# MA 401, Applied Differential Equations, Fall 2021 

Tien Khai Nguyen, Department of Mathematics, NCSU

## 1 Introduction

### 1.1 Classification of Differential Equations

Definition 1.1 A differential equation is an equation which contains derivatives of the unknown (Usually it is a mathematical model of some physical phenomenon).

## Example 1.

a) Model of population of ecology:

$$
\begin{equation*}
\dot{u}(t)=r u(t)\left(1-\frac{u(t)}{K}\right) \tag{ODE}
\end{equation*}
$$

where

- $r, K$ are given constants;
- $t$ is time variable and $u$ is an unknown function of $t$.
b) Model of traffic flow on a single road

$$
\begin{equation*}
u_{t}(x, t)+f(u(x, t))_{x}=0 \tag{PDE}
\end{equation*}
$$

where

- $t$ is time variable and $x$ is state variable;
- $f$ is a given flux;
- $u$ is a unknown function of $t$ and $x$.


## Notations:

- $\dot{u}(t)=\frac{d u}{d t}:$ ordinary derivative.
- $u_{t}=\frac{\partial u}{\partial t}, u_{x}=\frac{\partial u}{\partial x}, u_{t t}=\frac{\partial^{2} u}{\partial t^{2}}, u_{t x}=\frac{\partial^{2} u}{\partial t \partial x}, u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}:$ partial derivatives.

There are two classes of differential equations:

- Ordinary differential equations (ODEs).
- Partial differential equations (PDEs).


### 1.2 A review on ordinary differential equations

Definition 1.2 A ordinary differential equation is an equation with ordinary derivative of the unknown $u$ that depends only on one variable.

First order differential equations. Consider the ordinary differential equaition

$$
u^{\prime}(t)=f(t, u(t))
$$

where $f$ is a given function and $u$ is an unknown of $t$.
Goal: Solve the above ODE.

### 1.2.1 Linear equations: Method of integrating factors

The function $f(t, u)$ is linear function in $u$, we can write

$$
f(t, u)=-p(t) \cdot u+q(t)
$$

where $p, q$ are given functions of $t$.
We will study the equation

$$
\begin{equation*}
u^{\prime}(t)+p(t) u(t)=q(t) \tag{1.1}
\end{equation*}
$$

## Method of integrating factors.

Step 1: Compute the integrating factor

$$
\mu(t)=\exp \left(\int p(t) d t\right)
$$

Step 2: The general solution is

$$
u(t)=\frac{1}{\mu(t)} \cdot\left[\int \mu(t) q(t) d t+C\right] .
$$

Example 2. Solving the following initial value problems
a) $u^{\prime}(t)+u(t)=e^{2 t}, \quad u(0)=1$.
b) $t u^{\prime}(t)-u(t)=t^{2} e^{-t} \quad$ for all $t \geq 1, \quad u(1)=1-e^{-1}$.

Answer. (a) We have

$$
p(t)=1, \quad q(t)=e^{2 t} .
$$

The integrating factor

$$
\mu(t)=\exp \left(\int p(t) d t\right)=\exp \left(\int 1 d t\right)=e^{t}
$$

The general solution

$$
\begin{aligned}
u(t) & =\frac{1}{\mu(t)} \cdot\left[\int \mu(t) q(t) d t+C\right] \\
& =\frac{1}{e^{t}} \cdot\left[\int e^{3 t} d t+C\right]=\frac{1}{3} \cdot e^{2 t}+C \cdot e^{-t}
\end{aligned}
$$

The initial condition implies that

$$
1=u(0)=\frac{1}{3}+C \quad \Longrightarrow \quad C=\frac{2}{3} .
$$

The solution

$$
u(t)=\frac{1}{3} \cdot e^{2 t}+\frac{2}{3} \cdot e^{t}
$$

(b). Rewrite the equation

$$
u^{\prime}(t)-\frac{1}{t} \cdot u(t)=t e^{-t}
$$

We have

$$
p(t)=-\frac{1}{t} \quad \text { and } \quad q(t)=t e^{-t} .
$$

The integrating factor

$$
\mu(t)=\exp \left(\int-\frac{1}{t} d t\right)=e^{-\ln (t)}=\frac{1}{t} .
$$

The general solution

$$
\begin{aligned}
u(t) & =\frac{1}{\mu(t)} \cdot\left[\int \mu(t) q(t) d t+C\right] \\
& =t \cdot\left[\int e^{-t} d t+C\right]=-t e^{-t}+C t
\end{aligned}
$$

The initial condition implies that

$$
e^{-1}+1=u(1)=e^{-1}+C \quad \Longrightarrow \quad C=1 .
$$

The solution

$$
u(t)=-t e^{-t}+t
$$

### 1.2.2 Separable equations

Assume that $f(t, u)$ can be separated

$$
f(t, u)=\frac{M(t)}{N(u)} .
$$

We will study the equation

$$
\begin{equation*}
\frac{d u}{d t}=f(t, u)=\frac{M(t)}{N(u)} \tag{1.2}
\end{equation*}
$$

Equivalently,

$$
N(u) d u=M(t) d t \quad \Longrightarrow \quad \int N(u) d u=\int M(t) d t
$$

and it yields an implicit formula for the solution $u$
Example 3. Consider the equation

$$
u^{\prime}(t)=\frac{\cos t}{1-u^{2}}, \quad u(\pi / 2)=3 .
$$

We can separate the variables

$$
\left(1-u^{2}\right) d u=\cos t d t \quad \Longrightarrow \quad \int\left(1-u^{2}\right) d u=\int \cos t d t
$$

This yields

$$
u-\frac{1}{3} u^{3}=\sin (t)+C .
$$

Since $u(\pi / 2)=3$, we have

$$
3-\frac{1}{3} \cdot 3^{3}=1+C \quad \Longrightarrow \quad C=-7 .
$$

The solution $u$ is given implicitly as

$$
u-\frac{1}{3} u^{3}=\sin (t)+7 .
$$

### 1.2.3 Second Order Linear Equations

The general form of these equations is

$$
a_{2}(t) u^{\prime \prime}(t)+a_{t}(t) u^{\prime}(t)+a_{0} u(t)=b(t) .
$$

where $a_{0}, a_{1}, a_{2}$ and $b$ are given functions and $u$ is an unknown of $t$.
If $b(t) \equiv 0$, we call it homogeneous. Otherwise, it is called non-homogeneous.

### 1.2.4 Homogeneous equations with constant coefficients

The linear equation

$$
\begin{equation*}
a u^{\prime \prime}+b u^{\prime}+c u=0 \tag{1.3}
\end{equation*}
$$

where $a, b, c$ are given constants.
The principle of superposition. If $u_{1}$ and $u_{2}$ are solutions of (1.3), then $u=c_{1} u_{1}+c_{2} u_{2}$ is also a solution of (1.3) for arbitrary constants $c_{1}, c_{2}$.

How to find $u_{1}$ and $u_{2}$ ?
The characteristic equation of (1.3)

$$
\begin{equation*}
a r^{2}+b r+c=0 . \tag{1.4}
\end{equation*}
$$

Denote by

$$
D=b^{2}-4 a c
$$

Three cases can occur:

- If $D>0$ then (1.4) has two real roots

$$
r_{1}=\frac{-b+\sqrt{D}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{D}}{2 a}
$$

Two particular solutions

$$
u_{1}(t)=e^{r_{1} t}, \quad \quad u_{2}(t)=e^{r_{2} t}
$$

The general solution of $\sqrt{1.3}$ is

$$
u(t)=c_{1} \cdot e^{r_{1} t}+c_{2} \cdot e^{r_{2} t}
$$

- If $D=0$ then 1.4 has a repeated root

$$
r_{1}=r_{2}=\bar{r}=\frac{-b}{2 a}
$$

Two particular solutions

$$
u_{1}(t)=e^{\bar{r} t}, \quad u_{2}(t)=t e^{\bar{r} t}
$$

The general solution of 1.3 is

$$
u(t)=c_{1} \cdot e^{\bar{r} t}+c_{2} \cdot t e^{\bar{r} t}
$$

- If $D<0$ then (1.4) has two complex conjugate roots

$$
r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta
$$

where

$$
\alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{|D|}}{2 a} .
$$

Two particular solutions

$$
u_{1}(t)=e^{\alpha t} \cdot \cos (\beta t), \quad \quad u_{2}(t)=e^{\alpha t} \cdot \sin (\beta t)
$$

The general solution of $\sqrt{1.3}$ is

$$
u(t)=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)
$$

Example 4. Solve the second order linear ODE

$$
u^{\prime \prime}+3 u^{\prime}+2 u=0 \quad \text { with } \quad u(0)=1, u^{\prime}(0)=2
$$

Answer. The characteristic equation

$$
r^{2}+3 r+2=0
$$

Since $D=3^{2}-4 \cdot 2 \cdot 1=1>0$, we have

$$
r_{1}=-1, \quad r_{2}=-2
$$

The general solution

$$
u(t)=c_{1} e^{-t}+c_{2} e^{-2 t} .
$$

Initial conditions imply that

$$
1=u(0)=c_{1}+c_{2}
$$

and

$$
2=u^{\prime}(0)=-c_{1}-2 c_{2} .
$$

Solving the system of algebra equations, we obtain

$$
c_{1}=4, \quad c_{2}=-3 .
$$

The solution

$$
u(t)=4 \cdot e^{-t}-2 e^{-2 t} .
$$

### 1.2.5 Cauchy-Euler equations

Consider the second order equation of the form

$$
a x^{2} u^{\prime \prime}+b x u^{\prime}+c u=0 .
$$

Try to look for particular solutions of the form $u(x)=x^{r}$. This yields the characteristic equation

$$
a r(r-1)+b r+c=0 .
$$

This quadratic equation has two roots $r_{1}, r_{2}$. Three cases may occur:

- If $r_{1}$ and $r_{2}$ are two distinct real roots, then the general solution

$$
u(x)=c_{1} x^{r_{1}}+c_{2} x^{r_{2}} .
$$

- If $r_{1}=r_{2}=\bar{r}$, then the general solution

$$
u(x)=c_{1} x^{\bar{r}}+c_{2} x^{\bar{r}} \ln x
$$

- If $r_{1}$ and $r_{2}$ are two complex conjugate roots, i.e.,

$$
r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta
$$

then the general solution

$$
u(x)=c_{1} x^{\alpha} \sin (\beta \ln x)+c_{2} x^{\alpha} \cos (\beta \ln x) .
$$

### 1.3 Partial Differential Equations.

Definition 1.3 A partial differential equation is an equation with partial derivatives of the unknown $u$ that depends on several variables.

Some basic concepts related to differential equations:

- Order of PDEs: the highest order of derivatives.
- Linear PDEs: the term with $u$ and its derivatives are in a linear form.
- Nonlinear PDEs: the term with $u$ and its derivatives are in a nonlinear form.

Example 1. Let $u$ be a function of two variables $t, x$. Identify the order and linearity of the following equations.
(a). $u_{t}+2 u_{x}=0$
(b). $u_{t t}=c^{2} \cdot u_{x x} \quad$ (Wave equation)
(c). $u_{x x}+u_{y y}=0 \quad$ (Laplace equation)
(d). $u_{t}=u_{x x}+u_{y y} \quad$ (2D heat equation)
(e). $u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \quad$ (Burger's equation)
(f). $u_{x x}+u_{y y}=f(x, y) \quad$ (Poisson equation)
(g). $u_{t t}-4 u_{x t}+u_{x x}+x^{3} u+t u_{x}=0$.

