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1 Introduction

1.1 Classification of Differential Equations

Definition 1.1 A differential equation is an equation which contains derivatives of the
unknown (Usually it is a mathematical model of some physical phenomenon).

Example 1.
a) Model of population of ecology:

a(t) = ru(t) (1 - K) (ODE)

where

e r K are given constants;

e t is time variable and w is an unknown function of ¢.
b) Model of traffic flow on a single road

ug(x,t) + f(u(z,t))e = 0 (PDE)

where

e t is time variable and x is state variable;

e fis a given flux;

e 1 is a unknown function of ¢ and z.

Notations:
du
o U(t) = e ordinary derivative.
ou ou 9%u 9%u 9%u tial derivati
U= —, Uy = —, Ut = —=, Uty = ———, Ugz — —: partial derivatives.
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There are two classes of differential equations:
e Ordinary differential equations (ODEs).

e Partial differential equations (PDEs).



1.2 A review on ordinary differential equations

Definition 1.2 A ordinary differential equation is an equation with ordinary derivative
of the unknown u that depends only on one variable.

First order differential equations. Consider the ordinary differential equaition

u'(t) = f(t u(t))

where f is a given function and u is an unknown of t.
Goal: Solve the above ODE.

1.2.1 Linear equations: Method of integrating factors

The function f(¢,u) is linear function in u, we can write

ftu) = —p(t)-u+q(t)

where p, q are given functions of ¢.

We will study the equation
u'(t) +p(t)ut) = q(t). (1.1)

Method of integrating factors.

Step 1: Compute the integrating factor

u(t) = —L . [/u(t)q(t) dt+C} |

Example 2. Solving the following initial value problems
a) u'(t) +u(t) = e*, u(0) = 1.
b) tu'(t) —u(t) = t2e? for all t > 1, u(l)=1-e"1.

Answer. (a) We have

The integrating factor

wu(t) = exp </p(t) dt> = exp </1 dt> = e



The general solution

) = o | [noate) aee ]

2
1 =u0) = -+C — C = -.
The solution ) 5
u(t) = g-e%—kg-et.
(b). Rewrite the equation
1
u'(t) — Eu(t) = te !

We have

The integrating factor

The general solution

wt) = o | fuoa el

1
)
=t Ue—t dt+C] = —te '+ Ct.
The initial condition implies that
e 41 =ul) = et+C = C = 1.

The solution

1.2.2 Separable equations

Assume that f(¢,u) can be separated

_ M)
We will study the equation ®
du t
G = e = T (1.2)



Equivalently,
N(u)du = M(t)dt = /N(u) du = /M(t) dt
and it yields an implicit formula for the solution u

Example 3. Consider the equation

cost

/
t) = ——
v = 2

u(m/2) = 3.
We can separate the variables

(1 —u?)du = cost dt = /(1 —u?)du = /cost dt.

This yields

1
u— gug = sin(t) +C
Since u(m/2) = 3, we have
1 3
3—5-3 =14+C == Cc = —71.
The solution u is given implicitly as
1

u— gug = sin(t)+ 7.

1.2.3 Second Order Linear Equations

The general form of these equations is
az()u” (t) + ar(t)u'(t) + agu(t) = b(t).

where ag, a1, as and b are given functions and u is an unknown of .
If b(t) = 0, we call it homogeneous. Otherwise, it is called non-homogeneous.

1.2.4 Homogeneous equations with constant coefficients

The linear equation
av” +bu' +cu = 0 (1.3)

where a, b, c are given constants.

The principle of superposition. Ifu, and us are solutions of , then u = crui+couo
is also a solution of for arbitrary constants c1, ca.

How to find uq and ug?

The characteristic equation of ([1.3))

ar’ +br+c = 0. (1.4)



Denote by
D = b? —4ac.

Three cases can occur:

e If D > 0 then (1.4) has two real roots

—b++vD

r =

2a 2a
Two particular solutions
ur(t) = e, ug(t) = et
The general solution of is
u(t) = c1-et 4y et
e If D =0 then has a repeated root
S b
1 =T =T = o
Two particular solutions
ur(t) = e, us(t) = te'.
The general solution of is
u(t) = c1-e" ey -t
o If D < 0 then has two complex conjugate roots
r = «a-+1if, ro = a—1if
where
a = ;—5 and b = \/2? .

Two particular solutions
ui(t) = e* - cos(ft), ua(t)

The general solution of ([1.3]) is

u(t) = cre® cos(Bt) + coe* sin(Bt) .

Example 4. Solve the second order linear ODE

u +3u+2u = 0 with u(0) =



Answer. The characteristic equation
P +3r+2 = 0.

Since D =32 —-4-2-1=1 > 0, we have

The general solution
Initial conditions imply that

and
2 = 4'(0) = —c; —2c.

The solution

O
1.2.5 Cauchy-Euler equations
Consider the second order equation of the form
az?u” +bxu’ +cu = 0.
Try to look for particular solutions of the form u(x) = 2". This yields the characteristic

equation
ar(r—1)+br+c = 0.

This quadratic equation has two roots r1,re. Three cases may occur:

e If r; and ro are two distinct real roots, then the general solution
u(z) = iz’ 4+ cox™ .
e If ri = r9 =7, then the general solution
u(@) = 12" +cor" Inz
e If r1 and r9 are two complex conjugate roots, i.e.,
r = a+1if, rgo = a—if.
then the general solution

u(z) = cz®sin(flnz) + cox® cos(flnz).



1.3 Partial Differential Equations.

Definition 1.3 A partial differential equation is an equation with partial derivatives of
the unknown u that depends on several variables.

Some basic concepts related to differential equations:
e Order of PDEs: the highest order of derivatives.
e Linear PDEs: the term with v and its derivatives are in a linear form.
e Nonlinear PDEs: the term with w and its derivatives are in a nonlinear form.

Example 1. Let u be a function of two variables ¢, x. Identify the order and linearity of
the following equations.

(a). ug+2u, = 0
(). up = 2 Upy (Wave equation)
(€). Ugzp +uyy = 0 (Laplace equation)
(d). ur = Uge + Uyy (2D heat equation)
w2
(e). ur + <2> =0 (Burger’s equation)
x
(). Upe +uyy = f(z,y) (Poisson equation)

(g). Ut — gt + Ugy + 23U +tu, = 0.

Definition 1.4 The function u is a solution if it satisfies the equation and any boundary
or initial conditions.

Ezample 2. (a) Given any smooth functions F', the function
u(z,t) = F(2t —x) for all (t,z) € (0,00) x R
is a solution of the equation in (a) of example 1.

Proof. Using the change rule, one computes that

d d
ug(x,t) = %F(Qt—a:) = —F'(2t—x) and  w(z,t) = ﬁF(%—x) = 2F'(2t—x)

This implies that
ur +2u, = 2F'(2t —x) —2F' (2t —x) = 0.

(b) Showing that the function



solves the equation
U Uty = Ut - Uy

Proof. Using the change rule, one computes

d d
u = —efDgla) = F()e!Dg(x),  we = /D Zg(z) = /Vg/(x)
dt dzx
and J J
_ L f@®) . Y ! f@®
we = el 0 L) = £t @),
Therefore

u-ug = ! Wg(a)- f(t)g (@)e! D = (1) Dg(a)- /g (@) = -y

Definition 1.5 Let L be a differential operator. We say that

(H) The equation L(u) = 0 is homogeneous.
(NH) The quation L(u) = f is non-homogeneous for all f # 0.

The principle of superposition. Assume that L is a linear differential operator, i.e.,
L(u+v) = L(u) + L(v) and LA -u) = X L(u).
Then the followings hold:
(1) If u; and wug are solutions of the homogeneous equation
L(u) = 0
then u = A1 - up + A9 - ug is also a solution for any Ai, A2 € R.

(ii) If uy is a solution of the homogeneous equation L(u) = 0, and ug is a solution of the
non-homogeneous equation L(u) = f, then u = uj + ug is a solution of L(u) = f.

Classification of PDEs. Consider the second order PDEs
Augy + Bug + Cuy + F(z,tu, ug,ug) = 0 (1.5)

where A, B, C are given constants, F' is a given function, and u is an unknown.

Denote by
A = B*-4AC.

There are three cases:

e If A > 0 then (3.6] is hyperbolic;
e If A <0 then (3.6]) is elliptic;
e If A =0 then (3.6]) is parabolic.



2 Scalar Conservation Laws

General form p
—®(t =
Ut + dx ( » Ly u) g
where
e u is the density which depends on the time variable ¢ > 0 and the state variable
z € R;
e d is a given flux;

e ¢ is a given source term (external force).

Example 1. (Traffic flow) On a single road, let’s denote by
e u(x,t) is the traffic density at the location z at time ¢.
e v is the velocity of cars which depends on the traffic density.

e The flux
fu) = u-v(u)
describes the total number of cars crossing the location x at time t.

Giving two locations a and b on the road, the integral

b
/ u(x,t) de = total number of cars in [a,b] at time t.
a

p = density of cars

We compute

This implies that

b
/ ur(z,t) + f(u(z,t))y de = 0 for all a < b.

A PDE for traffic flow
ug(x,t) + f(u(x,t)), = 0. (2.1)

GOAL: describe the traffic density at time ¢t .



2.1 Linear advection equations
In this subsection, we will study linear advection equations of form
ut(x,t) + c(z,t) - uz(x,t)) = g(x,t,u)
where
e t is the time variable and x is the state variable;
e g is a given source term;
e cis a given speed of t and x

Goal: Find the density u at the location x and the time t.

2.1.1 Homogeneous linear advection equations with constant speed

Consider the Cauchy problem
ut(l'vt) +c- ux(wvt) =0,
(2.2)
u(x,0) = up(x)
where
e cis a given constant speed;

e the function ug(z) is the initial data.

Observe that

d

pn w(zo+ct,t) = c-ugp(xo+ct,t) +u(zo +ct,t) = 0.
Hence, u is constant along every line (zg + ct,t). In particular, one has
u(t,zo +ct) = u(zo,0) = up(zo)-.

Set x = xg + ct, we have g = x — ct. The solution is

u(z,t) = up(z —ct).

Remark. The general solution of (2.2)) has form
u(z,t) = F(x — ct)
for smooth function F.

Ezample 1. Consider the Cauchy problem

Ut('rvt) +2- ux('rvt) = 0,

u(z,0) = a2

10



Find u(z,1).

1

Answer. ¢ =2 and up(z) = ———. Thus, the solution
1+2
1
) = ———.

u(z,?) 1+ (z—2t)2

In particular, we have
1 1

1) = = .
u(@,1) 1+ (z—2)2 22 —4x +5

Example 2. Solve the initial value problem (IVP)

ug(x,t) — 3 - uzp(z,t) = 0,

-1 if x>0
u(z,0) =
1 if <0
Answer. We have
-1 if x>0
c = —3 and up(x) =
1 if z <0
Thus, the solution is
-1 if x> =3t
u(z,t) = up(z+3t) =
1 if r < =3t

Example 3. Find the solution of the following initial value problem
ur(z,t) — 2 - ug(z,t) + 3u(z,t) = 0,

u(z,0) = ze ™

Answer. Set v(x,0) = e3u(z,0). We have
ve(x,0) = eMu(x,0) and v = e [ug(x,t) + 3u(z,t)].

Thus,
ve(x,t) — 2 vp(z,t) = 0,

v(z,0) = vo(x) = we

11



Solving the above equation, we get
v(z,t) = vo(z+2t) = (z+ 275)6_(“’215)2 :

Recalling that
u(z,t) = e 3t v(z,t),

the solution w is ,
w(z,t) = (x+ 2t)e” (@273

2.1.2 Non-homogeneous linear advection equations with constant speed

Consider the Cauchy problem
ug(x,t) + ¢ ugp(z, t) + a(t)u(z,t) = g(z,t),
u(0,z) = uo(x)
where
e cis a given constant speed;
e the function ug(z) is the initial data.

e a(t), g(z,t) are given functions.

How to solve (2.3))?7
Answer. It is divided into several steps:

Step 1: Introduce new functions
v(z,0) = eV . u(z,t) and k(z,t) = e"Wg(z,1)

where p is the integrating factor

We compute that
U;p(.%',t) = eﬂ(t) ’ u(l‘,t), ’Ut(xﬂf) = eM(t) ’ [Ut(.%',t) + a(t)u(:v,t)]

and
w(z,0) = e u(z,0) = u(x).

Thus, v is the solution of
ve(x,t) + ¢ vp(x,t) = Ek(z,t),

v(x,0) = up(z).

12

(2.3)



Step 2: Set V(x,t) = v(x + ct,t). We have
Vi = vi+cvy = k(z+ct,t).
Solving the ordinary different equation in time ¢
Vi(z,t) = k(z+ ct,t) with V(z,0) = wuo(x)

we obtain that .
V(z,t) = wup(x) +/ k(x4 cs,s) ds.
0

Step 3: The general solution
u(z,t) = e PO y(xt)

= e *D . V(z—ctt).

Example 1. a). Find the general solution
U — 2y +2u = et

b) Assume that u(z,0) = e~*. Compute u(2,1).

Answer. Step 1. We have

The function

We set
v(z,t) = e -u(a,t) and k(t) = €.

Then, v(zx,t) solves the PDE
v — 20, = e’

Step 2. Set V(x,t) = v(x —2t,t). We have
Vi(z,t) = €.

Thus,
V(z,t) = /es ds = e + F(x).

Step 3. The general solution
u(z,t) = e 2u(z,t) = e 2V (x+2t,1)

= cUF(r+2)+e M el = = 2F(z+2t)+e .

13



(b). The initial condition u(x,0) = e~ implies that
e’ = F(z)+1 = F(z) = e*—1.

Thus,

—2t

u(z,t) = e cem (@) ot o2

In particular,

Example 2. Find the solution of the Cauchy problem

up(x,t) + 3 - ug(x,t) + 2t - u(x,t) = t,
1
u(x,0) = a:+§.

Answer. Step 1. We have

The function

We set , ,
Viz,t) = e -u(x,t) and k(t) = te' .

Then, v is the solution of the Cauchy problem

I
~
®

~
M)

vy + 3 - vy
v(z,0) = z+-.
Step 2. Set V(t,x) = wv(t,z + 3t). We have

1
Vi(z,t) = te!” and V(z,0) = z+5.

Thus,

Step 3. The solution

14



Example 3. Solve the initial value problem
up(z,t) + ug(w, t) + 3u(z,t) = xe 3,
u(z,0) = 22 —-1.

Answer. Step 1. We have

The function

We set
v(z,t) = & u(z,t) and k(z,t) = x.

