)− 2 cos (3πt) · sin (3πx)

Nonhomogenous wave equations. In general, to solve the nonhomogeneous PDE
utt(x, t) = α2 · uxx(x, t) + k(x) for all x ∈ [0, L], t > 0

u(0, t) = a, u(L, t) = b for all t > 0 ,

u(x, 0) = f(x), ut(x, 0) = g(x),

we will use the superposition principle

u(x, t) = v(x, t) + w(x)
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where w(x) solves the equationw′′(x) = − k(x)

α2
for all x ∈ (0, L)

w(0) = a, w(L) = b,

and v solves the homogeneous PDE
vtt(x, t) = α2 · vxx(x, t) for all x ∈ [0, L], t > 0

u(0, t) = 0, u(L, t) = 0 for all t > 0 ,

u(x, 0) = f(x)− w(x), ut(x, 0) = g(x).

Example 4. Solve the following nonhomogeneous PDE

utt(x, t) = uxx(x, t) + x for all x ∈ [0, 1], t > 0

u(0, t) = 1, u(1, t) = 2 for all t > 0 ,

u(x, 0) = − x3

6
+

7x

6
+ 1, ut(x, 0) = − sin(πx) + 2 sin(3πx).

Answer. 1. By superposition principle, we have

u = v + w(x)

where is the solution of 
w′′(x) = − x,

w(0) = 1, w(1) = 2,

and v is the solution of
vtt(x, t) = vxx(x, t), for all x ∈ [0, 1], t > 0

v(0, t) = 0, v(1, t) = 0 for all t > 0 ,

v(x, 0) = u(0, x)− w(x), vt(x, 0) = − sin(πx) + 2 sin(3πx).

2. Solve for w, we get

w(x) = − x3

6
+

7x

6
+ 1 for all x ∈ [0, 1].

To solve for v, we have

c = 1, L = 1, f(x) = 0 and g(x) = − sin(πx) + 2 sin(3πx).
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The general solution is

u(x, t) =

+∞∑
n=1

dn · sin (nπt) · sin (nπx) .

with

− sin(πx) + 2 sin(3πx) =
+∞∑
n=1

nπdn · sin (nπx) .

Comparing the coefficients, we get

d1 = − 1

π
, d3 =

2

3π
and dn = 0 for all n 6= 1, 3.

Thus,

v(x, t) = − 1

π
· sin(πt) sin(πx) +

2

3π
· sin(3πt) sin(3πx),

and this yields

u(x, t) = − x3

6
+

7x

6
+ 1− 1

π
· sin(πt) sin(πx) +

2

3π
· sin(3πt) sin(3πx)

Example 5. Solve the following nonhomogeneous PDE

utt(x, t) = uxx(x, t) + x+ 2t for all x ∈ [0, 1], t > 0

u(0, t) = 1, u(1, t) = 2 for all t > 0 ,

u(x, 0) = − x3

6
+

7x

6
+ 1, ut(x, 0) = − x(x− 1)− sin(πx) + 2 sin(3πx).

Answer. Set v = u+ x(x− 1)t, we compute

vtt = utt and vxx = uxx + 2t,

v(0, t) = u(0, t) = 1, v(1, t) = u(1, t) = 2, v(x, 0) = − x2

2
+

3x

2
+ 1,

and
vt(x, 0) = ut(x, 0) + x(x− 1) = − sin(πx) + 2 sin(3πx).

Thus, v solves the equation

vtt(x, t) = vxx(x, t) + x for all x ∈ [0, 1], t > 0

v(0, t) = 1, v(1, t) = 2 for all t > 0 ,

v(x, 0) = − x3

6
+

7x

6
+ 1, vt(x, 0) = − sin(πx) + 2 sin(3πx).
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From example 4, we know that

v(x, t) = − x2

2
+

3x

2
+ 1− 1

π
· sin(πt) sin(πx) +

2

3π
· sin(3πt) sin(3πx).

Thus, the solution is

u(x, t) = − x(x− 1)t− x3

6
+

7x

6
+ 1− 1

π
· sin(πt) sin(πx) +

2

3π
· sin(3πt) sin(3πx).

5.3 Laplace equation in 2D

Consider the Laplace equation

∆u(x, y) = 0 for all (x, y) ∈ Ω ⊆ R2

with
∆u = uxx + yyy.