Definition 1.4 The function $u$ is a solution if it satisfies the equation and any boundary or initial conditions.

Example 2. (a) Given any smooth functions $F$, the function

$$
u(x, t) \doteq F(2 t-x) \quad \text { for all }(t, x) \in(0, \infty) \times \mathbb{R}
$$

is a solution of the equation in (a) of example 1 .
Proof. Using the change rule, one computes that
$u_{x}(x, t)=\frac{d}{d x} F(2 t-x)=-F^{\prime}(2 t-x) \quad$ and $\quad u_{t}(x, t)=\frac{d}{d t} F(2 t-x)=2 F^{\prime}(2 t-x)$
This implies that

$$
u_{t}+2 u_{x}=2 F^{\prime}(2 t-x)-2 F^{\prime}(2 t-x)=0
$$

(b) Showing that the function

$$
u(x, t)=e^{f(t)} \cdot g(x)
$$

solves the equation

$$
u \cdot u_{t x}=u_{t} \cdot u_{x}
$$

Proof. Using the change rule, one computes

$$
u_{t}=\frac{d}{d t} e^{f(t)} \cdot g(x)=f^{\prime}(t) e^{f(t)} g(x), \quad u_{x}=e^{f(t)} \cdot \frac{d}{d x} g(x)=e^{f(t)} g^{\prime}(x)
$$

and

$$
u_{t x}=\frac{d}{d t} e^{f(t)} \cdot \frac{d}{d x} g(x)=f^{\prime}(t) g^{\prime}(x) e^{f(t)}
$$

Therefore

$$
u \cdot u_{t x}=e^{f(t)} g(x) \cdot f^{\prime}(t) g^{\prime}(x) e^{f(t)}=f^{\prime}(t) e^{f(t)} g(x) \cdot e^{f(t)} g^{\prime}(x)=u_{t} \cdot u_{x} .
$$

Definition 1.5 Let $L$ be a differential operator. We say that
(H) The equation $L(u)=0$ is homogeneous.
(NH) The quation $L(u)=f$ is non-homogeneous for all $f \neq 0$.

The principle of superposition. Assume that $L$ is a linear differential operator, i.e.,

$$
L(u+v)=L(u)+L(v) \quad \text { and } \quad L(\lambda \cdot u)=\lambda \cdot L(u) .
$$

Then the followings hold:
(i) If $u_{1}$ and $u_{2}$ are solutions of the homogeneous equation

$$
L(u)=0
$$

then $u=\lambda_{1} \cdot u_{1}+\lambda_{2} \cdot u_{2}$ is also a solution for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.
(ii) If $u_{1}$ is a solution of the homogeneous equation $L(u)=0$, and $u_{2}$ is a solution of the non-homogeneous equation $L(u)=f$, then $u=u_{1}+u_{2}$ is a solution of $L(u)=f$.

Classification of PDEs. Consider the second order PDEs

$$
\begin{equation*}
A u_{x x}+B u_{x t}+C u_{t t}+F\left(x, t, u, u_{x}, u_{t}\right)=0 \tag{1.5}
\end{equation*}
$$

where $A, B, C$ are given constants, $F$ is a given function, and $u$ is an unknown.
Denote by

$$
\Delta=B^{2}-4 A C .
$$

There are three cases:

- If $\Delta>0$ then (3.6) is hyperbolic;
- If $\Delta<0$ then (3.6) is elliptic;
- If $\Delta=0$ then (3.6) is parabolic.


## 2 Scalar Conservation Laws

General form

$$
u_{t}+\frac{d}{d x} \Phi(t, x, u)=g
$$

where

- $u$ is the density which depends on the time variable $t \geq 0$ and the state variable $x \in \mathbb{R}$;
- $\Phi$ is a given flux;
- $g$ is a given source term (external force).

Example 1. (Traffic flow) On a single road, let's denote by

- $u(x, t)$ is the traffic density at the location $x$ at time $t$.
- $v$ is the velocity of cars which depends on the traffic density.
- The flux

$$
f(u) \doteq u \cdot v(u)
$$

describes the total number of cars crossing the location $x$ at time $t$.
Giving two locations $a$ and $b$ on the road, the integral

$$
\int_{a}^{b} u(x, t) d x=\text { total number of cars in }[a, b] \text { at time } t
$$



We compute

$$
\begin{aligned}
\frac{d}{d t} \int_{a}^{b} u(x, t) d x & =f(u(a, t))-f(u(b, t)) \\
& =-\int_{a}^{b} \frac{d}{d x} f(u(x, t)) d x
\end{aligned}
$$

This implies that

$$
\int_{a}^{b} u_{t}(x, t)+f(u(x, t))_{x} d x=0 \quad \text { for all } a<b
$$

A PDE for traffic flow

$$
\begin{equation*}
u_{t}(x, t)+f(u(x, t))_{x}=0 \tag{2.1}
\end{equation*}
$$

GOAL: describe the traffic density at time $t$.

### 2.1 Linear advection equations

In this subsection, we will study linear advection equations of form

$$
\left.u_{t}(x, t)+c(x, t) \cdot u_{x}(x, t)\right)=g(x, t, u)
$$

where

- $t$ is the time variable and $x$ is the state variable;
- $g$ is a given source term;
- $c$ is a given speed of $t$ and $x$

Goal: Find the density $u$ at the location $x$ and the time $t$.

### 2.1.1 Homogeneous linear advection equations with constant speed

Consider the Cauchy problem

$$
\left\{\begin{align*}
u_{t}(x, t)+c \cdot u_{x}(x, t) & =0,  \tag{2.2}\\
u(x, 0) & =u_{0}(x)
\end{align*}\right.
$$

where

- $c$ is a given constant speed;
- the function $u_{0}(x)$ is the initial data.

Observe that

$$
\frac{d}{d t} u\left(x_{0}+c t, t\right)=c \cdot u_{x}\left(x_{0}+c t, t\right)+u_{t}\left(x_{0}+c t, t\right)=0 .
$$

Hence, $u$ is constant along every line $\left(x_{0}+c t, t\right)$. In particular, one has

$$
u\left(t, x_{0}+c t\right)=u\left(x_{0}, 0\right)=u_{0}\left(x_{0}\right)
$$

Set $x=x_{0}+c t$, we have $x_{0}=x-c t$. The solution is

$$
u(x, t)=u_{0}(x-c t) .
$$

Remark. The general solution of (2.2) has form

$$
u(x, t)=F(x-c t)
$$

for smooth function $F$.
Example 1. Consider the Cauchy problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+2 \cdot u_{x}(x, t) & =0, \\
u(x, 0) & =\frac{1}{1+x^{2}} .
\end{aligned}\right.
$$

Find $u(x, 1)$.
Answer. $c=2$ and $u_{0}(x)=\frac{1}{1+x^{2}}$. Thus, the solution

$$
u(x, t)=\frac{1}{1+(x-2 t)^{2}} .
$$

In particular, we have

$$
u(x, 1)=\frac{1}{1+(x-2)^{2}}=\frac{1}{x^{2}-4 x+5} .
$$

Example 2. Solve the initial value problem (IVP)

$$
\left\{\begin{aligned}
u_{t}(x, t)-3 \cdot u_{x}(x, t) & =0, \\
u(x, 0) & =\left\{\begin{array}{rll}
-1 & \text { if } & x>0 \\
1 & \text { if } & x \leq 0
\end{array}\right.
\end{aligned}\right.
$$

Answer. We have

$$
c=-3 \quad \text { and } \quad u_{0}(x)=\left\{\begin{array}{rll}
-1 & \text { if } & x>0 \\
1 & \text { if } & x \leq 0
\end{array}\right.
$$

Thus, the solution is

$$
u(x, t)=u_{0}(x+3 t)=\left\{\begin{array}{rll}
-1 & \text { if } & x>-3 t \\
1 & \text { if } & x \leq-3 t
\end{array}\right.
$$

Example 3. Find the solution of the following initial value problem

$$
\left\{\begin{aligned}
u_{t}(x, t)-2 \cdot u_{x}(x, t)+3 u(x, t) & =0, \\
u(x, 0) & =x e^{-x^{2}} .
\end{aligned}\right.
$$

Answer. Set $v(x, 0)=e^{3 t} u(x, 0)$. We have

$$
v_{x}(x, 0)=e^{3 t} u(x, 0) \quad \text { and } \quad v_{t}=e^{3 t} \cdot\left[u_{t}(x, t)+3 u(x, t)\right] .
$$

Thus,

$$
\left\{\begin{aligned}
v_{t}(x, t)-2 \cdot v_{x}(x, t) & =0, \\
v(x, 0) & =v_{0}(x)=x e^{-x^{2}} .
\end{aligned}\right.
$$

Solving the above equation, we get

$$
v(x, t)=v_{0}(x+2 t)=(x+2 t) e^{-(x+2 t)^{2}}
$$

Recalling that

$$
u(x, t)=e^{-3 t} \cdot v(x, t)
$$

the solution $u$ is

$$
u(x, t)=(x+2 t) e^{-(x+2 t)^{2}-3 t}
$$

### 2.1.2 Non-homogeneous linear advection equations with constant speed

Consider the Cauchy problem

$$
\left\{\begin{align*}
u_{t}(x, t)+c \cdot u_{x}(x, t)+a(t) u(x, t) & =g(x, t)  \tag{2.3}\\
u(0, x) & =u_{0}(x)
\end{align*}\right.
$$

where

- $c$ is a given constant speed;
- the function $u_{0}(x)$ is the initial data.
- $a(t), g(x, t)$ are given functions.

How to solve (2.3)?
Answer. It is divided into several steps:
Step 1: Introduce new functions

$$
v(x, 0) \doteq e^{\mu(t)} \cdot u(x, t) \quad \text { and } \quad k(x, t) \doteq e^{\mu(t)} g(x, t)
$$

where $\mu$ is the integrating factor

$$
\mu(t)=\int_{0}^{t} a(s) d s
$$

We compute that

$$
v_{x}(x, t)=e^{\mu(t)} \cdot u(x, t), \quad \quad v_{t}(x, t)=e^{\mu(t)} \cdot\left[u_{t}(x, t)+a(t) u(x, t)\right]
$$

and

$$
u(x, 0)=e^{\mu(0)} \cdot u(x, 0)=u_{0}(x)
$$

Thus, $v$ is the solution of

$$
\left\{\begin{aligned}
v_{t}(x, t)+c \cdot v_{x}(x, t) & =k(x, t) \\
v(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

Step 2: Set $V(x, t)=v(x+c t, t)$. We have

$$
V_{t}=v_{t}+c v_{x}=k(x+c t, t) .
$$

Solving the ordinary different equation in time $t$

$$
V_{t}(x, t)=k(x+c t, t) \quad \text { with } \quad V(x, 0)=u_{0}(x)
$$

we obtain that

$$
V(x, t)=u_{0}(x)+\int_{0}^{t} k(x+c s, s) d s
$$

Step 3: The general solution

$$
\begin{aligned}
u(x, t) & =e^{-\mu(t)} \cdot v(x, t) \\
& =e^{-\mu(t)} \cdot V(x-c t, t)
\end{aligned}
$$

Example 1. a). Find the general solution

$$
u_{t}-2 u_{x}+2 u=e^{-t}
$$

b) Assume that $u(x, 0)=e^{-x}$. Compute $u(2,1)$.