Then, v is the solution of the Cauchy problem
v(z,t) +vg(z,t) = k(z,t),
u(z,0) = 22 -1.
Step 2. Set V(x,t) = v(x +t,t). We have
Vi(z,t) = k(x+t,t) = x4+t V(z,0) = 2* —1.

Thus,
2

t
t
V(z,t) = 1:2—1+/(:IJ+5) ds = 1:2—1+a:t+§.
0
Step 3. The solution

u(z,t) = e Su(x,t) = eV (x —t,1t)

= 3. [(m—t)2—1+(:v—t)t+t22]

2
= e 3. [xQ—xt+2—1} .

2.1.3 Homogeneous linear advection equations with nonconstant speed

Consider the Cauchy problem
ut(x,t) + c(z,t) - ug(x,t) = 0,
u(z,0) = wo(x)
where the speed ¢(z,0) is a given function of = and ¢.

Goal: Find the solution .

15

(2.4)



e The method of characteristics. Let z(¢) be the solution of
z(t) = c(z,t), z(0) = 0.

The curve (z(t),t) is called a characteristic curve.

Observe that
—u(x(t),t) = u(z(t),t) +a(t) - ug(z(t),t)

= w(x(t),t) + c(x(t),t) - uzp(x(t),t) = 0.

This implies that the function u is constant along the characteristic curve (z(t),t). In
particular, we have

u(z(t),t) = u(z(0),t) = uo(zo)-

Therefore, the solution u can be solved backward along characteristic curves.
e How to solve the equation ([2.4))7

Step 1. Solve the ODE

and get the general solution of form

Step 2. The general solution is
u(z,t) = F(§(z,t))

for some smooth function F'.

Step 3. Find F' by using the initial condition. Ul

Example 1. Find a general solution of the ODE
ug(x, t) + 2tug(z,t) = 0.
Answer. Step 1. Solve the ODE

we obtain that
z(t) = 2 +C = r—t* = C.

Thus,
E(z,t) = x—t2.

Step 2. The general solution
u(z,t) = F(&(z,t)) = F(z—1t?)

for some smooth function F'. O

16



Example 2. Consider the first order linear PDE

w+tPuy, = 0.

(a) Find u(x,t) if u(z,0) = sinx.
2

(b) Find u(z,t) if u(x,1) =e™*".

Answer. Solve the ODE

we obtain that
x(t):f-t3+0 — r—— = C.

Thus,

and the general solution
u(z,t) = F({(x,t) = F(z—1/3)
for some smooth function F'.

(a). If u(x,0) = sinx then
The solution
(b). If u(z,1) = =" then

Fx—-1/3) = e ° = F(z) = e~ (@+1/3)?

The solution

u(z,t) = Fz—1t3/3) = 67<$J3371>2.

Example 3. Consider the initial value problem
ut(x,t) + teug(x,t)) = 0,
u(z,0) = e *.
Find u(z,2).
Answer. Solve the ODE

. = _ 42
T = tx — z = Cez — roe /2 =



Thus, ,
Ez,t) = x-e V2,

The general solution

u(a,t) = F(Ex,1) = Flee™?).
The initial data u(z,0) = e~* implies that

Therefore, the solution

In particular,

2.1.4 Nonhomogeneous linear advection equations with nonconstant speed

Consider the Cauchy problem
Ut(ZL‘, t) + C($, t) : UI(ZC, t) = g(x, t) )
(2.5)
u(z,0) = uo(x)
where

e the speed c(z,t) is a given function of x and t.

e ¢ is a given source term of z and t.

Goal: Find the solution u.

As in the previous case, let z(t) be the characteristic associated with (2.5)), i.e.,
z(t) = c(z,1), z(0) = z.

We compute that

d

—u

dt
This implies that

(@(t),t) = wi((t), 1) + c(x(t), 1) - ue(x(t), ) = g(x(t),1).

u(z(t),t) = uo(aco)—i—/o g(x(s),s) ds.

Therefore, the solution v can be solved backward along characteristic curves.
How to solve [2.5

It is divided into three steps.

18



Step 1: Solve the ODE

and get the general solution of form

Step 2: Change of coordinate

u(z,t) = V(&(x,t),t).

we then have
Vi(§;t) = fla,t) = F(&1)
where
f(z,t) = F(&(z,),1).
Step 3: Solve the ODE
Vi€, t) = F(&,t)

to obtain V' and then recover u(z,t).

Example 1. Solve the initial value problem
ut(mat) +xux(xvt) = et7
u(z,0) = sinx

Answer.

Step 1. Solve the ODE

Thus,

Step 2. Set u(z,t) = V(£,t) = V(ze ', t). We have
Vi(&:t) = e

This implies that

V() = ¢ +g(¢).
Thus, the general solution

u(z,t) = e +g(re ™).
Step 3. The initial data u(x,0) = sinx yields
1+g(z) = sinz = g(xz) =

The solution
u(z,t) + e’ +sin(ze™) — 1.

19
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Example 2. Solve the following Cauchy problem
ug(x,t) + 2tuy(z,t) = =z,

u(z,0) = e

Answer.
Step 1. Solve the ODE

i(t) = 2t — z(t) = 2 +C — r—t? = C.
Thus,
¢ =a2-t and 1z = {4+
Step 2. Set u(x,t) =V (&,t). We have
Vi(gt) = = = ¢+
This implies that

t3
V(L) = / E+12dt = 45 +99).
Thus, the general solution
t3
u(z,t) = Viec—1t?) = 3 +H@- tHt + g(x —t?)
2t3
= —?—i-tx—i-g(:c—tz).
Step 3. The initial data u(x,0) = e yields
gx) = e*
The solution
23 2
u(z,t) = —?+tx+e .
O
2.2 Nonlinear advection equations
Consider the first order nonlinear PDE
ur+c(u) - uy = 0,
(2.6)

u(z,0) = ®(x)
where

e c(u) is a non constant speed which depends on u;

e ® is a given initial data.
Goal: Find u(x,t).

20



e The method of characteristics. Let x(¢) be the solution of

The curve (z(t),t) is called a characteristic curve.
Observe that
L ou(wlt)t) = wat),t) + () - uw(t), 1)

= w(z(t),t) + c(u(z(t),t)) - ug(z(t),t) = 0.

This implies that the function u is constant along the characteristic curve (z(t),t). In
particular, we have

u(z(t),t) = u(z(0),0) = &(f). (2.7)

Hence,

and it yields
z(t) = c(2(B)) - t+ 6.
Recalling ([2.7), we obtain the general formula for the solution

u(B+c(@(B)t,t) = (5.

Remark. The method can be applied as long as the solution is smooth.

Example 1. Consider the Burger’s equation with initial condition

u2
(%), o

u(z,0) = x

Find u(z,1).

Answer. Since ¢(u) = u and ®(z) = z, one has

Thus,

Set © = 5+ - t, we have

z
b= 1+t
The solution
u(z,t) = °
’ t+1



In particular,

x
1) = —.
u@,1) = 3
O
Example 2. Consider the Burger’s equation with initial condition
4
u
o), o
4 xr
u(z,0) = 3
Find u(z,1).
Answer. Since c(u) = u? and ®(z) = 23, one has
c(®(B) = B
Thus,
1
wB+pB-t1) = () = f3
Set x = S+ 5 - t, we have
5 = x
o1+t
The solution )
r \3
t) =
wet) = (57)
O

3 Linear 1D Partial Differential Equations in unbounded
domains

3.1 1D heat equation

The heat equation on a thin rod

ug(z,t) = a? - uge(w,t) + fla,t),
(3.1)
u(z,0) = ®(x)
where
e o?: a given positive constant which is the diffusivity of the rod;

e O(x): a given initial temperature at point z;

e u(x,t): temperature at point z at time ¢

Goal: Find the presentation formula of u.

22



3.1.1 Derivation of the 1d heat equation
Consider 1-D rod of length L such that

e Temperature at all points of a cross section is constant;
e Heat flows only in the z-direction;

e made of a single homogeneous conducting material.
Let us denote by
e p: density fo the rod;

e A: cross-section area if the rod;

e ¢: thermal capacity of the rod (measures the ability of the rod to store heat);

k: thermal conductivity of the rod (measures the ability to conduct heat);

g(x,t): external heat source.

Goal: Find u(z,t) the temperature at location z at time ¢.
Given any two point a and b with a < b, the integral

b
/ cpAu(z,t) dr = total amount heat in the interval [a,b] at time ¢.
a

We compute

b

b
d
/ cpAuy(z,t) de = p cpAu(x,t) dx

= [flux of heat crossing at a]—[flux of heat crossing at b]+[total heat generated in side [a, b]]

"By using the Fourier’s law”

b
= kA[ug(b,t) — uz(a,t)] +A-/ g(x,t)dx.

”By using the mean value theorem”

b b
= kA/ Ugy (2, ) dx—i—A-/ g(x, t)dt .

Thus,

b L[ 1 b
/a u(x,t) de = Cp/a Ugy (T, 1) dx—i—cp‘/a g(x,t)dt

for all @ < b. This implies the second order linear PDEs
up = o ugy + fx,t).

where

a” = and flz,t) =
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3.1.2 Presentation formula of 1D heat equation without source

Consider the Cauchy problem

ug(x,t) = a? - uge(w,t), zeRt>0
(3.2)
u(z,0) = ®(x) reR.
Goal: Find the presentation formula of u.
1. Heat kernel or fundamental solution
up(z,t) = o - ugp(z,t). (3.3)

Observe that
e If u solves (3.3) then w = u, also solves (3.3)).

e If u(z,t) solves (3.3) then U(x,t) = u(A\ -z, A\2-t) also solves (3.3)) for every constant
AeR.

Thus, we will look for a solution with form

u(z,t) = v|—] .
Vit
A direct computation yields

xtz < x > d 1, < x )
u = — == an Uge = -0 [ — ).
From ({3.2)), we obtain that

Set .
z = — and w(z) = V'(2),
7 (2) (2)
we have )
w/—}—%ﬂw =0 — 'LU(Z) = CQZ;Q
Thus,

The heat kernel (fundamental solution) is

G(x,t) =

Properties of heat kernel.

1. G(z,t) solves (3.3);
2. For every t > 0, it holds

/ G(z,t)de = 1.

3. Ast — 0+, G(-,t) converges to Dirac delta function dg(-) .
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Theorem 3.1 Assume that ® is bounded continuous function. The initial value problem
has a unique smooth solution u(x,t) with

lim  w(x,t) = 0 t>0.

|z|—=+o0

Moreover, u can be presented by
uet) = G #0@) = [ Glo—p.0)-20) dy.

for all (z,t) € R x (0,400).

Proof. 1. Let’s first show that u(z,t) solves (3.2l We compute

+oo
Ut(x,t) = Gt(.’]ﬂ'—y,t) q)(y) dy7
and
+o0
u:mv(xat) = G;m;(lﬂ - y7t) : (I)(y) dya

Since G is a fundamental solution of ({3.3)), we get

2

u(z,t) = a - ugg(x,t).

On the other hand, the third property (3) of G yields

o0 —+o00o
u(w,0) = Jim G(0x0@) = [ Glap00wdy = [ so(o-y)B(w)dy = B(a).

t—0+ —0o0

Thus, u is a solution of ([3.2)).

2. To complete the proof, we will show that (3.2) has at most one solution. Assume
by a contradiction that (3.2)) has two different solutions u; and wus. Set

’U(l‘, t) = UZ(xa t) - u1($7 t)
Then, v is a solution of
vi(x,t) = o v, t), v(z,0) = 0.

Let’s consider the energy function

We compute

d o0 oo
gE(t) = 2/ v(x,t) - Vg (2, t) do = —2/ v2(x,t) de < 0.

The functon E(t) is decreasing. In particular

0 < E() < E0) =0 for all = € [0, 00).

25



Thus, v(z,t) = 0 for all (z,t) € R x [0, +00), and it yields a contradiction.
Example 1. Consider the initial value problem
ug(x,t) = duge(z,t), reRt>0

u(z,0) = sinx

Find the formula of the solution w.

Answer. We have

o = 4 and ®(z) = sinz.
The heat kernel
1 _i ]. 12
G(z,t) = ———-€ 1%t = —— .¢ 1ot ,

VAro?t 4/ 7t

The solution
< _@w?
u(x,t) = e~ 16t -siny dy.
—00
Example 2. Find the formula of the solution to the Cauchy problem

ug(z,t) —2u = Qugy(x,t), reR,t>0

u(z,0) = e zeR.

Answer. 1. Set v = e 2

t.u. We compute
vi(w,t) = e 2 (wy(w,t) — 2u(x, b)), Vpr = € 2 Upy

Thus, v is the solution to

ve(x,t) = Yuge(z,t), reRt>0
v(z,0) = e *.
2. The heat kernel is
o 1 _ 2 1 —22
Z, t) = e 402t = . e 36t
(%) Vamra?t 6/ 7t
Thus,
1 * —(@-p)? 1 © —(@-y)?
v(x,t) = e 6t e Ydy = / e 36t I
() = v /_Oo YT v ) Y

The solution

2t 0 2
~(z—y)
u(z,t) = e* - v(z,t) = ¢ / e st Y dy.
—00

6/t
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Example 3. Find the formula of the solution to the Cauchy problem

ug(x,t) + 2tu = dugg(x,t), reR,t>0
1
u(z,0) = 52

Answer. 1. We compute

and set

Then, v is the solution to

ve(x,t) = dvge(z,t), reRt>0
1
0) =
o(@0) = 1o
2. The heat kernel is
Glat) 1 _ a2 1 —z?
z,t) = -e 40?2t = . e 16t
VAra?t 47t
Thus,
1 X _(@—y)? 1
v(z,t) = . e 166 - —— dy.
@8 = [/ /oo 1+42 Y
The solution is 5
( t) e_t /OO *(aigty)Q 1 d
u(x,t) = . e
W1t J s 1+ 92 Y

3.1.3 Semi-infinite domains

Consider the initial boundary value problem
u(x,t) = o ugg(w,t), x>0,t>0
u(0,t) =0 t>0
u(z,0) = ®(x) x>0.

Goal: Find u(z,t) for any z,¢t > 0.

Answer. Let’s consider the odd extension of ® which is defined as

d(x) for all x > 0,
U(z) =
—P(—x) x <0,
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with (0) = 0.

Let v be the solution of

The heat Kernel

G(z,t) = CetaZi
(%) Vaao?rt
Thus,
400

- }
= /_ Gz —y,t)®(—y) dy+/0 Gz —y,t)- 2(y) dy
_ [f[a@—yw4%x+wk®@>@.