The above equation is the steady state of the 2D heat equation

ut(x, y, t) = c2 ·∆u(t, x, y) for all t ≥ 0, (x, y) ∈ Ω ⊆ R2

and its solution is a harmonic function.

5.3.1 Laplace equation in rectangular domain

Given positive constant a, b, consider the Laplace equation

∆u(x, y) = 0 for all (x, y) ∈ (0, a)× (0, b)

with the boundary conditions
u(0, y) = g1(y), u(a, y) = g2(y) for all y ∈ (0, b)

u(x, 0) = f1(x), u(b, x) = f2(x) for all y ∈ (0, a).

Goal: Given f1, f2, g1 and g2, can we find u?

By using a superposition principle of a linear PDE and a change of variables, one can
reduce the study to the following case:

CASE 1:
g1 = 0, g2 = 0 and f1 = 0.

In this case, a solution can be found by using the method of separation of variable.

Step 1. (Separate variables) Look for a solution of form

u(x, y) = F (x) ·G(y),
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we derive the ODEs for F and G

F ′′(x) + λ · F (x) = 0 and G′′(y)− λ ·G(y) = 0

Step 2. Solve for F . Since u(0, y) = u(a, y) = 0, one has that

F (0) = F (a) = 0.

The two points boundary problem{
F ′′(x) + λ · F (x) = 0

F (0) = F (a) = 0.

has eigen-pairs

λn =
n2π2

a2
, Fn(x) = sin

(nπx
a

)
for all n = 1, 2, . . . .

For every n ≥ 1, solve the corresponding ODE for G

G′′(y)− n2π2

a2
·G(y) = 0,

we get

Gn(y) =
An
2
· e

nπ
a
·y +

Bn
2
· e−

nπ
a
·y

The boundary condition implies that

Gn(0) = 0 =⇒ Bn = −An.

Thus,

Gn(y) = An ·
e
nπ
a
·y − e−

nπ
a
·y

2
= An · sinh

(nπ
a
· y
)
.

Step 3. The solution is

u(x, y) =
∞∑
n=1

An · sinh
(nπ
a
· y
)
· sin

(nπ
a
· x
)
.

with

f2(x) =

∞∑
n=1

An · sinh

(
nπb

a

)
· sin

(nπ
a
· x
)

and

An =
2

a · sinh(nπba )
·
∫ a

0
f2(x) · sin

(nπ
a
· x
)
dx.

Example 1. Solve the Laplace equation

∆u(x, y) = 0 for all (x, y) ∈ (0, 1)× (0, 1)
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with boundary conditions
u(0, y) = u(1, y) = 0 for all y ∈ (0, 1)

u(x, 0) = 0, u(1, x) = x(1− x) for all y ∈ (0, 1).

Answer. We have

a = 1, b = 1 and f2(x) = x(1− x)

The general solution is

u(x, y) =
∞∑
n=1

An · sinh (nπy) · sin(nπx).

Here, the coefficients are computed by

An =
2

sinh(nπ)
·
∫ 1

0
x(1− x) sin(nπx)dx

=
4

sinh(nπ)
· 1− cos(nπ)

n3π3
=

4

sinh(nπ)
· 1− (−1)n

n3π3
.

Thus, the solution is

u(x, y) = 4 ·
∞∑
n=1

1− (−1)n

n3π3 sinh(nπ)
· sinh (nπy) · sin(nπx).

Summary. The Laplace equation
∆u(x, y) = 0 (x, y) ∈ (0, a)× (0, b)

u(0, y) = u(a, y) = 0 y ∈ (0, b)

u(x, 0) = 0, u(x, b) = f(x) x ∈ (0, a)

has the solution

u(x, y) =
∞∑
n=1

An · sinh
(nπ
a
· y
)
· sin

(nπ
a
· x
)
.

with

f(x) =
∞∑
n=1

An · sinh

(
nπb

a

)
· sin

(nπ
a
· x
)

and

An =
2

a · sinh(nπba )
·
∫ a

0
f(x) · sin

(nπ
a
· x
)
dx.
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CASE 2: Let us now consider the Laplace equation
∆u(x, y) = 0 (x, y) ∈ (0, a)× (0, b)

u(0, y) = u(a, y) = 0 y ∈ (0, b)

u(x, 0) = f(x), u(x, b) = 0 x ∈ (0, a)