Answer. Step 1. We have

$$
c=-2, \quad a=2, \quad g(t)=e^{-t}
$$

The function

$$
\mu(t)=\int_{0}^{t} 2 d s=2 t
$$

We set

$$
v(x, t)=e^{2 t} \cdot u(x, t) \quad \text { and } \quad k(t)=e^{t} .
$$

Then, $v(x, t)$ solves the PDE

$$
v_{t}-2 v_{x}=e^{t} .
$$

Step 2. Set $V(x, t)=v(x-2 t, t)$. We have

$$
V_{t}(x, t)=e^{t}
$$

Thus,

$$
V(x, t)=\int e^{s} d s=e^{t}+F(x)
$$

Step 3. The general solution

$$
\begin{aligned}
u(x, t) & =e^{-2 t} v(x, t)=e^{-2 t} V(x+2 t, t) \\
& =e^{-2 t} F(x+2 t)+e^{-2 t} \cdot e^{t}==e^{-2 t} F(x+2 t)+e^{-t} .
\end{aligned}
$$

(b). The initial condition $u(x, 0)=e^{-x}$ implies that

$$
e^{-x}=F(x)+1 \quad \Longrightarrow \quad F(x)=e^{-x}-1
$$

Thus,

$$
u(x, t)=e^{-2 t} \cdot e^{-(x+2 t)}+e^{-t}-e^{-2 t}=e^{-x}+e^{-t}-e^{-2 t}
$$

In particular,

$$
u(2,1)=e^{-1}+e^{-2}-e^{-2}=e^{-1}
$$

Example 2. Find the solution of the Cauchy problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+3 \cdot u_{x}(x, t)+2 t \cdot u(x, t) & =t \\
u(x, 0) & =x+\frac{1}{2}
\end{aligned}\right.
$$

Answer. Step 1. We have

$$
c=-2, \quad a(t)=2 t \quad \text { and } \quad g(t)=t
$$

The function

$$
\mu(t)=\int_{0}^{t} 2 s d s=t^{2}
$$

We set

$$
V(x, t)=e^{t^{2}} \cdot u(x, t) \quad \text { and } \quad k(t)=t e^{t^{2}}
$$

Then, $v$ is the solution of the Cauchy problem

$$
\left\{\begin{aligned}
v_{t}+3 \cdot v_{x} & =t e^{t^{2}} \\
v(x, 0) & =x+\frac{1}{2}
\end{aligned}\right.
$$

Step 2. Set $V(t, x)=v(t, x+3 t)$. We have

$$
V_{t}(x, t)=t e^{t^{2}} \quad \text { and } \quad V(x, 0)=x+\frac{1}{2}
$$

Thus,

$$
V(x, t)=x+\frac{1}{2}+\int_{0}^{t} s e^{s^{2}} d s=x+\frac{e^{t^{2}}}{2}
$$

Step 3. The solution

$$
\begin{aligned}
u(x, t) & =e^{-t^{2}} v(x, t)=e^{-t^{2}} V(x-3 t, t) \\
& =e^{-t^{2}} \cdot(x-3 t)+\frac{1}{2}
\end{aligned}
$$

Example 3. Solve the initial value problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+u_{x}(x, t)+3 u(x, t) & =x e^{-3 t} \\
u(x, 0) & =x^{2}-1
\end{aligned}\right.
$$

Answer. Step 1. We have

$$
c=1, \quad a(t)=3 \quad \text { and } \quad g(x, t)=x e^{-3 t}
$$

The function

$$
\mu(t)=\int_{0}^{t} 3 d s=3 t
$$

We set

$$
v(x, t)=e^{3 t} \cdot u(x, t) \quad \text { and } \quad k(x, t)=x .
$$

Then, $v$ is the solution of the Cauchy problem

$$
\left\{\begin{aligned}
v_{t}(x, t)+v_{x}(x, t) & =k(x, t) \\
u(x, 0) & =x^{2}-1
\end{aligned}\right.
$$

Step 2. Set $V(x, t)=v(x+t, t)$. We have

$$
V_{t}(x, t)=k(x+t, t)=x+t, \quad V(x, 0)=x^{2}-1
$$

Thus,

$$
V(x, t)=x^{2}-1+\int_{0}^{t}(x+s) d s=x^{2}-1+x t+\frac{t^{2}}{2}
$$

Step 3. The solution

$$
\begin{aligned}
u(x, t) & =e^{-3 t} v(x, t)=e^{-3 t} V(x-t, t) \\
& =e^{-3 t} \cdot\left[(x-t)^{2}-1+(x-t) t+\frac{t^{2}}{2}\right] \\
& =e^{-3 t} \cdot\left[x^{2}-x t+\frac{t^{2}}{2}-1\right]
\end{aligned}
$$

### 2.1.3 Homogeneous linear advection equations with nonconstant speed

Consider the Cauchy problem

$$
\left\{\begin{align*}
u_{t}(x, t)+c(x, t) \cdot u_{x}(x, t) & =0  \tag{2.4}\\
u(x, 0) & =u_{0}(x)
\end{align*}\right.
$$

where the speed $c(x, 0)$ is a given function of $x$ and $t$.
Goal: Find the solution $u$.

- The method of characteristics. Let $x(t)$ be the solution of

$$
\dot{x}(t)=c(x, t), \quad x(0)=x_{0} .
$$

The curve $(x(t), t)$ is called a characteristic curve.
Observe that

$$
\begin{aligned}
\frac{d}{d t} u(x(t), t) & =u_{t}(x(t), t)+\dot{x}(t) \cdot u_{x}(x(t), t) \\
& =u_{t}(x(t), t)+c(x(t), t) \cdot u_{x}(x(t), t)=0
\end{aligned}
$$

This implies that the function $u$ is constant along the characteristic curve $(x(t), t)$. In particular, we have

$$
u(x(t), t)=u(x(0), t)=u_{0}\left(x_{0}\right)
$$

Therefore, the solution $u$ can be solved backward along characteristic curves.

- How to solve the equation (2.4)?

Step 1. Solve the ODE

$$
\dot{x}(t)=c(x, t)
$$

and get the general solution of form

$$
\xi(x, t)=C .
$$

Step 2. The general solution is

$$
u(x, t)=F(\xi(x, t))
$$

for some smooth function $F$.
Step 3. Find $F$ by using the initial condition.

Example 1. Find a general solution of the ODE

$$
u_{t}(x, t)+2 t u_{x}(x, t)=0 .
$$

Answer. Step 1. Solve the ODE

$$
\dot{x}(t)=2 t
$$

we obtain that

$$
x(t)=t^{2}+C \quad \Longrightarrow \quad x-t^{2}=C .
$$

Thus,

$$
\xi(x, t)=x-t^{2} .
$$

Step 2. The general solution

$$
u(x, t)=F(\xi(x, t))=F\left(x-t^{2}\right)
$$

for some smooth function $F$.

Example 2. Consider the first order linear PDE

$$
u_{t}+t^{2} u_{x}=0
$$

(a) Find $u(x, t)$ if $u(x, 0)=\sin x$.
(b) Find $u(x, t)$ if $u(x, 1)=e^{-x^{2}}$.

Answer. Solve the ODE

$$
\dot{x}(t)=t^{2}
$$

we obtain that

$$
x(t)=\frac{1}{3} \cdot t^{3}+C \quad \Longrightarrow \quad x-\frac{t^{3}}{3}=C .
$$

Thus,

$$
\xi(x, t)=x-\frac{t^{3}}{3}
$$

and the general solution

$$
u(x, t)=F(\xi(x, t))=F\left(x-t^{3} / 3\right)
$$

for some smooth function $F$.
(a). If $u(x, 0)=\sin x$ then

$$
F(x)=\sin x .
$$

The solution

$$
u(x, t)=\sin \left(x-t^{3} / 3\right)
$$

(b). If $u(x, 1)=e^{-x^{2}}$ then

$$
F(x-1 / 3)=e^{-x^{2}} \quad \Longrightarrow \quad F(x)=e^{-(x+1 / 3)^{2}} .
$$

The solution

$$
u(x, t)=F\left(x-t^{3} / 3\right)=e^{-\left(x-\frac{t^{3}-1}{3}\right)^{2}}
$$

Example 3. Consider the initial value problem

$$
\left\{\begin{aligned}
\left.u_{t}(x, t)+t x u_{x}(x, t)\right) & =0, \\
u(x, 0) & =e^{-x}
\end{aligned}\right.
$$

Find $u(x, 2)$.
Answer. Solve the ODE

$$
\dot{x}=t x \quad \Longrightarrow \quad x=C e^{\frac{t^{2}}{2}} \quad \Longrightarrow \quad x \cdot e^{-t^{2} / 2}=C
$$

Thus,

$$
\xi(x, t)=x \cdot e^{-t^{2} / 2}
$$

The general solution

$$
u(x, t)=F(\xi(x, t))=F\left(x e^{-t^{2} / 2}\right)
$$

The initial data $u(x, 0)=e^{-x}$ implies that

$$
F(x)=e^{-x}
$$

Therefore, the solution

$$
u(x, t)=F\left(x e^{-t^{2} / 2}\right)=e^{-x e^{-t^{2} / 2}}
$$

In particular,

$$
u(x, 2)=e^{-x e^{-2}}
$$

### 2.1.4 Nonhomogeneous linear advection equations with nonconstant speed

 Consider the Cauchy problem$$
\left\{\begin{align*}
u_{t}(x, t)+c(x, t) \cdot u_{x}(x, t) & =g(x, t)  \tag{2.5}\\
u(x, 0) & =u_{0}(x)
\end{align*}\right.
$$

where

- the speed $c(x, t)$ is a given function of $x$ and $t$.
- $g$ is a given source term of $x$ and $t$.

Goal: Find the solution $u$.

As in the previous case, let $x(t)$ be the characteristic associated with 2.5 , i.e.,

$$
\dot{x}(t)=c(x, t), \quad x(0)=x_{0}
$$

We compute that

$$
\frac{d}{d t} u(x(t), t)=u_{t}(x(t), t)+c(x(t), t) \cdot u_{x}(x(t), t)=g(x(t), t)
$$

This implies that

$$
u(x(t), t)=u_{0}\left(x_{0}\right)+\int_{0}^{t} g(x(s), s) d s
$$

Therefore, the solution $u$ can be solved backward along characteristic curves.
How to solve 2.5?

It is divided into three steps.

Step 1: Solve the ODE

$$
\dot{x}(t)=c(x, t)
$$

and get the general solution of form

$$
\xi(x, t)=C .
$$

Step 2: Change of coordinate

$$
u(x, t)=V(\xi(x, t), t)
$$

we then have

$$
V_{t}(\xi, t)=f(x, t)=F(\xi, t)
$$

where

$$
f(x, t)=F(\xi(x, t), t)
$$

Step 3: Solve the ODE

$$
V_{t}(\xi, t)=F(\xi, t)
$$

to obtain $V$ and then recover $u(x, t)$.