Therefore, the solution of (3.4)) is

u(z,t) = /OOO [G(x—y)—G(x—i-y)]'(I)(y) dy forall x > 0,t>0.

Example 1. Consider the initial boundary value problem
ug(x,t) = 9-ug(x,t), reR,t>0,
u(0,t) =0 t>0,
u(z,0) = e * x>R.

Find the presentation formula of u(x,t).

Answer. We have
a®>=9 and O(x)=e".

Thus, the heat kernel is

The solution is
uet) =[G =90 - Glo 0] - 0() dy

1 /OO [ _(@-p)? _ (etw)? v g
— . e 36t — e 36t e Y.
6vmt Jo
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3.1.4 Sources and Duhamel’s principle

1. Duhamel’s principle for ODEs. Consider the first order ODEs with sources

V() +a-ylt) = Ft), >0,
(3.5)
y(0) = wo
where
e ¢ and yg are given constant;
e F(t) is a given external source;
Goal: Find the solution wu(t).
Answer. Observe that
7 [y0)] = ey () +aey(t) = e [y(t) +a-y(®)] -
Thus,
S letn)] = ¢ F),
and this implies that
t
o) - = [ R ds
0
The solution of (3.5) is
t
y(t) = e“t‘yo—k/ et F(s) ds
0
O
Example 1. Find the solution of the Cauchy problem
y(t) +yt) = €', t>0,
y(0) = 2.
Answer. We have
a = 1, Yo = 2 and F(t) = %
Using the Duhamel’s principle, the solution is
t t
yt) = e .y —|—/ G L F(s) ds = 2e —i—/ e37t ds
0 0
1 ) 1
= Qe*t—l—ge*t‘[e?’t—l] = g-e*t—kg‘e%
O
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2. Duhamel’s principle for PDEs. Consider the linear PDEs
u(z,t) + Au = f(z,t), t>0,xeR,
u(z,0) = 0, reR,
where
e A is a linear differential operators;
e f(z,t) is a given function of x and ¢;

e u(x,t) is an unknown of x and ¢.
Theorem 3.2 Let w(x,t,s) be the solution of
wy +Aw = 0, t>0,reR,
w(z,0,s) = f(z,s), r€EeR,
Then the function
u(x,t) = /Otw(:z:,t —5,8) ds
is the solution of (@

Proof. Using the fact that

d t t
— / K(t,s) ds = K(t,t) +/ Ky(t,s) ds,
we compute that
d t

wg(x,t) = o7 Ow(x,t—s,s) ds

t
= w(z,0,t) —I—/ we(z,t —s,s) ds
0
t
= f(=z,1) —|—/ wy(z,t — s,8) ds.
0
On the other hand, the linear property of A implies that
t t
Au(z,t) = A/ w(z,t —s,s)ds = / Aw(z,t — s,s) ds.
0 0

Recalling that
wy+Aw = 0,

we then have

t
up + Au = f(x,t)+/ wi(z,t —s,8) + Aw(z,t — s,8) ds = f(x,t).
0
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On the other hand,
0
u(z,0) = / w(z,—s,s) ds =0.
0

Thus, u is the solution to (3.6)). L]

3. 1D Heat equation with sources. Consider the first order PDE with sources

ug(x,t) = o uge(w,t) + f(x,t), t>0,xeR,
(3.7)
u(z,0) = 0, reR,

where « is a given constant and f(z.t) is a given function of x and t.
Goal: Find the u(z,t) the temperature at point x at time t.

Answer. Rewrite the equation

ut(fc,t)—aQ-um(ac,t) = f(x,t), t>0,xeR,

u(z,0) = 0, zeR.
In this case, we have
Au = — o ugy.

Step 1. Let w(x,t,7) be the solution of

wy — o - w =0, t>0,zreR,

w(z,0,s) = f(x,s), reR.

We have
—+o00

’U}(JJ,t, 8) - G(.ZL‘ - y’t) : f(ya S) dy .

—0o0

where the heat kernel ) )

-e 4aZt
Va2t

Step 2. Using the Duhamel’s principle, we obtain that

G(z,t) =

u(z,t) = /tw(x,t—s,s) ds

0
t

S AR

Summary. The solution of (3.7 is
t 00
uet) = [ [ Gl pt—s) ) dy ds.
0 J—o0
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where

1 _a?
_ . o2
Gla.t) = do’mt ©

Example 1. Find the presentation formula of the solution to
w(w,t) = duge(w,t) +e %t t>0,z€R,
u(z,0) = 0, reR,

Answer. We have

The heat kernel

The solution

u(z,t) = /Ot/:)o G(x—y,t—s)- f(y,s) ds

—(e=p?
. e 16(t—s) . e y.sdy ds

t “+o00 1
/0 /—oo 4/m(t —s)
t oo s —(2—y)?
= / / . ¢ 16(t—s) -y .
0 J-co 4y/m(t—s)

4. More general case. Let’s consider the equation
ug(x,t) = o ug(w,t) + f(x,t), t>0,zeR,

(3.9)
u(z,0) = o(x), reR,

Goal: Find the u(x,t) the temperature at point x at time t.
Answer. Using the superposition principle the solution
U = vt+w

where v is the solution to

vi(x,t) = o vge(x,t) + f(z,1), t>0,z€R,

v(xz,0) = 0, reR,
and w is the solution to

w(z,t) = o we(z,t), t>0,xeR,
w(z,0) = ¢(z), r eR.
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We have C e
o(e,t) = // Gla—y,t—s)- fly,s) dy ds.
0 —

and

wiat) = [ Gla—y.0)-oly) dy.

The solution is

ue.t) = /0/_Oocm—y,t—s)-f(y,s)dyds+/_ma<x—y,t>-¢<y>dy.

Example 2. Find the presentation formula for the solution of

Qug(z,t) = Quge(z,t) —4dcost, t>0,zeR,
u(z,0) = sinz, reR,

Answer. Rewrite the equation

_ 9 _ cost
U = 1 Ugy — COST.
We have 9
o? = 7 f(t) = —cost and ¢(x) = sinz.
The heat kernel 1 )
G(x,t) = e
(z,t) W=

The solution

u(et) = /0/_Oocm—y,t—s»f(s)dyds+/_°°c:<x—y,t>-¢<y>dy

/ t / T e dy ds + / T L iy d
= - —————"-¢ %) .coss dy ds ce” t  -siny dy.
0 J—oo 3\/m(t—9) —oo 3V

O
3.2 1D wave equation
The motion equation of vibrating string
ugg(z,t) = - uge(z,t) + fa,1),
U($,0) = g(ZL‘), (31)

ut(x,0) = h(z)

where
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e ¢ is the wave number which is computed by
T

==
p

Here T is the tension of the string and p is the density such that pAx is the mass of
the string segment.

f(x,t) is a given external force applied along the string at x at time ¢;

g(x) is the initial position of the string at point x;

h(z) is the initial standing velocity of the string at point x;

Goal: Find u(z,t) the position of string at point x at time t.

3.2.1 General solution

Consider the 1D wave equation
Uy = - Ugy (3.2)

Observe that the above equation can be rewritten as

4
dt

[ug —c-ugl +c-—ur —c-ug] = 0.

dx
Set w = u; — ¢ - u,. Then w solves the linear advection equation
wy+c-w, = 0.

Thus,
w(z,t) = Fi(z — ct)

for some smooth function Fy. This implies that

u(z,t) — c-ug(x,t) = Fi(xz —ct).
Similarly, we have that

ug(x,t) + ¢ - ugp(z,t) = Gi(z+ct).

Thus,

ut(x,t) = = [Fi(x —ct) + Gi(x + ct)].

| =

Solving this equation, one gets
w(z,t) = Glxr+ct)+ F(x —ct).
Summary. The general solution of the wave equation
ug(x,t) = - uge(z,t)
is

u(z,t) = G(x+ct)+ Fx —ct).
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Here G(x + ct) is the left traveling wave and F'(z — ct) is the right traveling wave with
speed c.

Example 1. Find the general solution of
4-up(x,t) — 9 uge(z,t) = 0.

Answer. Rewrite the equation

9 3

up(z,t) = 1 Upg (2, 1) = ¢c=3-

The general solution is
u(z,t) = F(xr—3/2t) + G(z + 3/2t)
for some smooth function F' and G. Ul
3.2.2 D’Alembert’s formula
Consider the Cauchy problem
ug(z,t) = 2 uga(z, ), for all z € R,t > 0
u(z,0) = f(x), forall z € R, (3.3)

u(z,0) = g(x), forall z € R,

where ¢ is a given constant speed, f is a given initial position and ¢ is a given initial
standing velocity.

Goal: Find u(zx,t).
Answer. From the previous subsection, the general solution of the 1-D wave equation is
u(z,t) = Fzx—ct)+G(x+ct).
At time t = 0, we have
u(z,0) = f(x) Fr)+G(z) = f(z)
u(x,0) = g(z) —cF'(z) 4+ cG'(z) = g(x).
for all x € R. This implies
Fla—c)+Gx—ct) = flx—ct)
Flx+ct)+Gx+ct) = flr+ct)

)~ F(x) = = gla).
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Integrating both sides of the last ODE from = — ¢t to = + ct, we have
x+ct , , 1 z+-ct
/ G'(y) — F(y) dy = / 9(y) dy.
xr—ct c x—ct
and it yields

1 x+ct
Glxz+ct)—Glx—ct)+ Flr—ct) — F(z+ct) = c'/ g(y) dy.

—ct

The D’Alembert’s formula for «

1 1 x+ct
w(et) = 5 lfre)+ fa-e+ g [ o) dy.
2 2¢ x—ct
Example 2. Solve the Cauchy problem
ugr(x,t) — 16Uy, (z,t) = 0, z€R,t>0,
u(z,0) = e™%, zeR
u(z,0) = =z, z€eR
Answer. Rewrite the equation
4\ 2
uy(z,t) = (3) Uy (2, 1).
We have 4
¢ =73 flx) = e* and g(z) = x

Using the D’Alembert’s formula, we obtain

1 1 x+ct
uet) = §ole—c)+flre) o [ g dy
¢ xr—ct
o3¢
_ L [e’”—?%e‘”%'t} 43 / Dy dy
2 8 r—4 .
3
- % [eﬂf*%'t +e’f+%'t} +at.
Example 3. Solve the Cauchy problem
dug(x,t) — 25ugq(x,t) = 0, reRt>0,
u(z,0) = xQ—lﬂ, r€eR
w(2,0) = ze ™, zeR



Answer.

1

1

5 2
ug(z, ) (2) “Uga (2, 1)
We have . )
c=g5 fl@)= 57 ad gl) =
1 1 x+ct
uet) = Gelfe—c)+fral g [ o) dy
c r—ct
1 1 1 1 /$+3't
2 |(x—5/2t)2+1 (z+5/2t)2+1 5 Jos4
1
2

' [(a: —5/26)2 + 1 +

(z +5/202 + 1} N % ' {67(

ye V" dy

z—5/2t)2 e—(m+5/2t)2] _

O

2. Special case If the initial velocity g = 0 then the solution of (3.5]) is

u(x,t)
Example 4. Consider the IVP

( ug(x,t) — dugy(z,t)

u(z,0)
ut(ma 0)
(a) Find u(x,1/4).
(b) Find u(x,1/2).
(c) Find u(x,3/4).
Answer. We have
c = 2, glx) =0 and
The solution
u(x,t) =

(a) Find u(zx, 1/4).

Sl —e) 4 o+ en)]

= 0, reR,t>0,
07 a:if[—l,l],
- {1:E x e [-1,1],
= 0, zeR.
07 x?ﬁ[—l,l],
o
1— |z x € [-1,1],
%-[f(a:—Zt)—i—f(:H—Qt)].
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t
x==2t+1
x=2t—1
x==2t-1 x=2t+1
172
t=1/4
-3/2 -1 -172 0 112 1 3/2 X
The solution at time ¢t = 1/4 is
1
u(@,1/4) = 5-[f(z-1/2)+ f(z +1/2)]

( 0, x € (—00,—3/2)U(3/2,00),
1
5-[1—|33+1/2H, x€[-3/2.—1/2)

T )1
5-[2—]$+1/2|—|x—1/2\], x€[-1/2.1/2]

1

\ 5-[1—|x—1/2\], xre(1/2,3/2).

(b) Find u(z,1/2).
t
x=—2t+1
x=2t-1
x==2t-1 x=2t+1
- H2
=12
-2 -1 0 1 2 X

The solution at time ¢t = 1/2 is

u(z,1/2) =

(flz =1+ fz+1)]

N | =
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0, 2 € (—00,~2) U (2,00),
_ %-[1—]&:4—1]], 2 € [-2,0]
| 5 -l —1/20, ze 0,2,

(c) Find u(z,3/4).

x=2t—
X=—2t+
\ t=3/4

x==2t—1

=5/2 -1/2 0 12 1 52 X

The solution at time ¢ = 3/4 is

1
u(@,3/4) = 5-[fl@—=3/2)+ f(z +3/2)]
( 0, z € (—o0,—3/2)U(—1/2,1/2) U (3/2,00),
1
= 5~[1—\x+3/2[], xr€[-3/2,-1/2]
1
5‘[1—‘.%'—3/2”, x €[1/2,3/2].
O
3.2.3 1 D wave equation with sources
Consider the 1-D wave equation with sources
ug(z,t) = - uge(z,t) + f(z,1), forallz e R,t >0
(3.4)
u(z,0) = w(z,0) = 0, for all x € R.

Goal: Find u(z,t).
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Answer. Step 1. Fix s > 0, let w(z,t,s) be the solution of

wy(w,t,8) = - wy(w,t,5), forallz e R, ¢t >0
w(z,0,s) = 0, forallz € R, (3.5)
w(z,0,8) = f(x,s), for all z € R.

The D’Alembert’s formula yields

x+ct
U)(.’L',t,S) = 5. f(,%S) dy

2¢ r—ct

Step 2. Apply the Duhamel’s principle, we obtain that

u(z,t) = /t w(z,t —s,s) ds

z+c(t—s)
= / / s) dy ds.

O
Example 1. Solve the initial value problem
u(,t) = 4 uge(x,t) + xel, forall z € Rt >0
u(z,0) = w(x,0) = 0, for all z € R.
Answer. We have
c =2 and flz,t) = ze'.
The solution is
1 z+2(t—s)
u(z,t) = 1 / / ye® dy ds
1 / |:1 ] z+2(t—s)
— —_ . 6 | = . S
4 0 2 Y z—2(t—s)
¢
= w/ eS(t—s)ds = x- (e —t—1).
0
O

2. We are now ready to study the general case in (3.1))
ug(z,t) = - uge(z,t) + f(z,1),
U({L‘, 0) = g(l‘) )

ut(x,0) = h(z)



Goal. Find u(zx,t).