In this case, the function

v(x, y) = u(x, b− y) for all (x, y) ∈ (0, a)× (0, b)

solve the equation 
∆v(x, y) = 0 (x, y) ∈ (0, a)× (0, b)

v(0, y) = v(a, y) = 0 y ∈ (0, b)

v(x, 0) = 0, v(x, b) = f(x) x ∈ (0, a)

From case 1, we have

v(x, y) =
∞∑
n=1

An · sinh
(nπ
a
· y
)
· sin

(nπ
a
· x
)

with

f(x) =

∞∑
n=1

An · sinh

(
nπb

a

)
· sin

(nπ
a
· x
)

and

An =
2

a · sinh(nπba )
·
∫ a

0
f(x) · sin

(nπ
a
· x
)
dx.

Thus, the solution is

u(x, y) = v(x, b− y) =
∞∑
n=1

An · sinh
(nπ
a
· (b− y)

)
· sin

(nπ
a
· x
)
.

CASE 3: Consider the Laplace equation
∆u(x, y) = 0 (x, y) ∈ (0, a)× (0, b)

u(0, y) = 0, u(a, y) = f(y) y ∈ (0, b)

u(x, 0) = 0, u(x, b) = 0 x ∈ (0, a)

In this case, we set

v(y, x) = u(x, y) for all (x, y) ∈ (0, a)× (0, b).

Then v define on (0, b)× (0, a) solves the equation
∆v(x, y) = 0 (x, y) ∈ (0, b)× (0, a)

v(0, y) = 0, v(b, y) = 0 y ∈ (0, a)

v(x, 0) = 0, u(x, a) = f(x) x ∈ (0, b).
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From the case 1, we have

v(x, y) =

∞∑
n=1

An · sinh
(nπ
b
· y
)
· sin

(nπ
b
· x
)

with

f(x) =

∞∑
n=1

An · sinh
(nπa

b

)
· sin

(nπ
b
· x
)

and

An =
2

b · sinh
(
nπa
b

) · ∫ b

0
f(x) · sin

(nπ
b
· x
)
dx.

Thus, the solution is

u(x, y) = v(y, x) =
∞∑
n=1

An · sinh
(nπ
b
· x
)
· sin

(nπ
b
· y
)

CASE 4: Similarly, one can show that the Laplace equation
∆u(x, y) = 0 (x, y) ∈ (0, a)× (0, b)

u(0, y) = f(y), u(a, y) = 0 y ∈ (0, b)

u(x, 0) = 0, u(x, b) = 0 x ∈ (0, a)

has the solution

u(x, y) =
∞∑
n=1

An · sinh
(nπ
b
· (a− x)

)
· sin

(nπ
b
· y
)

with

f(x) =
∞∑
n=1

An · sinh
(nπa

b

)
· sin

(nπ
b
· x
)

and

An =
2

b · sinh
(
nπa
b

) · ∫ b

0
f(x) · sin

(nπ
b
· x
)
dx.

Using a superposition principle, we can solve Laplace equation with general boundary
condition.

Example 2. Solve the Laplace equation

∆u(x, y) = 0 for all (x, y) ∈ (0, 1)× (0, 1)

with boundary conditions
u(0, y) = u(1, y) = 1 for all y ∈ (0, 1)

u(x, 0) = x, u(1, x) = 1− x for all y ∈ (0, 1).
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Answer. The solution u is computed by

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y)

where

• u1 is the solution to
∆u(x, y) = 0 (x, y) ∈ (0, 1)× (0, 1)

u(0, y) = u(1, y) = 0 y ∈ (0, 1)

u(x, 0) = 0, u(x, 1) = (1− x) x ∈ (0, 1)

• u2 is the solution to
∆u(x, y) = 0 (x, y) ∈ (0, 1)× (0, 1)

u(0, y) = u(1, y) = 0 y ∈ (0, 1)

u(x, 0) = x, u(x, 1) = 0 x ∈ (0, 1)

• u3 is the solution to
∆u(x, y) = 0 (x, y) ∈ (0, 1)× (0, 1)

u(0, y) = 1, u(1, y) = 0 y ∈ (0, 1)

u(x, 0) = u(x, 1) = 0 x ∈ (0, 1)

• u4 is the solution to
∆u(x, y) = 0 (x, y) ∈ (0, 1)× (0, 1)

u(0, y) = 0, u(1, y) = 1 y ∈ (0, 1)

u(x, 0) = u(x, 1) = 0 x ∈ (0, 1)

From case 1 and case 2, we have

u1(x, y) =

∞∑
n=1

An · sinh(nπy) · sin(nπx)

and

u2(x, y) =

∞∑
n=1

Bn · sinh(nπ(1− y)) · sin(nπx)

with 
An =

2

sinh(nπ)
·
∫ 1

0
(1− x) sin(nπx)dx =

2

nπ sinh(nπ)

Bn =
2

sinh(nπ)
·
∫ 1

0
x sin(nπx)dx =

2(−1)n+1

nπ sinh(nπ)
.