Example 1. Solve the initial value problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+x u_{x}(x, t) & =e^{t} \\
u(x, 0) & =\sin x
\end{aligned}\right.
$$

## Answer.

Step 1. Solve the ODE

$$
\dot{x}(t)=x(t) \quad \Longrightarrow \quad x(t)=C \cdot e^{t} \quad \Longrightarrow \quad x e^{-t}=C .
$$

Thus,

$$
\xi(x, t)=x \cdot e^{-t}
$$

Step 2. Set $u(x, t)=V(\xi, t)=V\left(x e^{-t}, t\right)$. We have

$$
V_{t}(\xi, t)=e^{t}
$$

This implies that

$$
V(\xi, t)=e^{t}+g(\xi)
$$

Thus, the general solution

$$
u(x, t)=e^{t}+g\left(x e^{-t}\right) .
$$

Step 3. The initial data $u(x, 0)=\sin x$ yields

$$
1+g(x)=\sin x \quad \Longrightarrow \quad g(x)=\sin x-1
$$

The solution

$$
u(x, t)+e^{t}+\sin \left(x e^{-t}\right)-1 .
$$

Example 2. Solve the following Cauchy problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+2 t u_{x}(x, t) & =x, \\
u(x, 0) & =e^{-x} .
\end{aligned}\right.
$$

## Answer.

Step 1. Solve the ODE

$$
\dot{x}(t)=2 t \quad \Longrightarrow \quad x(t)=t^{2}+C \quad \Longrightarrow \quad x-t^{2}=C .
$$

Thus,

$$
\xi=x-t^{2} \quad \text { and } \quad x=\xi+t^{2}
$$

Step 2. Set $u(x, t)=V(\xi, t)$. We have

$$
V_{t}(\xi, t)=x=\xi+t^{2} .
$$

This implies that

$$
V(\xi, t)=\int \xi+t^{2} d t=\xi t+\frac{t^{3}}{3}+g(\xi) .
$$

Thus, the general solution

$$
\begin{aligned}
u(x, t) & =V\left(x-t^{2}\right)=\frac{t^{3}}{3}+\left(x-t^{2}\right) t+g\left(x-t^{2}\right) \\
& =-\frac{2 t^{3}}{3}+t x+g\left(x-t^{2}\right)
\end{aligned}
$$

Step 3. The initial data $u(x, 0)=e^{-x}$ yields

$$
g(x)=e^{-x} .
$$

The solution

$$
u(x, t)=-\frac{2 t^{3}}{3}+t x+e^{t^{2}-x}
$$

### 2.2 Nonlinear advection equations

Consider the first order nonlinear PDE

$$
\left\{\begin{align*}
u_{t}+c(u) \cdot u_{x} & =0  \tag{2.6}\\
u(x, 0) & =\Phi(x)
\end{align*}\right.
$$

where

- $c(u)$ is a non constant speed which depends on $u$;
- $\Phi$ is a given initial data.

Goal: Find $u(x, t)$.

- The method of characteristics. Let $x(t)$ be the solution of

$$
\dot{x}(t)=c(u(x(t), t)), \quad x(0)=\beta .
$$

The curve $(x(t), t)$ is called a characteristic curve.
Observe that

$$
\begin{aligned}
\frac{d}{d t} u(x(t), t) & =u_{t}(x(t), t)+\dot{x}(t) \cdot u_{x}(x(t), t) \\
& =u_{t}(x(t), t)+c(u(x(t), t)) \cdot u_{x}(x(t), t)=0
\end{aligned}
$$

This implies that the function $u$ is constant along the characteristic curve $(x(t), t)$. In particular, we have

$$
\begin{equation*}
u(x(t), t)=u(x(0), 0)=\Phi(\beta) \tag{2.7}
\end{equation*}
$$

Hence,

$$
c(u(x(t), t))=c(\Phi(\beta)),
$$

and it yields

$$
x(t)=c(\Phi(\beta)) \cdot t+\beta .
$$

Recalling (2.7), we obtain the general formula for the solution

$$
u(\beta+c(\Phi(\beta)) t, t)=\Phi(\beta) .
$$

Remark. The method can be applied as long as the solution is smooth.
Example 1. Consider the Burger's equation with initial condition

$$
\left\{\begin{aligned}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x} & =0 \\
u(x, 0) & =x
\end{aligned}\right.
$$

Find $u(x, 1)$.
Answer. Since $c(u)=u$ and $\Phi(x)=x$, one has

$$
c(\Phi(\beta))=\beta
$$

Thus,

$$
u(\beta+\beta \cdot t, t)=\Phi(\beta)=\beta
$$

Set $x=\beta+\beta \cdot t$, we have

$$
\beta=\frac{x}{1+t} .
$$

The solution

$$
u(x, t)=\frac{x}{t+1}
$$

In particular,

$$
u(x, 1)=\frac{x}{2} .
$$

Example 2. Consider the Burger's equation with initial condition

$$
\left\{\begin{aligned}
u_{t}+\left(\frac{u^{4}}{4}\right)_{x} & =0 \\
u(x, 0) & =x^{\frac{1}{3}}
\end{aligned}\right.
$$

Find $u(x, 1)$.
Answer. Since $c(u)=u^{3}$ and $\Phi(x)=x^{\frac{1}{3}}$, one has

$$
c(\Phi(\beta))=\beta
$$

Thus,

$$
u(\beta+\beta \cdot t, t)=\Phi(\beta)=\beta^{\frac{1}{3}}
$$

Set $x=\beta+\beta \cdot t$, we have

$$
\beta=\frac{x}{1+t} .
$$

The solution

$$
u(x, t)=\left(\frac{x}{t+1}\right)^{\frac{1}{3}}
$$

## 3 Linear 1D Partial Differential Equations in unbounded domains

### 3.1 1D heat equation

The heat equation on a thin rod

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t)+f(x, t),  \tag{3.1}\\
u(x, 0)=\Phi(x)
\end{array}\right.
$$

where

- $\alpha^{2}$ : a given positive constant which is the diffusivity of the rod;
- $\Phi(x)$ : a given initial temperature at point $x$;
- $u(x, t)$ : temperature at point $x$ at time $t$

Goal: Find the presentation formula of $u$.

### 3.1.1 Derivation of the 1 d heat equation

Consider 1-D rod of length $L$ such that

- Temperature at all points of a cross section is constant;
- Heat flows only in the $x$-direction;
- made of a single homogeneous conducting material.

Let us denote by

- $\rho$ : density fo the rod;
- $A$ : cross-section area if the rod;
- $c$ : thermal capacity of the rod (measures the ability of the rod to store heat);
- $k$ : thermal conductivity of the rod (measures the ability to conduct heat);
- $g(x, t)$ : external heat source.

Goal: Find $u(x, t)$ the temperature at location $x$ at time $t$.
Given any two point $a$ and $b$ with $a<b$, the integral

$$
\int_{a}^{b} c \rho A u(x, t) d x=\text { total amount heat in the interval }[a, b] \text { at time } t .
$$

We compute

$$
\int_{a}^{b} c \rho A u_{t}(x, t) d x=\frac{d}{d t} \int_{a}^{b} c \rho A u(x, t) d x
$$

$=[$ flux of heat crossing at $a]-[$ flux of heat crossing at $b]+[$ total heat generated in side $[a, b]]$

> "By using the Fourier's law"
> $=\kappa A\left[u_{x}(b, t)-u_{x}(a, t)\right]+A \cdot \int_{a}^{b} g(x, t) d x$.
"By using the mean value theorem"

$$
=k A \int_{a}^{b} u_{x x}(x, t) d x+A \cdot \int_{a}^{b} g(x, t) d t .
$$

Thus,

$$
\int_{a}^{b} u_{t}(x, t) d x=\frac{k}{c \rho} \int_{a}^{b} u_{x x}(x, t) d x+\frac{1}{c \rho} \cdot \int_{a}^{b} g(x, t) d t
$$

for all $a<b$. This implies the second order linear PDEs

$$
u_{t}=\alpha^{2} \cdot u_{x x}+f(x, t) .
$$

where

$$
\alpha^{2} \doteq \frac{k}{c \rho} \quad \text { and } \quad f(x, t) \doteq \frac{g(x, t)}{c \rho}
$$

### 3.1.2 Presentation formula of 1D heat equation without source

Consider the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t), \quad x \in \mathbb{R}, t>0  \tag{3.2}\\
u(x, 0)=\Phi(x) \quad x \in \mathbb{R} .
\end{array}\right.
$$

Goal: Find the presentation formula of $u$.

## 1. Heat kernel or fundamental solution

$$
\begin{equation*}
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t) \tag{3.3}
\end{equation*}
$$

Observe that

- If $u$ solves (3.3) then $w \doteq u_{x}$ also solves (3.3).
- If $u(x, t)$ solves (3.3) then $U(x, t)=u\left(\lambda \cdot x, \lambda^{2} \cdot t\right)$ also solves (3.3) for every constant $\lambda \in \mathbb{R}$.
Thus, we will look for a solution with form

$$
u(x, t)=v\left(\frac{x}{\sqrt{t}}\right) .
$$

A direct computation yields

$$
u_{t}=-\frac{x t^{\frac{-3}{2}}}{2} \cdot v^{\prime}\left(\frac{x}{\sqrt{t}}\right) \quad \text { and } \quad u_{x x}=\frac{1}{t} \cdot v^{\prime \prime}\left(\frac{x}{\sqrt{t}}\right) .
$$

From (3.2), we obtain that

$$
v^{\prime \prime}\left(\frac{x}{\sqrt{t}}\right)+\frac{z}{2 \alpha^{2}} \cdot v^{\prime}\left(\frac{x}{\sqrt{t}}\right)=0 .
$$

Set

$$
z=\frac{x}{\sqrt{t}} \quad \text { and } \quad w(z)=v^{\prime}(z)
$$

we have

$$
w^{\prime}+\frac{z}{2 \alpha^{2}} w=0 \quad \Longrightarrow \quad w(z)=C e^{\frac{-z^{2}}{4 \alpha^{2}}} .
$$

Thus,

$$
u_{x}(x, t)=w\left(\frac{x}{\sqrt{t}}\right)=C e^{-\frac{x^{2}}{4 \alpha^{2} t}}
$$

The heat kernel (fundamental solution) is

$$
G(x, t)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}} .
$$

## Properties of heat kernel.

1. $G(x, t)$ solves (3.3);
2. For every $t>0$, it holds

$$
\int_{-\infty}^{\infty} G(x, t) d x=1
$$

3. As $t \rightarrow 0+, G(\cdot, t)$ converges to Dirac delta function $\delta_{0}(\cdot)$.

Theorem 3.1 Assume that $\Phi$ is bounded continuous function. The initial value problem (3.2) has a unique smooth solution $u(x, t)$ with

$$
\lim _{|x| \rightarrow+\infty} u(x, t)=0 \quad t>0 .
$$

Moreover, u can be presented by

$$
u(x, t)=G(\cdot, t) * \Phi(x)=\int_{-\infty}^{\infty} G(x-y, t) \cdot \Phi(y) d y
$$

for all $(x, t) \in \mathbb{R} \times(0,+\infty)$.
Proof. 1. Let's first show that $u(x, t)$ solves $\sqrt[3.2]{ }$. We compute

$$
u_{t}(x, t)=\int_{-\infty}^{+\infty} G_{t}(x-y, t) \cdot \Phi(y) d y
$$

and

$$
u_{x x}(x, t)=\int_{-\infty}^{+\infty} G_{x x}(x-y, t) \cdot \Phi(y) d y
$$

Since $G$ is a fundamental solution of (3.3), we get

$$
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t)
$$

On the other hand, the third property (3) of $G$ yields
$u(x, 0)=\lim _{t \rightarrow 0+} G(\cdot, t) * \Phi(x)=\int_{-\infty}^{\infty} G(x-y, t) \cdot \Phi(y) d y=\int_{-\infty}^{+\infty} \delta_{0}(x-y) \cdot \Phi(y) d y=\Phi(x)$.
Thus, $u$ is a solution of (3.2).
2. To complete the proof, we will show that (3.2) has at most one solution. Assume by a contradiction that (3.2) has two different solutions $u_{1}$ and $u_{2}$. Set

$$
v(x, t)=u_{2}(x, t)-u_{1}(x, t)
$$

Then, $v$ is a solution of

$$
v_{t}(x, t)=\alpha^{2} \cdot v_{x x}(x, t), \quad v(x, 0)=0 .
$$

Let's consider the energy function

$$
E(t)=\int_{-\infty}^{\infty} v^{2}(t, x) d x .
$$

We compute

$$
\frac{d}{d t} E(t)=2 \int_{-\infty}^{\infty} v(x, t) \cdot v_{x x}(x, t) d x=-2 \int_{-\infty}^{\infty} v_{x}^{2}(x, t) d x \leq 0
$$

The functon $E(t)$ is decreasing. In particular

$$
0 \leq E(t) \leq E(0)=0 \quad \text { for all } x \in[0, \infty)
$$

Thus, $v(x, t)=0$ for all $(x, t) \in \mathbb{R} \times[0,+\infty)$, and it yields a contradiction.