Answer. 1. The superposition-principle yields

U = v+ v
where v; is the solution of
vig(z,t) = - vge(w,t) + fa,t), forallz e R,t >0
v(z,0) = v(x,0) = 0, for all z € R.
and vy is the solution of
vz, t) = 2 Vg, forallz € R,t >0
v(z,0) = g(z), ve(z,0) = h(x) for all z € R.

2. From the previous results, we have

z+c(t—s)
/ / s) dy ds

x+ct
gl —ct) + g(x +ct)] + — 5% / h(y) dy.

ct

and

l\DM—l

va(z) =

The solution is

1 z+ct x+c(t— s)
[g(:z—ct)+g(x+ct)]+20/ dy-l-f / /

—ct c(t—s)

u(x,t) =

l\.')\'—‘

Example 2. Solve the following wave equation

duy(x,t) = 9 uge(x,t) + 2, forallz e R,t >0
u(z,0) = 1, for all x € R,

up(x,0) = e * forall z € R.

Answer. Rewrite the equation

We have

The solution

u(z,t) =

l\')\»i
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1 x+3/2t z—3/2(t—s)
= 1+-/ eydy—l—f // y dy ds
3 x—3/2t x—3/2(t—s)
1
= 1+§- {63/% T—eT T 3/2t}+2x /(t—s) ds
0
_ L r3jota  —w-3/2 2
= 1+3 {e e }+xt.

3.3 Laplace Transform

In this subsection, we will introduce an important transform which is a very powerful tool
to convert ODEs into algebraic equation and PDEs into ODEs.

Definition 3.3 Given a piecewise continuous function u such that
() < C- et

for some constant a. The Laplace transform of u is defined as
Llud(s) = U(s) = / w(t)e=st di
0

Inverse Laplace transform
L7THU(s)} = u(t) if U(s) = L{u}(s).
Example 1. Find the Laplace transform of
u(t) = e* for all t € R.

Answer. From the definition, we compute

+o0 +oo
U(s) = / e et dt = / et
0 0

for all s > a. Therefore, the Laplace transform

1

s—a

for all s > a.

L{u}(s) = Uls) =

1. Properties of Laplace transform Given two functions u, v, the followings hold:

(i) Linearity
L{ci-u+co-v}(s) = c1- L{u}(s)+ ca- L{v}(s);
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(ii) First derivative
L{uH(s) = s- L{u}(s) —u(0);

Second derivative
L{u'}(s) = s* L{u}(s) — su(0) — u'(0);
(iii) Shift theorem

L{e" u} = U(s—a) where U(s) = L{u}(s.

Theorem 3.4 (Convolution theorem) Let u and v be piecewise continuous functions
and
)], lv(@)] < e forallt e R.

Denote by .
(uxv)(t) = /0 u(t —71)-v(r) dr.
Then
L{uxv}(s) = U(s)-V(s) where U(s) = L{u},V(s) = L{v}.

Moreover,

LHUEV()} = (uro)(d).

Proof. By the definition, we have

L{uxv}(s) = /Ooo(u xv)(t) - et dt

_ /Om[/otu(t—T)-v(T)dT} ds
_ /Ow/ot (ult =)0 - (v(r) - e drdr.
Thanks to the Fubini’s theorem, it holds
/0 h /0 t (u(t—T)-e_s(t_T)> (v(r) - e=7) dr dt
L (Y e
_ (/0 o) e dr>-< Otu(t)-eSt dt> — U(s)-V(s).

O

Example 2. Find inverse Laplace transform
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Answer. Let’s consider

1 1
U(s) = B and V(s) = 21
We have
LTHUG)Y = £7F L LHV(s)} = £t L
s 1+s2f°
Using the convolution’s theorem
LTHF(s)} = LVOVE = (1xsin(t))(t)
t t
= / sin(r) dr = —COS(T)‘O = 1—cos(t).
0
O
Example 3. Find inverse Laplace transform
1
F = .
() (s+1) - (1+s2)
Proof. Let’s consider
1 1
U(s) = o} and V(s) = 21
We have
cHus)y = 2 — et anad vy = ot
1+s 1+s2)°
Using the convolution’s theorem
¢
LUHF(s) = £7HU(®Gs)-V(s)} = (et xsin(t))(t) = / e~ -sin(7) dr
0
1 —e (14 cos(t))
= 5 .
O

Example 4. (Application to ODEs) Using Laplace transform to solve the Cauchy
problem
3u'(t) +2u(t) = sin(t) with u(0) = 3.

Answer.
Step 1. Set U(s) = L{u}. By talking the Laplace transform in both side of the ODE, we
have

L{sint} = L{3u +2u}

= 3-L{u}+ 2 L{u}
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= 3-[s-U(s) —u(0)]+2-U(s) = 3sU(s) —9+2U.
This implies that

9 F(s)

U p—
() 3s+2+3s+2

where  F(s) = L{sint}.

Step 2. Using the convolution’s theorem, we recover the solution

2. Heat equation in the semi-domain. Given u(z,t), denote by

U(z,s) = L{u(z,t)} = /000 u(z,t) - e 5t dt

One has
ﬁ{ul} = Ux(x,s), E{U:cm} = Uzm(xas)

and

L{u;} = sU(z,s) —u(x,0).

Example 5. Consider the heat equation with boundary condition

ug(xz,t) = uge(z,t), forall z > 0,t >0

u(z,0) = 0, for all z > 0,

u(0,t) = f(t) forallt>0.
Find a bounded solution .
Answer. Step 1. Set U(x,s) = L{u(x,t)}. We have

L{u} = L{ugs} = sU(z,s) —u(z,0) = Ugy(x,s).

Since u(z,0) = 0, we obtain the second order ODE

Upz(z,8) —s-U(z,s) = 0.
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Solving the above equation, we obtain that
Uz, s) = a(s)-e V5T £ b(s)-eV*?.

On the other hand,
U,s) = L{f()} = F(s).

This implies that
a(s)+b(s) = F(s).

Since the solution u is bounded, we have b(s) = 0 for all s > 0 and it yields
a(s) = F(s) forall s > 0.

Thus,

Step 2. Recall that

£ (67\/;‘?) = \/z% ceTw = g(t).

Using the convolution’s theorem, we obtain

u(z,t) = L YU(z,s)} = £71 (e*\/gx‘F(s))

= (9* ) = /oéhr(t—T)?’e_zl(f_T).f(T)dT'

3.4 The Fourier Transform

In this subsection, we will introduce several useful properties of Fourier transform and to

apply them to solve linear PDEs.

Definition 3.5 Let f : R — R be an integrable function. The Fourier function of f is

denoted by .
F{HE) = F(§) = ;ﬂ/ fz) e dz.

The new function F' is defined on (—o00, 00) and may or may not be a complex value func-

tion.

1. Common Fourier transforms.

e T, forallz >0

2
o If f(x) = then F{f}=—i-y/—
—e*, forallz <0 T
1, forallz >0 2 sing
o If f(z) = then F{f}= - ;
0, for all x < 0
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o If f(x)=e* then F(£)= \}5 : ef§

2. Properties of Fourier Transform. Given ¢ and f two integrable functions, the
followings hold:

(i) Linearity.
Fla-f+b-g9} = a-F{f} +b-Flgk;

(ii) First derivative

FUY = o |1t = iery
Second derivative

1 e ;
F{fM — / //'efmg dr = — 2]: :
(iii) Conwvolution’s theorem. Here, we denote by

(f *g)(z) = \/127/_2"0(“3‘”9(” dy.

Then
F{f*g} = F{f} F{g}.

Inverse Fourier Transform

+oo
FUF) = \/; i F(&)-e™ d¢ = f(x)

where
flx) = F{F}z).
Thus,
FHF) - Flah@) = (F*g)(x).

3. An application to PDEs. Let us use the Fourier Transform to derive a general
formula for 1-D heat equation
w(z,t) = a? - ugg(x,t) for all z € R,t > 0 (3.6)

with the initial data
u(z,0) = o(x) for all x € R.

Step 1. Denote by

+o0 .
U,t) = FHulz,t)} = \/127/ u(z,t) - e d .
™ —00
One has that

Ui(&,t) = Flu(z,t)}  and  Uy&t) = — &% Fluge(z,t)}
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Taking the Fourier transform in both sides of (3.6]), we get

Ut(fat) = :_O‘2€2U(€7t)7 U(fvo) = (I)(é-)

where
(¢) = F{o}.
Step 2. Solving the above ODE, we obtain that

UE 1) = @(€)-e ",
Step 3. The solution is
u(a,t) = FHUE O} (x)

P g () ()
St P S
- <a\;% - e_4222t> * ¢

L e
= . [ 4a4t - .
20/ 7t J_o vy

4 Orthogonal expansions

4.1 Inner product spaces and orthogonal basis

In this subsection, we study basic concepts in infinite dimensional vector space and definite
the Fourier series.

I. Norm spaces.

Definition 4.1 The set H is a real vector space if the followings holds
(i) a-f e H foralla e R, f € H;
(ii)) f+g€ H forall f,ge H.

Example 1. The sets
(a) R"™ = {v | vis a column real vector with n components};

(b) P, = {f(x) | f(z) is a a polynomial with degree < n};

© et = {50 [Irwlar < +oo)
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are vector spaces.

Inner product. We introduce (-,-) an inner product on H which satisfies the follow-
ing properties:

(1) Symmetry
(f,9) = {9, f) forall f,ge H;

(i) Linearity
(a‘fvg> = a<f7.g> and <f+gvh> = <f7h>+<gah>
forall« € R and f,g,h € H;

(7i7) Positive-definiteness

(f,f) >0 forall fe H

and

(Lf) =0 <= f=0
Norm. The length of f is defined by
IFl = VAL )
We say that f and g are orthogonal
fLyg if and only if (f,g) = 0.

Definition 4.2 The subset B C H is orthogonal if
fLlg forall f #g€ B.
Example 2. Consider
R?® = = {v|wvisa column real vector with 3 components} .

The inner product

i=1
where
U1 w1
v o= ) and w = Wy
U3 w3

The norm of v is
ol = V(v,v) = /oI +v3 +23.

The set B = {e1, e2,e3} where

1 0 0
e1r=10]1, ey = 1 and e3 = 0
0 0 1

are orthogonal.
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Lemma 4.3 Let {f1, fa,..., fn} be orthogonal in H. If

n
daifi = a1 fitoay fot.tomfo

then the coefficients a; are computed as

o — (f, fi)
' (fis fi)

Proof. Using the linearity property of the inner product, we have

ffz - <Za] fjafl> = Za]<f]7fz>
j=1

Recalling that the set {f1, fo, ..., fn} is orthogonal, it holds

(fj, fiy = 0 for all j #1.

forallie {1,2,..,n}.

Therefore,

(f, fi) = ai-(fis [3) for all i € {1,2,...,n}.

I1. L?(a,b) space. Given two real number a < b, we denote by

L%(a,b) = {f:(ab /|f |2dx<+oo}.

It is clear that L2(a,b) is a vector space. Indeed, for any o € R and f,g € L?(a,b), it
holds

b b

[ as@P do = jaf- [(15@)P o < +oc
and it yields « - f € L?(a,b).
On the other hand, we have
b b
[ 1@+ g@p ar < 2| [15@F + o] dr < +oc.

By the definition, the function (f + g) is L?(a, b).

Let us now introduce the inner product for L?(R) space. Given f,g in L?(a,b), the
inner product of f and g is defined as

= [ o) do
e = VD = </ab|f(x)l2 da:>%
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Cauchy-Schwarz inequality.

(f,9) < IIfll2 - gl forall f,g € L*(a,b).
Example 3. Consider three functions
filz) = 1, fa(x) = sin(x) and fa(z) = cos(z).
(a). Show that fi, f2, f3 are in L2(0, 27).
(b) Compute the L?—norm of f; for i € {1,2.3}.
(c) Is the set {f1, fa2, f3} orthogonal?

Answer. (a) and (b). We compute that

2m 2m
/ |f1(z)]> dz = / ldr = 27 < + 0.
0 0

Thus, f is in L2(0,27) and

1

Ifille = </027r|f1(x)|2 dx>2 _ Vo,

Similarly, we compute

2T 2 1 2
/ |fo(x)? dz = / sin?z dr = 2/ (1 —cos(2x))der = m < +o0
0 0 0

and

27 2 1 27
/ |f3(2)|)? dz = / cos’x dr = 2/ (14+cos(2x))der = m < +o0.
0 0 0

Thus, f2 and f3 are in L?(0,27) and

12l = [Ifsllee = V7.

(c). We compute

2w

27 2
(ot = [ 5@ fl) de = [sin@) de = —cosa)]” = 0.
0 0 0
27 27 27
(ut) = [ 5@ sy de = [ cos(a) do = —sinta)|" = 0.
0 0 0
and
27 2
(nt) = [ h@) - fi@) de = [ sin(e)cos(s) do
0 0
27 2
= ;/ sin(2z) doe = —1/ cos(2z) der = 0
0 0



This implies that
fi L fo, filfs and fol f3.

Therefore, the set { f1, fa, f3} is orthogonal. O

Example 4. Let f(z) = 22 and g(x) = 1+ x on [0, 1].
(a) Compute [|f|3z, lgllf and (f,g);
(b) Compute [|2f + g]|1.2 -

Answer. (a). We compute

! 1
e = ) = [ otde = 5,

1
lolZ: = (9,9) = / (+a)2de = 1,
and
! L 1 1

(b). We have that

12f +9li= = (2f +9.2f +g)
4 7 62
- 44— 11 = =
5+ 12+ 15
Thus, the norm
62
2 = 4/—.
12/ +glls = /o2

O

Definition 4.4 The set of function {f1, fa, ..., fn} C L?(a,b) is called orthonormal system
on the interval (a,b) if

(i) the norm || fillz =1 for alli € {1,2,...,n};
(ii) For any i # j € {1,2,...,n}, it holds

Example 5. The set {\/% -sinz, \/g sin 2z, ..., \/g sin naj} is an orthonormal system

on the interval [0, 7].