From case 3 and case 4, we have

u3(x, y) =
∞∑
n=1

Cn · sinh (nπx) · sin (nπy)
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and

u4(x, y) =
∞∑
n=1

Dn · sinh (nπ(1− x)) · sin (nπy)

with

Cn = Dn =
2

sinh(nπ)
·
∫ 1

0
sin(nπx)dx =

2 · (1− (−1)n)

nπ sinh(nπ)

Therefore, the solution is

u(x, y) =

∞∑
n=1

2

nπ sinh(nπ)
·
[ (

sinh(nπy) + (−1)n+1 · sinh(nπ(1− y))
)
· sin(nπx)

+ (1− (−1)n) · (sinh (nπx) + sinh (nπ(1− x))) · sin (nπy)
]

for (x, y) ∈ [0, 1]× [0, 1].

5.3.2 Temperature in a disk

Consider the Laplace equation{
∆u = 0 in B(0, R)

u = f on ∂B(0, R).

Polar coordinate: By a change of variables

x = r · cos(θ)

y = r · sin(θ)

v(r, θ) = u(r · cos θ, r sin θ),

for all 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π

we compute
vr = ux · cos θ + uy · sin θ,

vrr = [uxx · cos θ + uxy · sin θ] · cos θ + [uxy · cos θ + uyy · sin θ] · sin θ
= uxx · cos2 θ + 2 · uxy sin θ · cos θ + uyy · sin2 θ,

and
vθ = − r · sin θ · ux + r · cos θ · uy,

vθθ = r2 ·
[
uxx · sin2 θ − 2 · uxy sin θ · cos θ + uyy · cos2 θ

]
− r · [ux · cos θ + uy · sin θ]

= r2 ·
[
uxx · sin2 θ − 2 · uxy sin θ · cos θ + uyy · cos2 θ

]
− r · vr.

Thus, v solves the equation

∂2v

∂r2
+

1

r
· ∂v
∂r

+
1

r2
· ∂

2v

∂θ2
= 0 for all (r, θ) ∈ (0, R)× (0, 2π)
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with boundary conditions
v(r, 0) = v(r, 2π) x ∈ [0, R]

v(R, θ) = g(θ) = f(R cos θ,R sin θ) θ ∈ [0, 2π].

Goal: Given R and g, find v in [0, R]× [0, 2π].

1. Using the method of separation of variables, we seek particular solutions of form

v(r, θ) = F (r) ·G(θ).

From the PDEs, one derive the ODEs for F and G
G′′(θ) + λ ·G(θ) = 0

r2F ′′(r) + rF ′(r)− λF (r) = 0

2. From the boundary condition, we solve the two points boundary problem

G′′(θ) + λ ·G(θ) = 0, G(0) = G(2π).

and get eigenpairs

λn = n2, Gn(θ) = an · cos(nθ) + bn · sin(nθ) for all n = 0, 1, 2, . . . .

For every n = 0, 1, . . . , the corresponding ODEs for F

r2F ′′(r) + rF ′(r)− n2F (r) = 0

has the general solution

Fn(r) = cn ·
( r
R

)n
.

3. Finally, the solution v is

v(r, θ) = A0 +

∞∑
n=1

( r
R

)n
· [An · cos(nθ) +Bn sin(nθ)]

with

A0 =
1

2π
·
∫ 2π

0
g(θ)dθ, An =

1

π

∫ 2π

0
g(θ) · cos(nθ)dθ

and

Bn =
1

π

∫ 2π

0
g(θ) · sin(nθ)dθ

for all n ≥ 1.

Example 1. Solve the Laplace equation{
∆u = 0 in B(0, 1)

u = f on ∂B(0, 1).
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where

f(cos θ, sin θ) = 1 + sin θ +
1

2
sin(3θ) + cos(4θ) θ ∈ [0, 2π]

Answer. We have

R = 1 and g(θ) = 1 + sin θ +
1

2
sin(3θ) + cos(4θ).