Example 1. Consider the initial value problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)=4 u_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\sin x
\end{array}\right.
$$

Find the formula of the solution $u$.
Answer. We have

$$
\alpha^{2}=4 \quad \text { and } \quad \Phi(x)=\sin x .
$$

The heat kernel

$$
G(x, t)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}=\frac{1}{4 \sqrt{\pi t}} \cdot e^{-\frac{x^{2}}{16 t}} .
$$

The solution

$$
u(x, t)=\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{16 t}} \cdot \sin y d y
$$

Example 2. Find the formula of the solution to the Cauchy problem

$$
\left\{\begin{aligned}
u_{t}(x, t)-2 u & =9 u_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
u(x, 0) & =e^{-x} \quad x \in \mathbb{R} .
\end{aligned}\right.
$$

Answer. 1. Set $v=e^{-2 t} \cdot u$. We compute

$$
v_{t}(x, t)=e^{-2 t} \cdot\left(u_{t}(x, t)-2 u(x, t)\right), \quad v_{x x}=e^{-2 t} \cdot u_{x x}
$$

Thus, $v$ is the solution to

$$
\left\{\begin{aligned}
v_{t}(x, t) & =9 v_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
v(x, 0) & =e^{-x}
\end{aligned}\right.
$$

2. The heat kernel is

$$
G(x, t)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}=\frac{1}{6 \sqrt{\pi t}} \cdot e^{\frac{-x^{2}}{36 t}}
$$

Thus,

$$
v(x, t)=\frac{1}{6 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{36 t}} \cdot e^{-y} d y=\frac{1}{6 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{36 t}-y} d y
$$

The solution

$$
u(x, t)=e^{2 t} \cdot v(x, t)=\frac{e^{2 t}}{6 \sqrt{\pi t}} \cdot \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{36 t}-y} d y
$$

Example 3. Find the formula of the solution to the Cauchy problem

$$
\left\{\begin{aligned}
u_{t}(x, t)+2 t u & =4 u_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
u(x, 0) & =\frac{1}{1+x^{2}}
\end{aligned}\right.
$$

Answer. 1. We compute

$$
\mu(t)=\int_{0}^{t} 2 s d s=t^{2}
$$

and set

$$
v(x, t)=e^{t^{2}} \cdot u(x, t)
$$

Then, $v$ is the solution to

$$
\left\{\begin{aligned}
v_{t}(x, t) & =4 v_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
v(x, 0) & =\frac{1}{1+x^{2}} .
\end{aligned}\right.
$$

2. The heat kernel is

$$
G(x, t)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}=\frac{1}{4 \sqrt{\pi t}} \cdot e^{\frac{-x^{2}}{16 t}}
$$

Thus,

$$
v(x, t)=\frac{1}{4 \sqrt{\pi t}} \cdot \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{16 t}} \cdot \frac{1}{1+y^{2}} d y
$$

The solution is

$$
u(x, t)=\frac{e^{-t^{2}}}{4 \sqrt{\pi t}} \cdot \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{16 t}} \cdot \frac{1}{1+y^{2}} d y
$$

### 3.1.3 Semi-infinite domains

Consider the initial boundary value problem

$$
\left\{\begin{align*}
u_{t}(x, t) & =\alpha^{2} \cdot u_{x x}(x, t), \quad x>0, t>0  \tag{3.4}\\
u(0, t) & =0 \quad t>0 \\
u(x, 0) & =\Phi(x) \quad x>0 .
\end{align*}\right.
$$

Goal: Find $u(x, t)$ for any $x, t>0$.
Answer. Let's consider the odd extension of $\Phi$ which is defined as

$$
\Psi(x)=\left\{\begin{array}{lc}
\Phi(x) & \text { for all } x>0 \\
-\Phi(-x) & x<0
\end{array}\right.
$$

with $\Psi(0)=0$.
Let $v$ be the solution of

$$
\left\{\begin{aligned}
v_{t}(x, t) & =\alpha^{2} v_{x x}(x, t), \quad x>\mathbb{R}, t>0 \\
v(x, 0) & =\Psi(x) .
\end{aligned}\right.
$$

The heat Kernel

$$
G(x, t)=\frac{1}{\sqrt{4 \alpha^{2} \pi t}} \cdot e^{\frac{-x^{2}}{4 \alpha^{2} t}}
$$

Thus,

$$
\begin{aligned}
v(x, t) & =\int_{-\infty}^{+\infty} G(x-y, t) \cdot \Psi(y) d y \\
& =-\int_{-\infty}^{0} G(x-y, t) \Phi(-y) d y+\int_{0}^{\infty} G(x-y, t) \cdot \Phi(y) d y \\
& =\int_{0}^{\infty}[G(x-y)-G(x+y)] \cdot \Phi(y) d y .
\end{aligned}
$$

Therefore, the solution of (3.4) is

$$
u(x, t)=\int_{0}^{\infty}[G(x-y)-G(x+y)] \cdot \Phi(y) d y \quad \text { for all } x>0, t>0
$$

Example 1. Consider the initial boundary value problem

$$
\left\{\begin{aligned}
u_{t}(x, t) & =9 \cdot u_{x x}(x, t), \quad x \in \mathbb{R}, t>0 \\
u(0, t) & =0 \quad t>0 \\
u(x, 0) & =e^{-x} \quad x>\mathbb{R}
\end{aligned}\right.
$$

Find the presentation formula of $u(x, t)$.
Answer. We have

$$
\alpha^{2}=9 \quad \text { and } \quad \Phi(x)=e^{-x} .
$$

Thus, the heat kernel is

$$
G(x, t)=\frac{1}{6 \sqrt{\pi t}} \cdot e^{-\frac{x^{2}}{36 t}}
$$

The solution is

$$
\begin{aligned}
u(x, t) & =\int_{0}^{\infty}[G(x-y, t)-G(x+y, t)] \cdot \Phi(y) d y \\
& =\frac{1}{6 \sqrt{\pi t}} \cdot \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{36 t}}-e^{-\frac{(x+y)^{2}}{36 t}}\right] \cdot e^{-y} d y
\end{aligned}
$$

### 3.1.4 Sources and Duhamel's principle

1. Duhamel's principle for ODEs. Consider the first order ODEs with sources

$$
\left\{\begin{align*}
y^{\prime}(t)+a \cdot y(t) & =F(t), \quad t>0,  \tag{3.5}\\
y(0) & =y_{0}
\end{align*}\right.
$$

where

- $a$ and $y_{0}$ are given constant;
- $F(t)$ is a given external source;

Goal: Find the solution $u(t)$.
Answer. Observe that

$$
\frac{d}{d t}\left[e^{a t} y(t)\right]=e^{a t} \cdot y^{\prime}(t)+a e^{a t} y(t)=e^{a t} \cdot\left[y^{\prime}(t)+a \cdot y(t)\right]
$$

Thus,

$$
\frac{d}{d t}\left[e^{a t} y(t)\right]=e^{a t} \cdot F(t)
$$

and this implies that

$$
e^{a t} \cdot y(t)-y_{0}=\int_{0}^{t} e^{a \cdot s} F(s) d s
$$

The solution of (3.5) is

$$
y(t)=e^{-a t} \cdot y_{0}+\int_{0}^{t} e^{a(s-t)} \cdot F(s) d s
$$

Example 1. Find the solution of the Cauchy problem

$$
\left\{\begin{aligned}
y^{\prime}(t)+y(t) & =e^{2 t}, \quad t>0 \\
y(0) & =2
\end{aligned}\right.
$$

Answer. We have

$$
a=1, \quad y_{0}=2 \quad \text { and } \quad F(t)=e^{2 t}
$$

Using the Duhamel's principle, the solution is

$$
\begin{aligned}
y(t) & =e^{-a t} \cdot y_{0}+\int_{0}^{t} e^{a(s-t)} \cdot F(s) d s=2 e^{-t}+\int_{0}^{t} e^{3 s-t} d s \\
& =2 e^{-t}+\frac{1}{3} e^{-t} \cdot\left[e^{3 t}-1\right]=\frac{5}{3} \cdot e^{-t}+\frac{1}{3} \cdot e^{2 t} .
\end{aligned}
$$

2. Duhamel's principle for PDEs. Consider the linear PDEs

$$
\left\{\begin{align*}
u_{t}(x, t)+A u & =f(x, t), \quad t>0, x \in \mathbb{R}  \tag{3.6}\\
u(x, 0) & =0, \quad x \in \mathbb{R}
\end{align*}\right.
$$

where

- $A$ is a linear differential operators;
- $f(x, t)$ is a given function of $x$ and $t$;
- $u(x, t)$ is an unknown of $x$ and $t$.

Theorem 3.2 Let $w(x, t, s)$ be the solution of

$$
\left\{\begin{array}{l}
w_{t}+A w=0, \quad t>0, x \in \mathbb{R}, \\
w(x, 0, s)=f(x, s), \quad x \in \mathbb{R},
\end{array}\right.
$$

Then the function

$$
u(x, t)=\int_{0}^{t} w(x, t-s, s) d s
$$

is the solution of (3.6).
Proof. Using the fact that

$$
\frac{d}{d t} \int_{0}^{t} K(t, s) d s=K(t, t)+\int_{0}^{t} K_{t}(t, s) d s
$$

we compute that

$$
\begin{aligned}
u_{t}(x, t) & =\frac{d}{d t} \int_{0}^{t} w(x, t-s, s) d s \\
& =w(x, 0, t)+\int_{0}^{t} w_{t}(x, t-s, s) d s \\
& =f(x, t)+\int_{0}^{t} w_{t}(x, t-s, s) d s
\end{aligned}
$$

On the other hand, the linear property of $A$ implies that

$$
A u(x, t)=A \int_{0}^{t} w(x, t-s, s) d s=\int_{0}^{t} A w(x, t-s, s) d s
$$

Recalling that

$$
w_{t}+A w=0
$$

we then have

$$
u_{t}+A u=f(x, t)+\int_{0}^{t} w_{t}(x, t-s, s)+A w(x, t-s, s) d s=f(x, t)
$$

On the other hand,

$$
u(x, 0)=\int_{0}^{0} w(x,-s, s) d s=0
$$

Thus, $u$ is the solution to (3.6).
3. 1D Heat equation with sources. Consider the first order PDE with sources

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t)+f(x, t), \quad t>0, x \in \mathbb{R}  \tag{3.7}\\
u(x, 0)=0, \quad x \in \mathbb{R}
\end{array}\right.
$$

where $\alpha$ is a given constant and $f(x . t)$ is a given function of $x$ and $t$.