Answer. For any k € {1,2,...,n}, we compute that

2 4 1 4
| sinkz||i, = / sin kx = / 1 —cos(2kx) de = 1
T Jo 0

™
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and it yields || sin kx|g2 = 1.
On the other hand, for any k # m € {1,2,...,n}, we have
(sinkzx,sinmx) = / sin(kx) - sin(mx) dx
0
1 ™
= 3 / [cos([k — m]x) — cos([k +m]x)] = 0
0

and it yields that (\/g - sin kx) and (\/g - sin mx) are orthogonal. Ul

ITI. Orthogonal expasions. Given a orthonormal system of functions F = { f1, fo, ..., fn, .-}
in the space L?(a,b). Can any function f € L2(a,b) be expanded in a infinite series of F

+oo
[ = E cn - fn
n=1
where ¢, are real coefficients.

Theorem 4.5 Let f € L%(a,b) and F = {f1, f2, .., fn, ..} be an orthonormal system of

L?(a,b). Assume that
+oo

[ = chfn

n=1

Then .
e = (fifa) and  fIE = D .
n=1

Proof. For any n € {1,2...}, it holds

(fu, fu) = 0 foralln+#k.

We have

<fna f> = <fna Z Ckfk:>

k=1

Therefore,

IfEz = (L ) = <Z k- fr s f>

k=1
00 2

= > o) = D lal
k=1 k=1
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+00
Remark. The series ch - fn is called the generalized Fourier series of f and ¢, are

n=1
called the Fourier coefficients.

Definition 4.6 An orthonomal system {f1, fa,...fn, ...} C L2(a.b) is said complete if and

only if
(fifa) =0 for alln — f=0.

Theorem 4.7 (Fourier expansion) Assume that { f1, fa, ..., fn, ...} is a complete orthonor-
mal system in L?(a,b). Then for any f € L?(a,b), it holds

f == ch'fn7
n=1

where the coefficient
cn = (f, fn) foralln=1,2,...

Proof. 1. Let’s consider .

Sp = chfk

k=1
The orthogonal property of {f1, fo, ..., fn, ...} yields

n

<faSn> = HSnHi? = Z’Ck|2'

k=1
Using the Cauchy-Schwarz inequality, we have that

n

ISallfe = > lexl® < NIfIIZ--

k=1

Therefore, we can show that S, converges to ¢ in L?(a,b) and it yields

o0
g = Z Cn fn-
n=1
2. It remains to show that f = ¢g. One can check that

(f—g.fa) =0 foralln=1,2,..

Thus, the completeness implies that f — g = 0. O
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4.2 Classical Fourier series

1. Given ¢ > 0, denote by

L2(—0,0) = {f:(—ﬁ,ﬁ)—HR’ /i|f(:c)\2 daz}.

The following holds:

Lemma 4.8 The trigonometric set

F = {17sin (#),cos (?) ‘m:1,2,....}

is a complete orthogonal in L?(—£,0).

From the above Lemma and Theorem one can show that for any f € L2(—¢, /), then
f can be expressed by an infinite sum functions in F. More precisely,

Definition 4.9 For any function f € L2(—/(, (), its Fourier series is

o
ao mnT . mnx
f ~ 2+m221<am-cos 7 + by, - sin 7 )

where a, and by, are Fourier coefficients and computed by

¢
an, = / f(x) - cos T e
) 1

|

and

¢
b, = / f(;r)-sinmmc dz
y 4

S|

forallm=20,1,2,....

Example 1. Find the Fourier series of the function

-1, —rT<z<0
1, O<zx<m
in L2(—m, 7).

Answer. We have ¢ = 7. The Fourier series of f in L2(—n,7) is
a [e.e]
flx) ~ ?0 + zzl(am - cosmx + by, - sinmz) .
m=

The Fourier coefficients are computed by

1 m 1 0 ™
ag = —- flx)de = —- —1 dx + ldx| = 0,
™ - ™ T 0
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1 T 1 T 0 ™
Uy = — - f(x)-cosmz de = — - —/ cos mx d:L‘+/ cos mx d:v} =0,
T — ™ L —T 0
and
1 T 1 T 0 ™
by, = —- f(x)-sinmz de = — - —/ sin x dx—i—/ sin z d:v}
@ -7 ™ L - 0
1 o T 1
= —-|= sinmz dx + [ sinmx dx| = —— -[2 — cos(—mm) — cos(mm)]
> —r 0 mm
2 2
- 2 .- = = - (=)
2 cos(mm)] = [ (1))
Therefore,
[e.e]
2-(1=(=1)™)
flz) ~ Z - -sinmax .
m=1
O
Example 2. Find a Fourier series for the function
flz) = x for all z € (—2,2)
in L2(-2,2).
Answer. We have that £ = 2. The Fourier series of f in L?(—2,2) is
a o= mmz mmz
0 .
flz) ~ ?—i—z [am-cos 5 + by, - sin 5 ] .
m=1
The Fourier coefficients are computed by
1 2
am:‘/a:cos dr = 0
2 ),
and )
1 — 4
by, = 2~/2azsmm;rw de = —— -cos(mm) = P (—1)m*t
for all m = 0,1, .... Thus,
4 X (1)t mmz
f(z) ~ — Z - sin —
m=1
O

2. Fourier sine and Fourier cosine. Given a function f : (—¢,¢) — R in L?(—¢, /),
the followings hold:

e fisevenif f(x) = f(—=z) for all x € (0,¢). In this case, we have

/if(a:) dr = 2~/0£f(a:) dz .
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o fisoddif f(z) = —f(—x) for all z € (—0,¢). In this case, we have
¢
/ f(z)dx = 0.
—/

Fourier cosine. If the function f is even on (—/,¢), then

oo
flx) ~ %—F Zam-cosmzm

m=1

where the Fourier coefficients

mmnx

2 l
Ay, = 6-/Of(x)-cos 7 dzx .

Fourier sine. If the function f is odd on (—¢,¢), then

> mmx
flx) ~ me-cos 7

m=1

where the Fourier coefficients

) l
by = f./o f(ﬂ:)-sinm;m dx .

3. Periodic functions on R and half-range expansion. Given a real function f :
R — R, we say that f is periodic with a period P if

flx+P) = f(z) z €R.

Assume that f : R — R is periodic with period 2I. Then the Fourier series of f in L2(—, )

18
m

flx) ~ (120+mz::1 [amcosy—kbmsin%x

where a,, and b,, are Fourier coefficients and computed by

1 ¢ mmT
an = g'/_zf(x)'cos 7 dz

and
1 m

¢ . mmx
b, = z-/_ef(a:)-sm 7 dx

for allm=10,1,2,....
Even periodic extension. Given f : (0,¢), we can extend f onto (—/,¢) such that
flx) = f(-2x) for all x € (0,¢).
Then extend f into a periodic with period P = 2/, i.e.,
flz) = f(z+20) for all z € R.

Odd periodic extension. Given f : (0,/), we can extend f onto R such that
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(i) (Odd function) f(—z) = —f(z) for all x € (0, ¢);
(ii) (Periodic function) f(z) = f(z + 2¢) for all z € R.

Example 3. Let f(x) = z for z € (0,1). Sketch 3 periods of the even and the odd and
compute the corresponding Fourier sine and cosine.

Answer. 1. Even extension. We have

[o¢]
ap
feven =~ ?—i— E Ay, - COSMTI .

m=1

The Fourier coefficients are computed by

1
a0—2-/xdx—1,
0

and .
2-((—1)™ -1
Am = 2~/ x-cosmmx dr = % forallm=1,2...
0 meTm
Therefore,
12 Z"" ™ -1
feven ~ 2+ﬂ_2-m_1(7)n2008m7r$.

2. Odd extension. We have
(o)
fodd == Z by, - sinmmz .
m=1
The Fourier coefficients are computed by
1
by = 2 / x - sin(mnz) de =
0

Therefore,
m

fodd = % Z (_;L) -sin(mmnz) .

m=1

4. Properties of Fourier series. Given f(z) and g(z) in L?(—/,¢). Assume that

o
ao mnx . mmx
f =~ 2+mgl(am-cos 7 + by, - sin 7 )

and

o
co ( mnzT . mm;)
~ + E . —— 4+ dpy, - .
g Cm, * COS m + Sin 7

Then the followings hold:



e For any o € R,

[ee]
a-f %4—2(0&% cos €x+abm~sinm7m)

m=1

e The Fourier series of the function f + g is

+ (b +dp) - sm?} .

o0
(a +c mmx
f+g =~ 0T 0) +§ [aercm - COS

m=1

Theorem 4.10 (Convergence theorem) Let f be in L?(—I,1) and piecewise smooth func-
tion and

~

0 n ( mnx b . mmc)
—_ a «COS — - S1n —
2 m ! m ¢

ygk

Then it holds
(1). The Fourier series converges to f(x) at all points x where f is continuous;

(2.) The Fourier series converges to

[f(z=) + f(a+)]

N |

at points x where [ is discontinuous .

Example 4. Given the function f : R — R such that f is periodic with period 27 and

0, —rT<z<0
4, O<ax<m.
(a). Find the Fourier series of f in L?(—m, 7).
(b). Indicate the function that the Fourier series of f converges to.

Answer. (a) Let g : (—m, 7) be such that

g(x) = 2 for all x € (—m, 7).
We have
-1, —rT<z<0
o= -9
= =
1, O<z<m

From example 1, the Fourier series of h is

= 2-(1—= (=)™ .
Z(m;))ﬁlnmx.

m=1
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Recalling that f = g + 2h, the Fourier series of f is

PR R 0 B
m=1

mm

(b) Observe that f is continuous at z € R\kw. Therefore, by using the convergence
theorem

e The Fourier series of f converges to f at x € R\kr;

e The Fourier series of f converges to 2 at x = kwx for all k € Z.

4.3 Sturm-Liouville problems
Let us consider a regular Sturm-Liouville system
[=p(2)y] +a(z)y = Iw(z)y, x € (a,b) (4.2)

with boundary conditions
aqy(a) + agy'(a) = 0
(4.3)
Bry(b) + Bay'(b) = 0

Here
e «;,f3; for i € {1,2} are given constants such that a? + 82 > 0;
e p(z),w(z) > 0 and ¢(z) are given functions.

e y and A are unknown function and unknown constant.

Goal: Find A € R such that the ODE (4.2) with boundary conditions (4.3) has a non-
trivial solution y, ().

This type of problem is called eigenvalue problem.

Does any A € R, the ODE with boundary conditions always admits a non-

trivial solution?

Example 1. Solve the two points boundary problem
y'+y =0,

y(0) =0, ylm) = 2.

Answer. Characteristic equation

Two complex conjugate roots



The general solution
y(x) = ¢1-cos(x) + c2 - sin(x) .

The first boundary condition y(0) = 0 implies that ¢; = 0 and it yields
y(z) = cg-sin(x).
The second boundary condition y(7) = 2 implies that
2 = y(m) = ca-sin(m) = 0

and it yields a contradiction. Thus, the ODE does not have any solution. L]

Definition 4.11 Assume that with A € R, the ODE with boundary conditions

has a nontrivial solution yy(x). Then
e )\ is called an eigenvalue;

e y\(z) is called an corresponding eigenfunction.

(AN, yn) is called an eigen-pair of (4-2)-({{-3)

1. Two points boundary problems with constant coefficients. Let’s consider the
second order linear ODE with constant coefficients

y'+ Ay =0,
a1 -yla) +az-y'(a) = 0,
Br-y(b)+B2-y'(b) = 0.
Goal: Find all eigenpairs the above two points boundary problem.

Example 2. Consider the linear second order ODE
y'() +X-ylz) = 0

with Dirichlet boundary condition

Find all eigenvalues and corresponding eigenfunctions.

Answer. The characteristic equation
P24+X =0

Three cases are consider:
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o If A <0 then

rr = VA and re = —/|Al.

The general solution

Al Al

Yy = c1-e +co-€
The boundary conditions y(0) = y(m) = 0 implies that

o=V BE:

ci+c =0 and cl +co-e
and it yields ¢; = ¢ = 0. Thus, y = 0 (trivial solution).

o If A =0 then
Y =0 — Yy = C1-T+Co.

The boundary conditions y(0) = y(m) = 0 implies that
cg = 0 and cp-m+ecg =0

and it yields ¢; = ¢o = 0. Thus, y = 0 (trivial solution).

e If A > 0 then \ = k2 for k > 0. The characteristic equation admit two complex roots

rn = k-1 and rg = —k-1.

The general solution

y(xr) = ¢y -cos(kx) + co - sin(kx) .
Boundary conditions
y(0) = 0 = cg =0 = y(xr) = co-sin(kx)

and thus
y(mr) = 0 = ¢ -sin(km) = 0.

Since we are looking for nontrivial solution, we have
sin(kw) = 0 == E=n foralln=1,2,..

Thus,
A = n? and y(x) = cg-sin(nw) n = 1,2,..

Eigenvalues and eigenfunctions
Ap, = 1N

forn=1,2,...
yn(z) = sin(nz)

Example 3. Consider the linear second order ODE
y'(z) = A-y(x) = 0
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with Neumann boundary condition

Find all eigenvalues and corresponding eigenfunctions.

Answer. The characteristic equation
=X =0

It is quite similar to the previous example, one show that if A > 0 then the above ODE
has only a trivial solution.

If A = 0 then the solution
y(x) = 1 for all z € [0,2].
We only need to consider A < 0. In this case, one can write
A= -k fork>0.

The general solution
y(xr) = c1-cos(kx) + co - sin(kx) .

Boundary conditions

y'(2) =0 = —cok -sin(2k) = 0 = sin(2k) = 0.

Therefore,
2k = nmw forallm =1,2...

Eigenvalues and eigenfunctions

I n?n?
" 4 forn=0,1,2...
Yn(z) = cos (% -x)

Example 4. Find all positive eigenvalues and corresponding eigenfunctions
y'+Xy =0,
y'(0) =0, y(m) +y'(m) = 0.
Answer. Set A = k2. The general solution

y(x) = c1-cos(kx)+ co - sin(kz) .
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Boundary conditions
y'(0) = 0 = o =0 = y(x) = ¢ - cos(kx)
and thus
y(r) +y'(m) = 0 = c1 cos(km) — cik - sin(km) = 0.