The general solution is

v(r, θ) = A0 +
∞∑
n=1

rn · [An · cos(nθ) +Bn sin(nθ)] for all 0 < r ≤ 1, θ ∈ [0, 2π]

From the boundary condition, one has

1 + sin θ +
1

2
sin(3θ) + cos(4θ) = A0 +

∞∑
n=1

[An · cos(nθ) +Bn sin(nθ)]

and this yields

A0 = 1, B1 = 1, B3 =
1

3
and A4 = 1.

Thus, the solution is

v(r, θ) = 1 + r sin θ +
r3

2
sin(3θ) + r4 cos(4θ).

Poisson integral formula. Consider Laplace equation

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 for all (r, θ) ∈ (0, R)× (0, 2π)

with boundary conditions

u(R, θ) = g(θ) for all θ ∈ [0, 2π).

The separation of variables solution is

u(r, θ) = A0 +

∞∑
n=1

( r
R

)n
· [An · cos(nθ) +Bn sin(nθ)]

with

A0 =
1

2π
·
∫ 2π

0
g(θ)dθ, An =

1

π

∫ 2π

0
g(θ) · cos(nθ)dθ

and

Bn =
1

π

∫ 2π

0
g(θ) · sin(nθ)dθ for all n ≥ 1.
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We compute that

u(r, θ) =
1

2π
·
∫ 2π

0
g(α)dα+

1

π
·
[ r
R

)n
·
∫ 2π

0
g(α) · (cos(nα) cos(nθ) + sin(nα) sin(nθ)] dα

=
1

2π
·
∫ 2π

0

[
1 + 2

∞∑
n=1

( r
R

)n
· cos[n(θ − α)]

]
· g(α)dα

=
1

2π
·
∫ 2π

0

[
1 +

∞∑
n=1

( r
R

)n
·
(
ein(θ−α) + e−in(θ−α)

)]
· g(α)dα

=
1

2π
·
∫ 2π

0

[
1 +

rei(θ−α)

R− rei(θ−α)
+

re−i(θ−α)

R− re−i(θ−α)

]
· g(α)dα

=
1

2π
·
∫ 2π

0

[
R2 − r2

R2 − 2rR cos(θ − α) + r2

]
· g(α)dα.

The last equation is the Poisson Integral formula of the Laplace equation

u(r, θ) =
1

2π
·
∫ 2π

0

[
R2 − r2

R2 − 2rR cos(θ − α) + r2

]
· g(α)dα.

5.3.3 Exterior Dirichlet problem and the Dirichlet problem in an Annulus

1. Exterior Dirichlet problem Consider Laplace equation

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 for all (r, θ) ∈ (R,∞)× (0, 2π)

with boundary conditions

u(R, θ) = g(θ) for all θ ∈ [0, 2π).

By using the same argument in the previous one, we obtain that

u(r, θ) =
∞∑
n=0

(
R

r

)n
· [An cos(nθ) +Bn sin(nθ)]

with

A0 =
1

2π

∫ 2π

0
g(θ)dθ, B0 = 0

and

An =
1

π

∫ 2π

0
g(θ) cos(nθ)dθ, Bn =

1

π

∫ 2π

0
g(θ) sin(nθ)dθ

for all n ≥ 1.

Example 1. The Exterior problem

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 for all (r, θ) ∈ (1,∞)× (0, 2π)
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with boundary conditions

u(1, θ) = 1 + sin(θ) + cos(3θ) for all θ ∈ [0, 2π).

has the solution

u(r, θ) = 1 +
1

r
· sin(θ) +

1

r3
· sin(3θ).

2. Dirichlet problem in an Annulus. Consider the Laplace equation between two
circles

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 R1 < r < R2

with boundary condition

u(R1, θ) = g1(θ) and u(R2, θ) = g2(θ) for all θ ∈ [0, 2π).