Goal: Find the $u(x, t)$ the temperature at point $x$ at time $t$.

Answer. Rewrite the equation

$$
\left\{\begin{align*}
u_{t}(x, t)-\alpha^{2} \cdot u_{x x}(x, t) & =f(x, t), \quad t>0, x \in \mathbb{R}  \tag{3.8}\\
u(x, 0) & =0, \quad x \in \mathbb{R}
\end{align*}\right.
$$

In this case, we have

$$
A u=-\alpha^{2} \cdot u_{x x}
$$

Step 1. Let $w(x, t, \tau)$ be the solution of

$$
\left\{\begin{aligned}
w_{t}-\alpha^{2} \cdot w & =0, \quad t>0, x \in \mathbb{R} \\
w(x, 0, s) & =f(x, s), \quad x \in \mathbb{R}
\end{aligned}\right.
$$

We have

$$
w(x, t, s)=\int_{-\infty}^{+\infty} G(x-y, t) \cdot f(y, s) d y
$$

where the heat kernel

$$
G(x, t)=\frac{1}{\sqrt{4 \alpha^{2} \pi t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}
$$

Step 2. Using the Duhamel's principle, we obtain that

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} w(x, t-s, s) d s \\
& =\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) \cdot f(y, s) d y d s
\end{aligned}
$$

Summary. The solution of (3.7) is

$$
u(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) \cdot f(y, s) d y d s
$$

where

$$
G(x, t)=\frac{1}{\sqrt{4 \alpha^{2} \pi t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}} .
$$

Example 1. Find the presentation formula of the solution to

$$
\left\{\begin{array}{l}
u_{t}(x, t)=4 u_{x x}(x, t)+e^{-x} t, \quad t>0, x \in \mathbb{R} \\
u(x, 0)=0, \quad x \in \mathbb{R}
\end{array}\right.
$$

Answer. We have

$$
\alpha^{2}=4 \quad \text { and } \quad f(x, t)=e^{-x} \cdot t .
$$

The heat kernel

$$
G(x, t)=\frac{1}{4 \sqrt{\pi t}} \cdot e^{\frac{-x^{2}}{16 t}} .
$$

The solution

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} \int_{-\infty}^{+\infty} G(x-y, t-s) \cdot f(y, s) d s \\
& =\int_{0}^{t} \int_{-\infty}^{+\infty} \frac{1}{4 \sqrt{\pi(t-s)}} \cdot e^{\frac{-(x-y)^{2}}{16(t-s)}} \cdot e^{-y} \cdot s d y d s \\
& =\int_{0}^{t} \int_{-\infty}^{+\infty} \frac{s}{4 \sqrt{\pi(t-s)}} \cdot e^{\frac{-(x-y)^{2}}{16(t-s)}-y} .
\end{aligned}
$$

4. More general case. Let's consider the equation

$$
\left\{\begin{align*}
u_{t}(x, t) & =\alpha^{2} \cdot u_{x x}(x, t)+f(x, t), \quad t>0, x \in \mathbb{R}  \tag{3.9}\\
u(x, 0) & =\phi(x), \quad x \in \mathbb{R},
\end{align*}\right.
$$

Goal: Find the $u(x, t)$ the temperature at point $x$ at time $t$.
Answer. Using the superposition principle the solution

$$
u=v+w
$$

where $v$ is the solution to

$$
\left\{\begin{aligned}
v_{t}(x, t) & =\alpha^{2} \cdot v_{x x}(x, t)+f(x, t), \quad t>0, x \in \mathbb{R}, \\
v(x, 0) & =0, \quad x \in \mathbb{R},
\end{aligned}\right.
$$

and $w$ is the solution to

$$
\left\{\begin{aligned}
w_{t}(x, t) & =\alpha^{2} \cdot w_{x x}(x, t), \quad t>0, x \in \mathbb{R} \\
w(x, 0) & =\phi(x), \quad x \in \mathbb{R}
\end{aligned}\right.
$$

We have

$$
v(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) \cdot f(y, s) d y d s
$$

and

$$
w(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \cdot \phi(y) d y
$$

The solution is

$$
u(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) \cdot f(y, s) d y d s+\int_{-\infty}^{\infty} G(x-y, t) \cdot \phi(y) d y
$$

Example 2. Find the presentation formula for the solution of

$$
\left\{\begin{aligned}
4 u_{t}(x, t) & =9 u_{x x}(x, t)-4 \cos t, \quad t>0, x \in \mathbb{R}, \\
u(x, 0) & =\sin x, \quad x \in \mathbb{R},
\end{aligned}\right.
$$

Answer. Rewrite the equation

$$
u_{t}=\frac{9}{4} \cdot u_{x x}-\cos t
$$

We have

$$
\alpha^{2}=\frac{9}{4}, \quad f(t)=-\cos t \quad \text { and } \quad \phi(x)=\sin x
$$

The heat kernel

$$
G(x, t)=\frac{1}{3 \sqrt{\pi t}} \cdot e^{\frac{-x^{2}}{9 t}} .
$$

The solution

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) \cdot f(s) d y d s+\int_{-\infty}^{\infty} G(x-y, t) \cdot \phi(y) d y \\
& =-\int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{3 \sqrt{\pi(t-s)}} \cdot e^{\frac{-(x-y)^{2}}{9(t-s)}} \cdot \cos s d y d s+\int_{-\infty}^{\infty} \frac{1}{3 \sqrt{\pi t}} \cdot e^{\frac{-(x-y)^{2}}{t}} \cdot \sin y d y
\end{aligned}
$$

### 3.2 1D wave equation

The motion equation of vibrating string

$$
\left\{\begin{align*}
u_{t t}(x, t) & =c^{2} \cdot u_{x x}(x, t)+f(x, t)  \tag{3.1}\\
u(x, 0) & =g(x) \\
u_{t}(x, 0) & =h(x)
\end{align*}\right.
$$

where

- $c^{2}$ is the wave number which is computed by

$$
c^{2}=\frac{T}{\rho} .
$$

Here $T$ is the tension of the string and $\rho$ is the density such that $\rho \Delta x$ is the mass of the string segment.

- $f(x, t)$ is a given external force applied along the string at $x$ at time $t$;
- $g(x)$ is the initial position of the string at point $x$;
- $h(x)$ is the initial standing velocity of the string at point $x$;

Goal: Find $u(x, t)$ the position of string at point $x$ at time $t$.

### 3.2.1 General solution

Consider the 1D wave equation

$$
\begin{equation*}
u_{t t}=c^{2} \cdot u_{x x} \tag{3.2}
\end{equation*}
$$

Observe that the above equation can be rewritten as

$$
\frac{d}{d t}\left[u_{t}-c \cdot u_{x}\right]+c \cdot \frac{d}{d x}\left[u_{t}-c \cdot u_{x}\right]=0 .
$$

Set $w \doteq u_{t}-c \cdot u_{x}$. Then $w$ solves the linear advection equation

$$
w_{t}+c \cdot w_{x}=0
$$

Thus,

$$
w(x, t)=F_{1}(x-c t)
$$

for some smooth function $F_{1}$. This implies that

$$
u_{t}(x, t)-c \cdot u_{x}(x, t)=F_{1}(x-c t)
$$

Similarly, we have that

$$
u_{t}(x, t)+c \cdot u_{x}(x, t)=G_{1}(x+c t) .
$$

Thus,

$$
u_{t}(x, t)=\frac{1}{2} \cdot\left[F_{1}(x-c t)+G_{1}(x+c t)\right] .
$$

Solving this equation, one gets

$$
u(x, t)=G(x+c t)+F(x-c t)
$$

Summary. The general solution of the wave equation

$$
u_{t t}(x, t)=c^{2} \cdot u_{x x}(x, t)
$$

is

$$
u(x, t)=G(x+c t)+F(x-c t) .
$$

Here $G(x+c t)$ is the left traveling wave and $F(x-c t)$ is the right traveling wave with speed $c$.

Example 1. Find the general solution of

$$
4 \cdot u_{t t}(x, t)-9 \cdot u_{x x}(x, t)=0
$$

Answer. Rewrite the equation

$$
u_{t t}(x, t)=\frac{9}{4} \cdot u_{x x}(x, t) \quad \Longrightarrow \quad c=\frac{3}{2}
$$

The general solution is

$$
u(x, t)=F(x-3 / 2 t)+G(x+3 / 2 t)
$$

for some smooth function $F$ and $G$.

### 3.2.2 D'Alembert's formula

Consider the Cauchy problem

$$
\left\{\begin{align*}
u_{t t}(x, t)=c^{2} \cdot u_{x x}(x, t), & \text { for all } x \in \mathbb{R}, t>0  \tag{3.3}\\
u(x, 0) & =f(x), \\
& \text { for all } x \in \mathbb{R} \\
u_{t}(x, 0) & =g(x), \quad \text { for all } x \in \mathbb{R}
\end{align*}\right.
$$

where $c$ is a given constant speed, $f$ is a given initial position and $g$ is a given initial standing velocity.

Goal: Find $u(x, t)$.
Answer. From the previous subsection, the general solution of the 1-D wave equation is

$$
u(x, t)=F(x-c t)+G(x+c t)
$$

At time $t=0$, we have

$$
\left\{\begin{array} { r l } 
{ u ( x , 0 ) } & { = f ( x ) } \\
{ u _ { t } ( x , 0 ) } & { = g ( x ) }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{rl}
F(x)+G(x) & =f(x) \\
-c F^{\prime}(x)+c G^{\prime}(x) & =g(x)
\end{array}\right.\right.
$$

for all $x \in \mathbb{R}$. This implies

$$
\left\{\begin{aligned}
F(x-c t)+G(x-c t) & =f(x-c t) \\
F(x+c t)+G(x+c t) & =f(x+c t) \\
G^{\prime}(x)-F^{\prime}(x) & =\frac{1}{c} \cdot g(x)
\end{aligned}\right.
$$

Integrating both sides of the last ODE from $x-c t$ to $x+c t$, we have

$$
\int_{x-c t}^{x+c t} G^{\prime}(y)-F^{\prime}(y) d y=\frac{1}{c} \cdot \int_{x-c t}^{x+c t} g(y) d y
$$

and it yields

$$
G(x+c t)-G(x-c t)+F(x-c t)-F(x+c t)=\frac{1}{c} \cdot \int_{x-c t}^{x+c t} g(y) d y
$$

The D'Alembert's formula for $u$

$$
u(x, t)=\frac{1}{2} \cdot[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \cdot \int_{x-c t}^{x+c t} g(y) d y
$$