This implies that

— = tan(km).
? an(km)
Eigenvalues and eigenfunctions
An = P%
forn=1,2,...
yn(x) = cos(pn)
" . .1
where p,, are positive solutions of the equation — = tan(pm) U
P

2. General theory of Sturm-Liouville problems. Let’s reconsider the regular Sturm-
Liouville system

[=p(x)y] +q(x)y = Iw(z)y, z € (a,b) (4.4)

with boundary conditions
ary(a) + aey'(a) = 0

(4.5)
Bry(b) + B2y’ (b) = 0.
The second order linear differential operator
1 ’
= by (o e )
b= o [p(@)y'] +az) -y
The ODE (4.4]) can be rewritten as
Lyl = Ay
Denote by
H = {f € L2(a, b) | f satisfies the boundary condition l' .
Lemma 4.12 The operator L is a self-adjoint operator on H, i.e.,
(Llyi],y2) = (w1, Llyal)  forallyr,y2 € H.
Answer. By using the integrating by parts, a direct computation yields
b b
| @) wle) d = [ onta)- L) do
O
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Lemma 4.13 Let (A,y1) and (A2, y2) be eigenpairs of —. If My # Xo then y1 are
yo are orthogonal in H .

Answer. By the definition of eigen-pairs, we have
Liyi] = M-y and  Llyo] = X292
In particular, this implies that
(Llnl,y2) = M- (Y1, 92)

and
(y1, Llyal) = A2+ (y1,92) -

Since L is self-adjoint, we obtain
AL (Y1, y2) = A2 (Y1, 92)
and this yields (y1,y2) = 0. O

Lemma 4.14 An eigenvalue A has a unique corresponding eigenfunction up to a constant
multiple, i.e., if y1 and y2 are corresponding eigenfunctions of \ then

Y2 = C- Y1 for all x € (a,b) . (4.6)
Answer. Introduce the Wronskian of two functions

Wiy, y2) = vivh — yiye,

we compute that

d <y1> _ vy —uiyy . Wiy w

dz \ yo O
On the other hand, a direct computation yields
d
s (p-W) = [py1vs) — [pyrye)

= [pyal -1 — o] - w2
= (¢-y2—Llya]) -y1 — (g1 — L) - 92
= y2- Lly] —y1Lya].

Thus, if y; and yo are corresponding eigenfunctions of A then

d

@(pW) (r) = yo- L{y1] —wy1L[y2] = 0,

and this yields
(p-W)(z) = constant = ¢ for all € (a,b).

However, the Wronskian of these function
Wlyr,52](a) = yi(a)yz(a) —y1(a)yz(a) = 0
because y; and yo satisfies the same boundary condition at a. Thus,
Wiy, y2](z) = 0 for all z € (a,b),

the two functions must be linearly dependent. U

We conclude this subsection with a main theorem.
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Theorem 4.15 Consider the Sturm-Liouville problems
[=p@)y] +a(@)y = Iw(z)y, z € (a,b)
with boundary conditions

ay(a) +agy(a) = 0

Bry(b) + Pay(b) = 0
with o3 + & # 0 and B2 + 55 # 0. Then the followings hold:

(i) There are countably infinite number of real eigenvalues

A< Ao < < A< and lim M\, = 4+ .

n—oo

(ii) For each eigenvalue \;, there is a unique corresponding eigenfunction up to a constant
multiple.

(1it) Given A\; and \j such that \; # Aj, the corresponding eigenfunctions y; and y; are
orthogonal.

(iv) For any u € ‘H, one has
+oo
u = Z Cn * Yn
n=1
where the coefficients are computed by

(U, Yn)

E for alln € 7" .
Yn

n —

5 Linear Partial differential equations on bounded domains

Consider a linear PDEs on a bounded domain in R?
A(u(z,y)) = 0 for all (z,y) € Q C R?. (5.1)
where
e A is a given linear differential operator
e 1 is an unknown of variables x and y.

Our goal is to derive the general formula of solution u to (5.1)) by using the method of
separation of variables.

Method of separation of variables.

e Step 1: Seek for solutions of the form

u(z,y) = F(z) Gy)

where F' is an unknown of x and G an unknown of y .

Plug v = FG into the PDE (5.1)), one obtains ODEs for F' and G. Together with
boundary conditions, the ODE becomes Sturm-Liouville problems.
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e Step 2: Solve Sturm-Liouville problems to obtain eigen-functions F,, and G,,. Thus,
particular solution of (5.1) is

up(z,y) = Fup(x) - Gu(y)-

e Step 3: The set of particular solutions {uj,ug, ..., un, ...} is a complete and orthog-
onal in a suitable space. Therefore, the general solution is

+0o0
u = E Cp * Up
n=1

where the constant ¢, will be the coeflicients of the Fourier series of initial data or
boundary data.

5.1 1-D heat equation on bounded domain

1. Dirichlet boundary condition. Consider the 1-D heat equation with Dirichlet
boundary condition

ur(z,t) = 2 ug(a,t), ze(0,L),t>0
u(0,t) = wu(L,t) = 0, t>0,

u(z,0) = f(x), for all z € [0, L],
where
e cis a given constant which is the diffusivity of the rod;
e [ is the length of the rod;

e f is the given initial temperature.

Goal: Find u(x,t) the temperature at point z € (0, L) at time ¢ > 0.
Answer. It is divided into several steps:

Step 1: (Separating variable) Seek solutions for the form
u(z,t) = F(z)-G(t).

We compute
uw = F(z)-G'(t), Uz = F'(z)-G(t).
Plug these into the heat equation, we obtain
F(z)-G'(t) = & F"(x)- G(t).
This implies that
F'(x) G'(t)

Fa) = 2G (1) = constant = — \.
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The ODEs of F and G
F'(z)+ X - F(x) = 0, z € (0,L),

G'(t) + \*G(t) = 0, t>0.
Step 2: Solve for F' and G. The boundary conditions
u(0,t) = F(0)-G(t) = 0 = F0) = 0,

and

w(l,t) = F(L)-G(t) = 0 =  F(L) = 0.

Two points boundary problem (Sturm-Liouville problem)
F'(x)+ X F(z) = 0, z € (0,L),
F(0) = F(L) = 0.

Eigenvalues and corresponding eigenfunctions

2,2
o= 2
L forn=1,2,...
F,(z) = sin(%-x)

For any n > 1, the equation

and the general solution ,
Gn(t) = e €At
Step 3. (Find the general solution). Particular solutions of the above 1-D heat equation
n2c?n?

un(et) = Fa(@)-Golt) = ¢ L2 osin (.4

The general solution

u(z,t) = Z Cn - Up(x,t)
n=1

n?c?n?

s - -t nm
- ch-e L? -sin(T-ac).
n=1
Step 4: Find ¢, by the initial conditions

u(z,0) = f(x) = Z cn-sin(%-x>.



The ¢, are coeflicients of Fourier sine for the odd extension of f

Cn = Z-/OLf(x)'sinCTE) dzx .

Summary. 1-D heat equation with Dirichlet boundary condition

ug(w,t) = - ugg(,t), xze€ (0,L),t>0
u(0,t) = wu(L,t) = 0, t>0,

u(z,0) = f(x), x€[0,L],

The general solution

u(z,t) = Z cn-e L? - sin (f$>
n=1
where the coefficients are computed by
)
flx) = nzzzl Cp - sin (f x) ,

or

Discussion of the solution
e The solution is harmonic oscillation in x and exponential decay in ¢.

e As time ¢ goes to 400, the solution u(t,z) goes to 0 for all z € R.

Example 1. Solve the following 1-D heat equation

up(x,t) = ugg(x,t), z€(0,1),t>0
u(0,t) = u(l,t) = 0, t>0,
u(x,0) = 10sin(7x) + 5sin(37wz), for all z € [0,1].
Answer. We have
c=1 L =1 and f(x) = 10sin(7wz) + 5sin(37rz) .

The general solution

[e.9]
u(z,t) = Z Cp e T sin(nmx) .
n=1

69



The initial data implies that
o
10sin(mz) + 5sin(37z) = f(z) = Z Cn - sin(nme)
n=1

Comparing the coefficients, we obtain
c1 = 10, c3 =5 and cn = 0 foralln #1,3.
The solution is

u(z,t) = 10- et sin(rz) +5 - e 9L sin(3nz) .

Example 2. Consider the 1-D heat equation

u(x,t) —u = dugy(x,t), x € (0,3m),t >0
u(0,t) = wu(3m,t) = 0, t>0,
u(z,0) = sinz — 2sin2x + 3sin 3z, for all z € [0, 37].

Find the temperature at x = 5 at time t = 1.

Answer. 1. Set

v=-¢e"u
We compute
v = et — ul and Vpr = € 0 Upy .
Thus, v is the solution of
ve(z,t) = dvge(x,t), z € (0,3m),t >0
v(0,t) = v(3mt) = 0, t>0,
v(z,0) = sinz — 2sin2z + 3sin 3z, for all z € [0, 37].

2. Solve for v. We have
c = 2 L = 3r and f(z) = sinz — 2sin2z + 3sin3z.

The general solution is

_an? N
v(z,t) = ch-e E t~sm?.
n=1
The initial condition implies that
> nT
ch . sin? = sinx — 2sin2x 4+ 3sin 3z .
n=1
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Compare the coeflicients, we obtain that
c3 = 1, g = — 2, cg = 3 and c, = 0 for all n # 3,6,9.

Thus,
v(z,t) = e M. sina — 271 . sin(2z) + 3¢ 7% . sin 3z

3. The solution is
u(z,t) = e -v(zx,t) = e 3. sinz — 271 - sin(2z) + 3¢ - sin 3z

In particular,
35

u(n/2,1) = e? —3e 7.
UJ

2. Neumann boundary condition. Consider the 1-D heat equation with Neumann
boundary condition

u(z,t) = 2 uge(x,t), z € (0,L),t>0
ug(0,t) = wuy(L,t) = 0, t>0,

u(z,0) = f(x), z€0,L],
Goal: Find u(zx,t).

Answer. 1. Seek for solutions for the form
u(z,t) = F(z)-G(t).
ODE:s for F and G
F'(z)+ X -F(z) = 0, z € (0,L),

G'(t) + \2G(t) = 0, t>0.
2. Solve for F and G. The boundary conditions
ug(0,t) = F'(0)-G(t) = 0 — F'(0) = 0,

and
uz(L,t) = F'(L)-G(t) = 0 = F'(L) = 0.

Two points boundary problem (Sturm-Liouville problem)
F'(z)+ X - F(x) = 0, z € (0,L),
F'(0) = F'(L) = 0.
Eigenvalues and corresponding eigenfunctions

n27r2
L2

F,(x) = cos (n%x)

forn=20,1,2,...
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Solve for GG. For any n € N,
G'(t) + ANG(t) = 0.

Thus,

n?n?c?

¢
Gn(t) = e L2 , n=0,1,2,..
3. Particular solutions of the above heat equation
n’mc?

2Tt
un(z,t) = Fp(z)-Gu(t) = e L2 - COS (n% . ZL‘) , n=0,1,2,..

The general solution

n?m2c?

+o00 72‘15 na
u(z,t) = CO+ZIC”'6 L -cos(f-z).
—

4. The initial condition implies that

nm
flx) = +;cn - COS (f . 13)
and it yields
1 L
= 7 ; f(z) dx
and .
2
tn = 7 ~/0 f(x) - cos (?) dz

Summary. 1-D heat equation with Neumann boundary condition

ur(z,t) = % uge(z,t), z€(0,L),t>0
ug(0,t) = wuy(L,t) = 0, t>0,

u(z,0) = f(x), x €[0,L],

The general solution

= 77127702 ®+ nm
u(z,t) = co+ E cp-€ L2 7 .cos (Tx)
n=1

where the coefficients can be computed by

+oo
nm
flz) = co+;cn-cos (f m)
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or

o = —- f(z) dx

Cn = L-/Lf(x)-cos(n;m) dx .
0

Discussion of the solution

and

\)

e The solution is harmonic oscillation in x and exponential decay in ¢.

e As time ¢ goes to +o0, the solution u(t,x) goes to the average value of the initial
temperature

lim  w(t,x) = i~/0Lf(x) dz .

t——+o0
Example 3. Solve the heat equation with Neumann boundary condition
ur(z,t) = 9 ugg(z,t), xz € (0,2m),t >0
uz(0,t) = wuy(2m,t) = 0, t>0,

u(z,0) = 2+ 1 -cosz — 3 cos3uz, z€[0,L],

Answer. We have

9}
I
w
b.
|
)
3
I
=
o
=
=
I

1
2+§-cosa:—3cos3a:.

The general solution is

+00 9n2t
- n
u(z,t) = CO+Z:16”'6 4 -cos(i-x>
n=

Initial condition
+oo n 1
f(ac) = Co+zcn~COS(§-x) = 2+§~cosx—3cos?;ac.
n=1

Compare the coefficients, we get

1
cp = 2, cy = 5 c = —3 and c, = 0 for all n #0,2,6.
The solution is 1
u(z,t) = 2+ 56_% cosz — 3e S cos 3.

3. Steady state of heat equation. Consider the 1-D heat equation

ug(z,t) = - uge(z,t), ze(0,L),t>0
Boundary Conditions .
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As t — 400, solution does not change in time anymore, as it reaches a steady state. Call
it U(zx). Informally,

U(x) = lim wu(t,x) for all z € [0, L].

t——+o00
Goal: How to find U(z)?
Since U does not depend on time t and satisfies the heat equation, one has
Ut =0 and Ua:a: = 0.

Thus,
U(x) = Az + B

where constants A and B are identified by boundary conditions.
Example 4. Find the steady state of the heat equation

up(z,t) = 4-ugg(x,t), z € (0,2),t>0

u(0,t) = 1 u(2,t) = 3.

Answer. We have
U(x) = Ax+ B.

The boundary conditions imply that

Thus,
B =1 and 2A+B = 3

and it yields B =1 and A = 1. The steady state is

Ul) = z+1.

Example 5. Find the steady state of the heat equation

up(z,t) = 4-ugy(z,t), z e (0,1),t>0

u(0,t) +u/(0,t) = 1 u(l,t) —u/(1,t) = 2.

Answer. We have
U(x) = Az + B.

The boundary conditions imply that

U)+U'0) = 1, and U'(1)-U(1) = 2.



Thus,
A+B =1 and - B = 2

and it yields A = 3 and B = —2. The steady state is
U(x) = 3z —2.
O

4. Non-homogeneous boundary conditions. Let’s consider the heat equation with
non-homogeneous boundary conditions

ug(w,t) = 2 uge(w,t), xz € (0,L),t>0
Nonhomogeneous boundary conditions,

u(z,0) = f(x), x €[0,L],

How to solve?
Step 1: Find the steady state U(z).

Step 2. Set v(z,t) = wu(x,t) —U(x). Then v is the solution of

ve(m,t) = 2 vg(z,t), ze(0,L),t>0
Homogeneous boundary conditions,

v(z,0) = f(z)—U(z), zel0,L],

Solve for v.