By using the method of separation of variable, one gets

u(r, θ) = a0 + b0 ln r +

∞∑
n=1

[
anr

n + bnr
−n] · cos(nθ) +

[
cnr

n + dnr
−n] · sin(nθ)

where 
a0 + b0 lnR1 =

1

2π
·
∫ 2π

0
g1(s)ds

a0 + b0 lnR2 =
1

2π
·
∫ 2π

0
g2(s)ds

and 
anR

n
1 + bnR

−n
1 =

1

π
·
∫ 2π

0
g1(s) · cos(ns)ds

anR
n
2 + bnR

−n
2 =

1

π
·
∫ 2π

0
g2(s) · cos(ns)ds

and 
cnR

n
1 + dnR

−n
1 =

1

π
·
∫ 2π

0
g1(s) · sin(ns)ds

cnR
n
2 + dnR

−n
2 =

1

π
·
∫ 2π

0
g2(s) · sin(ns)ds

Example 1. Solve the Laplace equation

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 1 < r < 2

with boundary condition

u(1, θ) = 0 and u(2, θ) = sin θ for all θ ∈ [0, 2π).
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Answer. We have

R1 = 1, R2 = 2, g1(θ) = 0, g2(θ) = sin θ.

A direct computation yields

an = bn = 0 for all n ≥ 0

and
cn = dn = 0 for all n ≥ 2.

It remains to compute c1 and d1. Since

1

π
·
∫ 2π

0
sin2(s)ds = 1,

one has

c1 + d1 = 0 and 2c1 +
d1

2
= 1.

and this yields
c1 = 2/3 and d1 = − 2/3.

Thus,

u(r, θ) =
2

3
·
(
r − 1

r

)
· sin θ for all (r, θ) ∈ [1, 2]× [0, 2π].

Example 2. Solve the Laplace equation

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 1 < r < 2

with boundary condition

u(1, θ) = 3 and u(2, θ) = 5 for all θ ∈ [0, 2π).

Answer. We have

R1 = 1, R2 = 2, g1(θ) = 3, g2(θ) = 5.

It is clear that
an = bn = cn = dn = 0 for all n ≥ 1

and 
a0 =

1

2π
·
∫ 2π

0
3ds = 3

a0 + b0 ln 2 =
1

2π
·
∫ 2π

0
5ds = 5

=⇒ a0 = 3, b0 =
2

ln 2
.
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Thus, the solution is

u(r, θ) = 2 +
2

ln 2
· ln r.

Example 3. Solve the Laplace equation

∂2u

∂r2
+

1

r
· ∂u
∂r

+
1

r2
· ∂

2u

∂θ2
= 0 1 < r < 2

with boundary condition

u(1, θ) = 0 and u(2, θ) = sin θ for all θ ∈ [0, 2π).

Answer. We have

R1 = 1, R2 = 2, g1(θ) = sin θ, g2(θ) = sin θ.

The coefficients a0, b0, an, bn, cn, dn are zero excepts for c1, d1. We have
c1 + d1 =

1

π
·
∫ 2π

0
sin2 sds = 1

4c1 +
1

4
d1 =

1

π
·
∫ 2π

0
sin2(s)ds = 1.

and this yields

c1 =
1

3
and d1 =

2

3
.

Thus, the solution is

u(r, θ) =

(
r

3
+

2

3r

)
· sin θ.

97


	Introduction
	Classification of Differential Equations
	A review on ordinary differential equations
	Linear equations: Method of integrating factors
	Separable equations
	Second Order Linear Equations
	Homogeneous equations with constant coefficients
	Cauchy-Euler equations

	Partial Differential Equations.

	Scalar Conservation Laws
	Linear advection equations
	Homogeneous linear advection equations with constant speed
	Non-homogeneous linear advection equations with constant speed
	Homogeneous linear advection equations with nonconstant speed
	Nonhomogeneous linear advection equations with nonconstant speed

	Nonlinear advection equations

	Linear 1D Partial Differential Equations in unbounded domains
	1D heat equation
	 Derivation of the 1d heat equation
	 Presentation formula of 1D heat equation without source
	Semi-infinite domains
	Sources and Duhamel's principle

	1D wave equation
	General solution
	D'Alembert's formula
	1 D wave equation with sources

	Laplace Transform
	The Fourier Transform

	Orthogonal expansions
	Inner product spaces and orthogonal basis
	Classical Fourier series
	Sturm-Liouville problems

	Linear Partial differential equations on bounded domains
	1-D heat equation on bounded domain
	1-D Wave equation on bounded domain
	Laplace equation in 2D
	Laplace equation in rectangular domain
	Temperature in a disk
	Exterior Dirichlet problem and the Dirichlet problem in an Annulus