Example 2. Solve the Cauchy problem

$$
\left\{\begin{array}{rlrl}
9 u_{t t}(x, t)-16 u_{x x}(x, t) & =0, & x \in \mathbb{R}, t>0 \\
u(x, 0) & =e^{-x}, & & x \in \mathbb{R} \\
u_{t}(x, 0) & =x, & x \in \mathbb{R}
\end{array}\right.
$$

Answer. Rewrite the equation

$$
u_{t t}(x, t)=\left(\frac{4}{3}\right)^{2} \cdot u_{x x}(x, t)
$$

We have

$$
c=\frac{4}{3}, \quad f(x)=e^{-x} \quad \text { and } \quad g(x)=x
$$

Using the D'Alembert's formula, we obtain

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \cdot[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \cdot \int_{x-c t}^{x+c t} g(y) d y \\
& =\frac{1}{2} \cdot\left[e^{x-\frac{4}{3} \cdot t}+e^{x+\frac{4}{3} \cdot t}\right]+\frac{3}{8} \cdot \int_{x-\frac{4}{3} \cdot t}^{x+\frac{4}{3} \cdot t} y d y \\
& =\frac{1}{2} \cdot\left[e^{x-\frac{4}{3} \cdot t}+e^{x+\frac{4}{3} \cdot t}\right]+x t
\end{aligned}
$$

Example 3. Solve the Cauchy problem

$$
\left\{\begin{aligned}
4 u_{t t}(x, t)-25 u_{x x}(x, t) & =0, & x \in \mathbb{R}, t>0 \\
u(x, 0) & =\frac{1}{x^{2}+1}, & x \in \mathbb{R} \\
u_{t}(x, 0) & =x e^{-x^{2}}, & x \in \mathbb{R}
\end{aligned}\right.
$$

Answer.

$$
u_{t t}(x, t)=\left(\frac{5}{2}\right)^{2} \cdot u_{x x}(x, t)
$$

We have

$$
\begin{aligned}
& c=\frac{5}{2}, \quad f(x)=\frac{1}{x^{2}+1} \quad \text { and } \quad g(x)=x e^{-x} \\
u(x, t)= & \frac{1}{2} \cdot[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \cdot \int_{x-c t}^{x+c t} g(y) d y \\
= & \frac{1}{2} \cdot\left[\frac{1}{(x-5 / 2 t)^{2}+1}+\frac{1}{(x+5 / 2 t)^{2}+1}\right]+\frac{1}{5} \cdot \int_{x-\frac{5}{2} \cdot t}^{x+\frac{5}{2} \cdot t} y e^{-y^{2}} d y \\
= & \frac{1}{2} \cdot\left[\frac{1}{(x-5 / 2 t)^{2}+1}+\frac{1}{(x+5 / 2 t)^{2}+1}\right]-\frac{1}{10} \cdot\left[e^{-(x-5 / 2 t)^{2}}-e^{-(x+5 / 2 t)^{2}}\right]
\end{aligned}
$$

2. Special case If the initial velocity $g=0$ then the solution of 3.5 is

$$
u(x, t)=\frac{1}{2} \cdot[f(x-c t)+f(x+c t)]
$$

Example 4. Consider the IVP

$$
\left\{\begin{aligned}
u_{t t}(x, t)-4 u_{x x}(x, t)=0, & x \in \mathbb{R}, t>0 \\
u(x, 0) & =\left\{\begin{array}{cc}
0, & x \notin[-1,1] \\
1-|x| & x \in[-1,1]
\end{array}\right. \\
u_{t}(x, 0)=0, & x \in \mathbb{R} .
\end{aligned}\right.
$$

(a) Find $u(x, 1 / 4)$.
(b) Find $u(x, 1 / 2)$.
(c) Find $u(x, 3 / 4)$.

Answer. We have

$$
c=2, \quad g(x)=0 \quad \text { and } \quad f(x)=\left\{\begin{aligned}
0, & x \notin[-1,1] \\
1-|x| & x \in[-1,1]
\end{aligned}\right.
$$

The solution

$$
u(x, t)=\frac{1}{2} \cdot[f(x-2 t)+f(x+2 t)]
$$

(a) Find $u(x, 1 / 4)$.


The solution at time $t=1 / 4$ is

$$
\begin{aligned}
u(x, 1 / 4) & =\frac{1}{2} \cdot[f(x-1 / 2)+f(x+1 / 2)] \\
& =\left\{\begin{aligned}
0, & x \in(-\infty,-3 / 2) \cup(3 / 2, \infty), \\
\frac{1}{2} \cdot[1-|x+1 / 2|], & x \in[-3 / 2 .-1 / 2) \\
\frac{1}{2} \cdot[2-|x+1 / 2|-|x-1 / 2|], & x \in[-1 / 2.1 / 2] \\
\frac{1}{2} \cdot[1-|x-1 / 2|], & x \in[1 / 2,3 / 2)
\end{aligned}\right.
\end{aligned}
$$

(b) Find $u(x, 1 / 2)$.


The solution at time $t=1 / 2$ is

$$
u(x, 1 / 2)=\frac{1}{2} \cdot[f(x-1)+f(x+1)]
$$

$$
=\left\{\begin{aligned}
0, & x \in(-\infty,-2) \cup(2, \infty), \\
\frac{1}{2} \cdot[1-|x+1|], & x \in[-2,0] \\
\frac{1}{2} \cdot[1-|x-1 / 2|], & x \in[0,2] .
\end{aligned}\right.
$$

(c) Find $u(x, 3 / 4)$.


The solution at time $t=3 / 4$ is

$$
\begin{aligned}
u(x, 3 / 4) & =\frac{1}{2} \cdot[f(x-3 / 2)+f(x+3 / 2)] \\
& =\left\{\begin{array}{cl}
0, & x \in(-\infty,-3 / 2) \cup(-1 / 2,1 / 2) \cup(3 / 2, \infty) \\
\frac{1}{2} \cdot[1-|x+3 / 2|], & x \in[-3 / 2,-1 / 2] \\
\frac{1}{2} \cdot[1-|x-3 / 2|], & x \in[1 / 2,3 / 2]
\end{array}\right.
\end{aligned}
$$

### 3.2.3 1 D wave equation with sources

Consider the 1-D wave equation with sources

$$
\left\{\begin{align*}
u_{t t}(x, t) & =c^{2} \cdot u_{x x}(x, t)+f(x, t), \quad \text { for all } x \in \mathbb{R}, t>0  \tag{3.4}\\
u(x, 0) & =u_{t}(x, 0)=0, \quad \text { for all } x \in \mathbb{R}
\end{align*}\right.
$$

Goal: Find $u(x, t)$.

Answer. Step 1. Fix $s \geq 0$, let $w(x, t, s)$ be the solution of

$$
\left\{\begin{align*}
w_{t t}(x, t, s)=c^{2} \cdot w_{x x}(x, t, s), \quad \text { for all } x \in \mathbb{R}, t>0  \tag{3.5}\\
w(x, 0, s)=0, \quad \text { for all } x \in \mathbb{R} \\
w_{t}(x, 0, s)=f(x, s), \quad \text { for all } x \in \mathbb{R}
\end{align*}\right.
$$

The D'Alembert's formula yields

$$
w(x, t, s)=\frac{1}{2 c} \cdot \int_{x-c t}^{x+c t} f(y, s) d y
$$

Step 2. Apply the Duhamel's principle, we obtain that

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} w(x, t-s, s) d s \\
& =\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
\end{aligned}
$$

Example 1. Solve the initial value problem

$$
\left\{\begin{aligned}
u_{t t}(x, t)=4 \cdot u_{x x}(x, t)+x e^{t}, & \quad \text { for all } x \in \mathbb{R}, t>0 \\
u(x, 0)=u_{t}(x, 0)=0, & \text { for all } x \in \mathbb{R} .
\end{aligned}\right.
$$

Answer. We have

$$
c=2 \quad \text { and } \quad f(x, t)=x e^{t}
$$

The solution is

$$
\begin{aligned}
u(x, t) & =\frac{1}{4} \cdot \int_{0}^{t} \int_{x-2(t-s)}^{x+2(t-s)} y e^{s} d y d s \\
& =\left.\frac{1}{4} \cdot \int_{0}^{t} e^{s} \cdot\left[\frac{1}{2} \cdot y^{2}\right]\right|_{x-2(t-s)} ^{x+2(t-s)} d s \\
& =x \cdot \int_{0}^{t} e^{s}(t-s) d s=x \cdot\left(e^{t}-t-1\right)
\end{aligned}
$$

2. We are now ready to study the general case in (3.1)

$$
\left\{\begin{aligned}
u_{t t}(x, t) & =c^{2} \cdot u_{x x}(x, t)+f(x, t) \\
u(x, 0) & =g(x) \\
u_{t}(x, 0) & =h(x)
\end{aligned}\right.
$$

Goal. Find $u(x, t)$.
Answer. 1. The superposition-principle yields

$$
u=v_{1}+v_{2}
$$

where $v_{1}$ is the solution of

$$
\left\{\begin{aligned}
v_{t t}(x, t)=c^{2} \cdot v_{x x}(x, t)+f(x, t), \quad \text { for all } x \in \mathbb{R}, t>0 \\
v(x, 0)=v_{t}(x, 0)=0, \quad \text { for all } x \in \mathbb{R}
\end{aligned}\right.
$$

and $v_{2}$ is the solution of

$$
\left\{\begin{aligned}
v_{t t}(x, t)=c^{2} \cdot v_{x x}, \quad \text { for all } x \in \mathbb{R}, t>0 \\
v(x, 0)=g(x), \quad v_{t}(x, 0)=h(x) \quad \text { for all } x \in \mathbb{R}
\end{aligned}\right.
$$

2. From the previous results, we have

$$
v_{1}(x, t)=\frac{1}{2 c} \cdot \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
$$

and

$$
v_{2}(x)=\frac{1}{2} \cdot[g(x-c t)+g(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(y) d y .
$$

The solution is
$u(x, t)=\frac{1}{2} \cdot[g(x-c t)+g(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(y) d y+\frac{1}{2 c} \cdot \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s$.

Example 2. Solve the following wave equation

$$
\left\{\begin{aligned}
4 u_{t t}(x, t) & =9 \cdot u_{x x}(x, t)+x, \quad \text { for all } x \in \mathbb{R}, t \geq 0 \\
u(x, 0) & =1, \quad \text { for all } x \in \mathbb{R} \\
u_{t}(x, 0) & =e^{-x} \quad \text { for all } x \in \mathbb{R}
\end{aligned}\right.
$$

Answer. Rewrite the equation

$$
u_{t t}=\frac{9}{4} u_{x x}+\frac{x}{4} .
$$

We have

$$
c=\frac{3}{2}, \quad f=x, \quad g=1 \quad \text { and } \quad h=e^{-x}
$$

The solution
$u(x, t)=\frac{1}{2} \cdot[g(x-c t)+g(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(y) d y+\frac{1}{2 c} \cdot \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s$

$$
\begin{aligned}
& =1+\frac{1}{3} \cdot \int_{x-3 / 2 t}^{x+3 / 2 t} e^{-y} d y+\frac{1}{3} \cdot \int_{0}^{t} \int_{x-3 / 2(t-s)}^{x-3 / 2(t-s)} y d y d s \\
& =1+\frac{1}{3} \cdot\left[e^{3 / 2 t-x}-e^{-x-3 / 2 t}\right]+2 x \cdot \int_{0}^{t}(t-s) d s \\
& =1+\frac{1}{3} \cdot\left[e^{3 / 2 t-x}-e^{-x-3 / 2 t}\right]+x t^{2}
\end{aligned}
$$

### 3.3 Laplace Transform

In this subsection, we will introduce an important transform which is a very powerful tool to convert ODEs into algebraic equation and PDEs into ODEs.