Step 3. The solution is

Example 6. Solve the heat equation with non-homogeneous condition

ur(z,t) = 4 ugy(z,t), ze (0,m),t>0

uw(0,t) = 1,  wu(mt)= 3, t>0,

2
u(z,0) = ;-x—l—em—i—l, xz € (0,7,

Answer. Step 1. Find a steady state
U(x) = ax+b.

Initial condition implies that



and
U(r) = 3 = ar+b = 3.

Thus, a = —,b =1 and the steady state

2

s
2

= 1.

U(x) - x—+

Step 2. Set v(z,t) = u(z,t) — U(z). Then v is the solution of the heat equation with
Dirichlet boundary conditions

v(x,t) = 4-vge(z,t), ze (0,m),t>0
u(0,t) = wu(m,t) = 0, t>0,
v(z,0) = u(z,0)—U(x) = €%, x € [0,7].

We have

The general solution is

v(x,t) = Zc e 4t sinna
n=1
where 5 -
Cp, = — / e’ - sin(nx) dz, foralln=1,2,...
™ Jo

Step 3. The solution is
2 o0
2
u(z,t) = U(z)+v(z,t) = Ulx) = —-z+1+ g cn e sinna
T
n=1

where

(1—e™-(=1)")

1 , forallm=1,2,...

T n
Cn = / e’ -sin(nx) doe =
0

O

Example 7. Find the solution of the 1-D heat equation with non-homogeneous boundary
condition

[ wi(z,t) = uge(w,t), z€(0,2),t >0
uz(0,t) = uzx(2,t) = 1, t>0,
cos(mx)
u(z,0) = + 2cos(2mx) + o + 1, z €0,2],
™

Answer. 1. Find a steady state

U(x) = ar+b.
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Initial condition implies that

Thus,

Choose b = 0, we have that U(z) = x.

2. Set v(z,t) = u(z,t)—U(x). Then v is the solution of the heat equation with Neumnann
boundary condition

;

ve(x,t) = vge(x,t), z € (0,1),t>0
,UI(O’t) = Uﬂ?(zat) = 07 t>0a

v(xz,0) = u(z,0)-U(x) = cos(z) + 2 cos(2mx), z €10,2].

\ s

We have
cos(mx)

c =1 and flx) = 1+ + 2cos(27x) .

™
The general solution

n?n?

o
——t nm
v(x,t) = co+ che 4 - cos (?x> .
n=1
Initial condition implies that

1+ cos(mx)

oo
+2cos(2mx) = co+ Z Cp, + COS (nlx)

T 2

n=1

and it yields
1
co = 1, cy = —, cy = 2 and cn = 0 for all n # 0,2,4.
T
Thus,

1
w(z,t) = 1+ —e cos(mz) + g—dn’t cos(2mx) .
T

3. The solution is

1
u(z,t) = w(z,t)+U(x) = 1+az+ —eTm cos(mz) + g—im’t cos(2mz) .
™
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5.2 1-D Wave equation on bounded domain

Consider 1-D wave equation in an interval [0, L]

ugg(z,1) = 2 - uga(x,t), for all x € [0, L], ¢ > 0
u(0,t) = wu(L,t) = 0, forallt >0,
u(z,0) = f(x), wu(z,0) = g(x) for all z € [0, L],

where
e [ is the length of the string;

T
e ¢> = — with tensor 7" and density p.

p
Find u(z,1).

How to solve?

Step 1. (Separate variables) Look for a solution of form
u(z,t) = F(z)-G(t).

We compute
uy = F(z) - G"(t) and uze = F'(x)-G(t)

Plug these into (5.2)), we get
F(z)-G"(t) = & -F"(z)-G(t)

and it yields
F”(l’) B G”(t) _
F(x)  2-G@1t) '

Thus, F' and G are solutions of the ODEs

F'(z)+ X - F(z) = 0, z € (0,L),
G"(t) + \*G(t) = 0, t>0.
Step 2. Solve for F' and G. The boundary conditions
u(0,t) = F(0)-G(t) = 0 = F0) = 0,

and
u(L,t) = F(L)-G(t) = 0 = F(L) = 0.

Two points boundary problem (Sturm-Liouville problem)

F'(z)+ X - F(x) = 0, z e (0,L),

F(0) = F(L) = 0.

(5.2)



Eigenvalues and corresponding eigenfunctions

2,2
M = o
forn=1,2,..
F,(z) = sin (%w)
Solve for G. For any n, we have
n?cn?

Thus,

Particular solution

up(z,t) = Fy(x) - Gp(t) = [cn - COoS (% -t) +d, - sin (

Step 3. General solution

u(z,t) = Z [cn - cos (% - t) +d,, - sin (nzw

+oo
n=1
where
and
g9(z)
Therefore,

2 L
Cn = L'/o f(ﬂd-sin(%-x) dr  and  dp =

O (22

[eS)
L " L
n=1
2
ncm

Remark. If g =0 then d, = 0 and

u(x,t) =

If f =0 then ¢, =0 and

u(x,t) =

+oo

Zdn~sin <@t> -sin(
L

n=1
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—+o0
Zc - COS (@t) -sin(

" L L
n=1
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Example 1. Find the solution of the following equation

(uy(x,t) = 9-uge(,t), for all z € [0,7],t > 0
u(0,t) = wu(mt) = 0, forallt >0,
u(z,0) = sinz — sin(3z) for all z € [0, 7],
ut(x,0) = sin(2x) 4 5sin(4x) for all z € [0, 7].

Answer. We have
¢c =3 L =m f(xr) = sine—sin(3z) and g¢g(xr) = sin(2z)+ 5sin(4z).

The general solution is

Z cn - cos(3nt) + dy, sin(3nt)] - sin(nz)] .

n=1

The coeflicients are computed by

sin(z) — sin(3z) Z ¢p - sin(nx)
and
+oo
sin(2zx) + 5sin(4x) = Z 3ndy, - sin(nx) .
n=1
This implies
g = 1, c3 = —1, c, = 0 foralln #1,3
and
1 5
dy = 5’ dy = 12’ d, =0 for all n # 2,4.

The solution is

1
u(z,t) = cos(3t)-sinx + A sin(6t) sin(2x) — cos(9¢t) sin(3x) + % sin(12t) sin(4x) .

Example 2. Find the solution of the following equation

u(z,t) = 9 ugg(x,t) +t, for all z € [0, 7], > 0,
u(0,t) = u(m,t) =0 forallt>0,
u(z,0) = sinz — sin(3z) for all z € [0, 7],
ug(x,0) = — ac(a:lgﬂ) + sin(2z) 4 5sin(4z) for all z € [0,7].
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zlz —m)

x
Answer. Set v =1u+ 13 - t, we compute

t
Vgt = Ut and Vpy = um$+§7

v(0,t) = wu(0,t) = 0, v(m,t) = u(m,t) = 0,

and
ve(x,0) = uy(x,0) + az(xlgﬁ) = sin(2x) + 5sin(4x), v(z,0) = sinz — sin(3x).
Thus, v solves the equation
(v(2,t) = 9-vge(x,t), for all z € [0,7],t > 0
v(0,t) = 0, v(m,t) = 0 forallt >0,
v(z,0) = sinz — sin(3z) for all z € [0, 7],
v(x,0) = sin(2z) + 5sin(4x) for all z € [0,7].

Thus,
. 1. . ) 5 . .
v(z,t) = cos(3t)-sinx + 6 sin(6t) sin(2x) — cos(9¢t) sin(3x) + 13 sin(12t) sin(4x)
and this yields

— )t
u(z,t) = — 3:(36187r) + cos(3t) - sinx

1
+ 6 sin(6t) - sin(2z) — cos(9t) - sin(3z) + 1—52 sin(12t) - sin(4x).

O

Example 3. Solve the nonhomogeneous PDE with given boundary and initial conditions

ug(z,t) = uge(z,t) + x, for all z € [0,1],£ >0
u(0,t) = 0, u(l,t) = 0 forallt >0,
A :
u(z,0) = — 3 + 5 + sin(7z) — 2sin(37wz), ut(x,0) = 0

Answer. 1. By superposition principle, we have
u(z,t) = v(x,t) +w(x)

where w is the solution of



and v is the solution of
v (z,t) = vge(x,t), for all z € [0,1],t > 0
v(0,t) = 0, v(l,t) =0 forallt >0,
v(xz,0) = u(0,z) — w(z), v (z,0) = 0 for all z € [0, 1]

2. Solve for w, we get

3
w(z) = —%4—% for all z € [0, 1].

c=1 L =1, ¢g(x) =0 and f(z) = u(0,z)—w(z) = sin(rz)—2sin(37z)
The general solution is

—+00

vz, t) = Z ¢p, - cos (nrt) - sin (nmx)
n=1
with
+oo
sin(rz) — 2sin(37z) = Z ¢p - sin (nx) .
n=1
Compare the coefficients, we get
c1 = 1, c3 = —2 and c, = 0 for all n # 1, 3,
and this yields
v(xz,t) = cos(nt)-sin(mx) — 2cos (3nt) - sin (37x) .
Thus, the solution is
oz . .
u(x,t) = — r + N + cos (mt) - sin (mx) — 2 cos (37t) - sin (37x)

Nonhomogenous wave equations. In general, to solve the nonhomogeneous PDE

ug(x,t) = a? - uge(x,t) + k(z) for all z € [0, L],t >0
u(0,t) = a, u(L,t) = b forall t >0,

u(:):,O) = f(.ilf), ut(x70) = g($),

we will use the superposition principle

u(z,t) = v(z,t)+w(z)
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where w(z) solves the equation

w'(x) = — k:(ia;) for all z € (0, L)
w(0) = a, w(L) = b,
and v solves the homogeneous PDE
v(x,t) = o vee(x,t) for all z € [0, L],t >0
u(0,t) = 0, u(L,t) = 0 forallt >0,

u(@,0) = flz)—w(x), w0 = g(x).

Example 4. Solve the following nonhomogeneous PDE

ugt(,t) = uge(x,t) + for all z € [0,1],¢ >0
u(0,t) = 1, u(l,t) = 2 forallt >0,
Tz . .
u(z,0) = — o + " +1, ut(x,0) = —sin(rz) + 2sin(37x).

Answer. 1. By superposition principle, we have
u = v+ w(x)

where is the solution of

and v is the solution of

v (2, t) = vge(w,t), for all z € [0,1],¢>0
v(0,t) = 0, v(l,t) = 0 forallt >0,
v(z,0) = u(0,z) —w(x), ve(x,0) = —sin(mz) + 2sin(37z).

2. Solve for w, we get

3
w(z) = —%—l—%—i—l for all z € [0, 1].

To solve for v, we have

c =1, L =1, f(z) =0 and  g(xr) = —sin(mx) + 2sin(37rz).
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The general solution is

+o0
u(x,t) = Z dy, - sin (nmt) - sin (nwz) .
n=1
with
+oo
—sin(mz) + 2sin(37z) = Z nwdy, - sin (n7wx) .
n=1
Comparing the coefficients, we get
1 2
d = ——, ds = — and dy, = 0 for all n # 1, 3.
7r 3T
Thus,
1 2
v(z,t) = — —-sin(nt)sin(rz) + —— - sin(37t) sin(37x),
T 3T
and this yields
BT 1 2
u(z,t) = — % + % +1-— — sin(mt) sin(7wzx) + 3 sin(3t) sin(3mx)

Example 5. Solve the following nonhomogeneous PDE

Answer. Set v =u + z(z — 1)t, we compute

Vit = Ut and Vpr = Ugy + 28,

2

(g (m,t) = uge(w,t) + 2+ 2t for all z € [0,1],¢> 0
u(0,t) = 1, u(l,t) = 2 for allt >0,
3 Tx . .
u(z,0) = — 3 + o +1, u(x,0) = —x(x—1) —sin(rz) 4+ 2sin(37z).

3x

0(0,8) = w(0,t) = 1,  o(Lt) = u(l,t) = 2, o0 = — % +5 L
and
ve(2,0) = w(x,0)+x(x—1) = —sin(rz) + 2sin(37z).

Thus, v solves the equation

v (z,t) = vge(x,t) + for all z € [0,1],¢ >0

v(0,t) = 1, v(l,t) = 2 forall t >0,
3 Tz
v(z,0) = — 3 + 5 +1, v(x,0) = —sin(mx) 4 2sin(37z).
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From example 4, we know that

>3 1 2
v(x,t) = — % + ?x +1-— — sin(t) sin(mx) + 3 sin(3t) sin(3mx).
Thus, the solution is
BT 1 2
u(z,t) = —x(x—1)t— % + Ex +1- — sin(t) sin(mx) + 3 sin(3t) sin(3mx).

O

5.3 Laplace equation in 2D

Consider the Laplace equation
Au(z,y) = 0 for all (z,y) € Q C R?

with
Au = Ugy + Yyy-

The above equation is the steady state of the 2D heat equation
u(z,y,t) = - Au(t,z,y) for all t > 0, (z,y) € Q C R?
and its solution is a harmonic function.
5.3.1 Laplace equation in rectangular domain
Given positive constant a, b, consider the Laplace equation
Au(z,y) = 0  for all (x,y) € (0,a) x (0,b)
with the boundary conditions

u(0,y) = q1(y),  ula,y) = ga(y)  forally € (0,b)

u(z,0) = fi(z), u(b,z) = fa(z) for all y € (0,a).
Goal: Given fi, fo, g1 and go, can we find u?

By using a superposition principle of a linear PDE and a change of variables, one can
reduce the study to the following case:

CASE 1.
g1 = 0, g =0 and fi = 0.

In this case, a solution can be found by using the method of separation of variable.

Step 1. (Separate variables) Look for a solution of form
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we derive the ODEs for F' and G
F'(z)+X-F(x) = 0 and G"(y) —A-Gy) =0

Step 2. Solve for F. Since u(0,y) = u(a,y) = 0, one has that

The two points boundary problem

F'(z)+ X F(z) = 0
F(0) = F(a) = 0.

has eigen-pairs
An = ﬂ, F,(x) = sin (@) foralln=1,2,....
a
For every n > 1, solve the corresponding ODE for G

n?n?

G"(y) -

we get

A nm B nm
7” . eTy + -n . eiTy

Gn(y) = 5

The boundary condition implies that

Thus,

Step 3. The solution is

u(z,y) = iAn-sinh (%y) - sin (%x)

n=1
with
S . nmb . ni
fQ(x) = ;An . Slnh <a> - S1n (7 . 1-)
and

2 @ . o/nw
An = a'Sinh(nTTrb) /0 f2($)~81n (717) dzx.

Example 1. Solve the Laplace equation

Au(z,y) = 0  for all (x,y) € (0,1) x (0,1)
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with boundary conditions

u(0,y) = u(l,y) = 0 for all y € (0,1)

u(z,0) = 0, u(l,z) = z(1—x) for all y € (0,1).
Answer. We have
a =1, b =1 and fo(x) = z(1—x)

The general solution is

u(z,y) = Z Ay, - sinh (n7y) - sin(nmx).

n=1

Here, the coefficients are computed by

) 1
sinh(n) /0 ( x) sin(nmrz)dx

B 4 1 —cos(nm) 4 1— (=1
~ sinh(nn) n3n3 ~ sinh(nm) n3n3
Thus, the solution is
o0
u(z,y) = 4- Z n37r3 smh () -sinh (nmy) - sin(nrzx).

Summary. The Laplace equation

Au(z,y) = 0 (z,y) € (0,a) x (0,b)
u(0,y) = u(a,y) =0  ye(0,)
u(z,0) = 0, u(z,b) = f(x) z € (0,a)

has the solution

u(z,y) = ;An-sinh (%Ty) - 8in (%Tx)
with .
flz) = T;An sinh <an> sin (%ﬁ :L')
and
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CASE 2: Let us now consider the Laplace equation

Au(z,y) = 0 (z,y) € (0,a)
u(()?y) = u(aay) =0
u(z,0) = f(x), u(z,b) = 0 xz € (0,a)

In this case, the function
v(z,y) = u(z,b—1y) for all (z,y) € (0,a) x (0,b)
solve the equation

Av(z,y) = 0 (z,y) € (0,a) x (0,)
v(0,9) = v(a,y) = 0 yec(0,b)
v(xz,0) = 0, v(z,b) = f(z) z € (0,a)

From case 1, we have

v(x,y) ZA“ sinh (— y) sin (% x)

n=1
with
> . nwb . /nw
flx) = ;An - sinh <a> - sin <7 x)
and

2 a . /nm
An = 7a-sinh("7ﬂb) '/0 f(x) - sin (795) dz.

Thus, the solution is
u(z,y) = v(z,b-y ZAn smh( (b— y)> ~sin(

CASE 3: Consider the Laplace equation

Au(z,y) = 0 (z,y) € (0,a) x (0,b)

’U,(O,y) = Y u(a7y) = f(y> S <O7b)
0

0
u(xz,0) = 0, u(z,b) = z € (0,a)

In this case, we set
v(y,z) = u(z,y) for all (z,y) € (0,a) x (0,b).
Then v define on (0,b) x (0,a) solves the equation

Av(z,y) = 0 (x,y) € (0,b) x (0,a)
v(O,y) =0, U(bay) =0 ye (O,G)
v(z,0) = 0, u(z,a) = f(x) z € (0,b).

nm
7."1;‘ .
a



From the case 1, we have

v(z,y) = iAn-sinh (%-y)-sin (%x)

n=1
with -
= ZA” - sinh (@) - 8in (E . x)
b b
n=1
and

A, = b sinh (252 smh / f(z sm a:) dx.

Thus, the solution is
u(z,y) = v(y,z) = nz::lAn - sinh (% : J:) - sin (% : y)

CASE 4: Similarly, one can show that the Laplace equation

Au(z,y) = 0 (z,y) € (0, ) (2 )
’U,(O,y) = f(y)v u( ) (0 b)
u(xz,0) = 0, u(xz,b) = 0 (O,a)

has the solution

= iAn-sinh(n;-(ax)) -sin(%-y)
n=1

with
ZA” smh( ) sin (n—bﬂ- x)
and .
A = b Slnl?("bm) 0 (z) - sin (% ‘ ac) du

O

Using a superposition principle, we can solve Laplace equation with general boundary

condition.

Example 2. Solve the Laplace equation
Au(z,y) = 0  for all (x,y) € (0,1) x (0,1)
with boundary conditions
u(0,y) = u(l,y) =1 for all y € (0,1)
u(z,0) = =z, u(lz) = 1—=x for all y € (0,1).
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Answer. The solution u is computed by

u(z,y) = wi(z,y) +ua(z,y) +us(, y) + ua(z, y)
where
e w4 is the solution to
)€ (0,1) x (0,1)

Y
0 y € (0,1)
w(z,1) = (1—x) x € (0,1)

u(0,y) = u(l,y)

Au(z,y) = 0 (x
u(zx,0) (

I
.

e 9 is the solution to

Au(z,y) = 0 (z,y) € (0,1) x (0,1)
u(0,y) = u(l,y) = 0  ye(0,1)
u(z,0) = =z, u(z,1) = 0 z € (0,1)

e w3 is the solution to

Au(z,y) = 0 (x,y) € (0,1) x (0,1)
U(O,y) =1, U lay) =0 yE(O,l)
u(z,0) = u(x,1) = 0

e 4 is the solution to

Au(z,y) = 0 (z,y) € (0,1) x (0,1)
u(0,y) = 0, u(l,y) = 1 y € (0,1)
u(z,0) = u(z,1) = 0

From case 1 and case 2, we have

ui(z,y) = Z Ay, - sinh(nmy) - sin(nmx)

n=1
and -
ug(x,y) = Z By, - sinh(nw(1 — y)) - sin(nmzx)
n=1
with
A, = 2 /1(1 — z)sin(nrz)dr = 2
" sinh(nm) J, i ~ nmsinh(n)

2 ! 2(—1)"H!
By = — > . i de = 2
" sinh(nm) /0 vsin(nmz)d nm sinh(n)

From case 3 and case 4, we have

uz(x,y) = Z Cy, - sinh (n7z) - sin (n7y)

n=1
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and

ug(x,y) = ZD" -sinh (n7(1 — z)) - sin (n7y)

n=1
with ) . 2. (1 (—1)™
C, =D, = —— / sin(nrx)de = ——————=
sinh(nm) J nm sinh(n)
Therefore, the solution is
u(z,y) = Z . [(sinh(mry) + (—1)"* - sinh(n7(1 — y))) - sin(nmz)

«nm sinh(nm)

+ (1= (=1)") - (sinh (n7x) + sinh (n7(1 — x))) - sin (n7y)

for (z,y) € [0,1] x [0, 1].

5.3.2 Temperature in a disk

Consider the Laplace equation

Au =0 in B(0, R)
u =f on 0B(0, R).

Polar coordinate: By a change of variables

,

x = r-cos(f)
y = r-sin(0) foral 0 <r < R,0<6<2rm
v(r,0) = u(r-cosf,rsind),

we compute
Up = Ug -cosl +uy -sind,

Upp = [Ugg - COSH + Ugy - sIN O] - cOS O + [ty - cOS O + uyy - sinb)] - sin f

= Upgp - COSQQ—{—Q-uzySine'COSG-i—Uyy'Sin2 0,

and
vg = —r-sinf-uy +1r-cosb - uy,

veg = r°- [um .sin?6 — 2 - Ugy SIN G - cOS O + 1y - 00520] — 1 [ug - cos@ + uy - sin b
= r’. [um .sin®6 — 2 Ugy SIN O - COS O + Uy, - cos20] -7V
Thus, v solves the equation

v 1 v 1 0%

52T 5 T e =0  forall (r,d) e (0,R) x (0,2m)
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with boundary conditions

v(r,0) = v(r,2m) xz € [0, R]

v(R,0) = g(6) = f(Rcosf, Rsinf) 0 € [0, 27].
Goal: Given R and ¢, find v in [0, R] x [0, 27].

1. Using the method of separation of variables, we seek particular solutions of form
v(r,0) = F(r)-G(0).
From the PDEs, one derive the ODEs for F' and G

G"(0)+\-G(6) = 0

r2F"(r) +rF'(r) — AF(r) = 0
2. From the boundary condition, we solve the two points boundary problem
G"(0)+\-G() = 0, G(0) = G(2n).
and get eigenpairs
A = 12, Gn(0) = ay - cos(nb) + by, - sin(nb) foralln=0,1,2,....
For every n =0, 1, ..., the corresponding ODEs for F
r2F"(r) +rF'(r) —n?F(r) = 0

has the general solution

3. Finally, the solution v is

v(r,0) = Ao+ Z (%)n - [Ay, - cos(nb) + By, sin(nb)]
n=1

with
LT e, 4, = 2 a0 0)do
A = — n = — .
o= 5o | a0, = [ a0)-costu)
and
1 27
B, = + / 4(0) - sin(n)do
™ Jo
for all n > 1.

Example 1. Solve the Laplace equation

Au =0 in B(0,1)
u =f on 0B(0,1).
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where )
f(cosf,sinf) = 14 sinf + 5 sin(36) + cos(46) 6 € [0, 2m]

Answer. We have
1
R =1 and g(0) = 1+sinf + 3 sin(30) 4 cos(40).

The general solution is
o
v(r,0) = Ay + Zr” - [Ap, - cos(nb) + By, sin(nh)] forall 0 <r < 1,0 € [0,2n7]
n=1
From the boundary condition, one has

1+sinf + % sin(30) + cos(40) = Ao+ Z [A, - cos(nb) + By, sin(nb)]

n=1

and this yields

Thus, the solution is

3
v(r,0) = 14 rsinf + % sin(30) 4 r* cos(46).

Poisson integral formula. Consider Laplace equation

Pu 1 Ou 1 9%u

w‘i‘;a‘Fﬁw =0 fOI‘aH(T,G)E(O,R)X(O,Qﬂ')

with boundary conditions
uw(R,0) = g(0) for all 6 € [0,27).

The separation of variables solution is

u(r,8) = Ao+ (%)" [Ay, - cos(nf) + By sin(nf)]
n=1

with
1 2 1 2m
Ay = —- g(6)do, A, = / g(0) - cos(nb)do
2T 0 ™ Jo
and
1 2m
B, = / g(0) - sin(nd)do for all n > 1.
T Jo
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We compute that

u(r,0) = % - /0 " (@)do + % B /O " (@) - (cos(na) cos(nf) + sin(na) sin(nf)] do
= o /O27r :1 + 2; (%)n - cos[n(f — a)]} g(a)da
- [T S G )] o
- o [ e R ) e
- o /:ﬂ R 27"RRCQOS_(g2— a) +r2] gla)da.

The last equation is the Poisson Integral formula of the Laplace equation

u(r,0) =

1 2w RQ—?”Q
.

. . da.
27 R?2 — 2rRcos(6 — ) + 7"2} g(a)da

5.3.3 Exterior Dirichlet problem and the Dirichlet problem in an Annulus

1. Exterior Dirichlet problem Consider Laplace equation

Pu 1 Ou 1 0%
w‘f‘;a"‘ﬁﬁ =0 fOI‘&H(T,G)G(R,OO)X(O,Qﬂ')

with boundary conditions
uw(R,0) = g(0) for all 6 € [0, 27).

By using the same argument in the previous one, we obtain that

u(r,0) = i<R>n-[Ancos(ne)—l—anin(nG)]

n=0 "
with
L[ 0)do B 0
Ay = — =
0 2 0 ( ) ’ 0
and
1 21 1 27
A, = / g(0) cos(nd)db, B, = / g(0) sin(nh)db
T Jo T Jo
for all n > 1.

Example 1. The Exterior problem

Pu 1 Ou 1 0%u

ﬁ"";a—kﬁw =0 fOI'aH('I”,H)E(l,OO)X(O,27T)
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with boundary conditions
u(1,0) = 1+ sin(f) + cos(36) for all 6 € [0, 2m).
has the solution ) |
u(r,0) = 1+ - -sin(0) + 3 sin(30).
O

2. Dirichlet problem in an Annulus. Consider the Laplace equation between two

circles
Pu 1 Ou 1 0%u

T e T a2
with boundary condition

=0 Ri<r <Ry

u(R1,0) = ¢g1(0) and u(Rg,0) = g2(0) for all 8 € [0, 27).

By using the method of separation of variable, one gets

u(r,0) = ag+bolnr+ Z [anr" + bnr_"] - cos(nf) + [cnr" + dnr_"] - sin(nf)

n=1
where
1 2m J
bol = —-
agp + boIn Ry o ), gi(s)ds
1 2m
ag+bgln Ry = % ; gg(s)ds
and
¢ 1 2T
anR} + b, R]" = W-/ g1(s) - cos(ns)ds
0
1 27
anRy + b, Ry = ﬂ-/ g2(s) - cos(ns)ds
0
and

. 2
e RY+dp R = —- / g1(s) - sin(ns)ds
0

1 2
cn Ry +dp Ry = — / 92(s) - sin(ns)ds
0

Example 1. Solve the Laplace equation

Pu 1 Ou 1 0%u

ﬁﬂ« 8r+r2.@ -

with boundary condition

u(1,0) = 0 and u(2,0) = sinf for all 6 € [0,27).
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Answer. We have
Ri =1, Ry=2 g0 =0, g =
A direct computation yields
a, = b, =0 foralln >0

and
¢, = d, = 0 for all n > 2.

It remains to compute ¢; and dy. Since

1 2 9

—- sin“(s)ds = 1,

T Jo
one has

dq
ci+dy =0 and 201+E = 1.
and this yields
c = 2/3 and d; = —2/3.

Thus,
u(r,0) =

Wl o

Example 2. Solve the Laplace equation

82u+1 8u+1 0%u 0 l<r<?
e e AU Rl S r
or2 r Or 12 002

with boundary condition

i <7« — 1> -sin @ for all (r,0) € [1,2] x
,

[0, 27].

u(1,0) = 3 and uw(2,0) = 5 forall § € |0,2m).

Answer. We have

It is clear that
anp, = b, = ¢, =d, = 0 foralln>1

and

1 2
ap + bgIn 2 :-/ 5ds = 5
2 0
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Thus, the solution is

2
u(r,0) = 2+ m‘lnr.

Example 3. Solve the Laplace equation

Pu 1 Ou 1 0%u

W‘F;'E‘Fﬁ'wzo 1l<r<?2

with boundary condition

u(1,0) = 0 and u(2,0) = sinf for all 6 € [0,27).
Answer. We have

Ri =1 Ry =2 gi(f) = sinh,  g¢() = sind.

The coefficients ag, by, ay, bn, cn, d,, are zero excepts for c¢1,d;. We have

1 2
c1+di = / sin®sds = 1
T Jo
1 1 27
461+1d1 = 77./0 sin?(s)ds = 1
and this yields
1 2
cq = 3 and di = 3
Thus, the solution is
2
u(r,0) = (;)4- 37") - sin 6.
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