Definition 3.3 Given a piecewise continuous function u such that

$$
|u(t)| \leq C \cdot e^{a t}
$$

for some constant a. The Laplace transform of $u$ is defined as

$$
\mathcal{L}\{u\}(s)=U(s)=\int_{0}^{\infty} u(t) e^{-s t} d t
$$

Inverse Laplace transform

$$
\mathcal{L}^{-1}\{U(s)\}=u(t) \quad \text { if } \quad U(s)=\mathcal{L}\{u\}(s)
$$

Example 1. Find the Laplace transform of

$$
u(t)=e^{a t} \quad \text { for all } t \in \mathbb{R} .
$$

Answer. From the definition, we compute

$$
\begin{aligned}
U(s) & =\int_{0}^{+\infty} e^{a t} \cdot e^{-s t} d t=\int_{0}^{+\infty} e^{(a-s) t} \cdot d t \\
& =\left.\frac{1}{a-s} \cdot e^{(a-s) t}\right|_{0} ^{\infty}=\frac{1}{s-a}
\end{aligned}
$$

for all $s>a$. Therefore, the Laplace transform

$$
\mathcal{L}\{u\}(s)=U(s)=\frac{1}{s-a} \quad \text { for all } s>a
$$

1. Properties of Laplace transform Given two functions $u, v$, the followings hold:
(i) Linearity

$$
\mathcal{L}\left\{c_{1} \cdot u+c_{2} \cdot v\right\}(s)=c_{1} \cdot \mathcal{L}\{u\}(s)+c_{2} \cdot \mathcal{L}\{v\}(s) ;
$$

(ii) First derivative

$$
\mathcal{L}\left\{u^{\prime}\right\}(s)=s \cdot \mathcal{L}\{u\}(s)-u(0)
$$

Second derivative

$$
\mathcal{L}\left\{u^{\prime}\right\}(s)=s^{2} \cdot \mathcal{L}\{u\}(s)-s u(0)-u^{\prime}(0) ;
$$

(iii) Shift theorem

$$
\mathcal{L}\left\{e^{a t} \cdot u\right\}=U(s-a) \quad \text { where } \quad U(s)=\mathcal{L}\{u\}(s
$$

Theorem 3.4 (Convolution theorem) Let $u$ and $v$ be piecewise continuous functions and

$$
|u(t)|,|v(t)| \leq e^{a t} \quad \text { for all } t \in \mathbb{R}
$$

Denote by

$$
(u * v)(t)=\int_{0}^{t} u(t-\tau) \cdot v(\tau) d \tau
$$

Then

$$
\mathcal{L}\{u * v\}(s)=U(s) \cdot V(s) \quad \text { where } \quad U(s)=\mathcal{L}\{u\}, V(s)=\mathcal{L}\{v\}
$$

Moreover,

$$
\mathcal{L}^{-1}\{U(s) V(s)\}=(u * v)(t)
$$

Proof. By the definition, we have

$$
\begin{aligned}
\mathcal{L}\{u * v\}(s) & =\int_{0}^{\infty}(u * v)(t) \cdot e^{-s t} d t \\
& =\int_{0}^{\infty}\left[\int_{0}^{t} u(t-\tau) \cdot v(\tau) d \tau\right] d s \\
& =\int_{0}^{\infty} \int_{0}^{t}\left(u(t-\tau) \cdot e^{-s(t-\tau)}\right) \cdot\left(v(\tau) \cdot e^{-s \tau}\right) d \tau d t
\end{aligned}
$$

Thanks to the Fubini's theorem, it holds

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{t}\left(u(t-\tau) \cdot e^{-s(t-\tau)}\right) \cdot\left(v(\tau) \cdot e^{-s \tau}\right) d \tau d t \\
& =\int_{0}^{\infty} \int_{\tau}^{\infty}\left(u(t-\tau) \cdot e^{-s(t-\tau)}\right) \cdot\left(v(\tau) \cdot e^{-s \tau}\right) d t d \tau \\
& \quad=\left(\int_{0}^{\infty} v(\tau) \cdot e^{-s \tau} d \tau\right) \cdot\left(\int_{0}^{t} u(t) \cdot e^{-s t} d t\right)=U(s) \cdot V(s)
\end{aligned}
$$

Example 2. Find inverse Laplace transform

$$
F(s)=\frac{1}{s \cdot\left(s^{2}+1\right)}
$$

Answer. Let's consider

$$
U(s)=\frac{1}{s} \quad \text { and } \quad V(s)=\frac{1}{s^{2}+1} .
$$

We have

$$
\mathcal{L}^{-1}\{U(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=1 \quad \text { and } \quad \mathcal{L}^{-1}\{V(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{1+s^{2}}\right\}
$$

Using the convolution's theorem

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{U(s) \cdot V(s)}=(1 * \sin (t)) & (t) \\
& =\int_{0}^{t} \sin (\tau) d \tau=-\left.\cos (\tau)\right|_{0} ^{t}=1-\cos (t) .
\end{aligned}
$$

Example 3. Find inverse Laplace transform

$$
F(s)=\frac{1}{(s+1) \cdot\left(1+s^{2}\right)} .
$$

Proof. Let's consider

$$
U(s)=\frac{1}{s+1} \quad \text { and } \quad V(s)=\frac{1}{s^{2}+1}
$$

We have

$$
\mathcal{L}^{-1}\{U(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{1+s}\right\}=e^{-t} \quad \text { and } \quad \mathcal{L}^{-1}\{V(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{1+s^{2}}\right\} .
$$

Using the convolution's theorem

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =\mathcal{L}^{-1}\{U(s) \cdot V(s)\}=\left(e^{-t} * \sin (t)\right)(t)=\int_{0}^{t} e^{t-\tau} \cdot \sin (\tau) d \tau \\
& =\frac{1-e^{-t}(1+\cos (t))}{2}
\end{aligned}
$$

Example 4. (Application to ODEs) Using Laplace transform to solve the Cauchy problem

$$
3 u^{\prime}(t)+2 u(t)=\sin (t) \quad \text { with } \quad u(0)=3
$$

Answer.
Step 1. Set $U(s) \doteq \mathcal{L}\{u\}$. By talking the Laplace transform in both side of the ODE, we have

$$
\begin{aligned}
\mathcal{L}\{\sin t\} & =\mathcal{L}\left\{3 u^{\prime}+2 u\right\} \\
& =3 \cdot \mathcal{L}\left\{u^{\prime}\right\}+2 \cdot \mathcal{L}\{u\}
\end{aligned}
$$

$$
=3 \cdot[s \cdot U(s)-u(0)]+2 \cdot U(s)=3 s U(s)-9+2 U
$$

This implies that

$$
U(s)=\frac{9}{3 s+2}+\frac{F(s)}{3 s+2} \quad \text { where } \quad F(s)=\mathcal{L}\{\sin t\}
$$

Step 2. Using the convolution's theorem, we recover the solution

$$
\begin{aligned}
u(t) & =\mathcal{L}^{-1}\left\{\frac{9}{3 s+2}\right\}+\mathcal{L}^{-1}\left\{\frac{V(s)}{3 s+2}\right\} \\
& =3 \cdot \mathcal{L}^{-1}\left\{\frac{1}{s+\frac{2}{3}}\right\}+\frac{1}{3} \cdot \mathcal{L}^{-1}\left\{V(s) \cdot \frac{1}{s+\frac{2}{3}}\right\} \\
& =3 \cdot e^{-\frac{2}{3} t}+\frac{1}{3} \cdot\left(e^{-\frac{2}{3} t} * \sin (t)\right)(t) \\
& =3 \cdot e^{-\frac{2}{3} t}+\frac{1}{3} \cdot \int_{0}^{t} e^{-\frac{2}{3}(t-\tau)} \cdot \sin (\tau) d \tau \\
& =\frac{42}{13} \cdot e^{-\frac{2}{3} t}+\frac{6 \sin (t)-9 \cos (t)}{39}
\end{aligned}
$$

2. Heat equation in the semi-domain. Given $u(x, t)$, denote by

$$
U(x, s) \doteq \mathcal{L}\{u(x, t)\}=\int_{0}^{\infty} u(x, t) \cdot e^{-s t} d t
$$

One has

$$
\mathcal{L}\left\{u_{x}\right\}=U_{x}(x, s), \quad \mathcal{L}\left\{u_{x x}\right\}=U_{x x}(x, s)
$$

and

$$
\mathcal{L}\left\{u_{t}\right\}=s U(x, s)-u(x, 0)
$$

Example 5. Consider the heat equation with boundary condition

$$
\left\{\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), \quad \text { for all } x>0, t>0 \\
u(x, 0) & =0, \quad \text { for all } x>0 \\
u(0, t) & =f(t) \quad \text { for all } t>0
\end{aligned}\right.
$$

Find a bounded solution $u$.

Answer. Step 1. Set $U(x, s) \doteq \mathcal{L}\{u(x, t)\}$. We have

$$
\mathcal{L}\left\{u_{t}\right\}=\mathcal{L}\left\{u_{x x}\right\} \quad \Longleftrightarrow \quad s U(x, s)-u(x, 0)=U_{x x}(x, s)
$$

Since $u(x, 0)=0$, we obtain the second order ODE

$$
U_{x x}(x, s)-s \cdot U(x, s)=0
$$

Solving the above equation, we obtain that

$$
U(x, s)=a(s) \cdot e^{-\sqrt{s} \cdot x}+b(s) \cdot e^{\sqrt{s} \cdot x} .
$$

On the other hand,

$$
U(0, s)=\mathcal{L}\{f(t)\} \doteq F(s) .
$$

This implies that

$$
a(s)+b(s)=F(s) .
$$

Since the solution $u$ is bounded, we have $b(s)=0$ for all $s>0$ and it yields

$$
a(s)=F(s) \quad \text { for all } s>0 .
$$

Thus,

$$
U(x, s)=F(s) \cdot e^{-\sqrt{s} \cdot x}
$$

Step 2. Recall that

$$
\mathcal{L}^{-1}\left(e^{-\sqrt{s} \cdot x}\right)=\frac{x}{\sqrt{4 \pi t^{3}}} \cdot e^{-\frac{x^{2}}{4 t}} \doteq g(t)
$$

Using the convolution's theorem, we obtain

$$
\begin{aligned}
u(x, t) & =\mathcal{L}^{-1}\{U(x, s)\}=\mathcal{L}^{-1}\left(e^{-\sqrt{s} x} \cdot F(s)\right) \\
& =(g * f)(t)=\int_{0}^{t} \frac{x}{\sqrt{4 \pi(t-\tau)^{3}}} e^{-\frac{x^{2}}{4(t-\tau)}} \cdot f(\tau) d \tau
\end{aligned}
$$

### 3.4 The Fourier Transform

In this subsection, we will introduce several useful properties of Fourier transform and to apply them to solve linear PDEs.

Definition 3.5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function. The Fourier function of $f$ is denoted by

$$
\mathcal{F}\{f\}(\xi)=F(\xi)=\frac{1}{2 \pi} \cdot \int_{-\infty}^{\infty} f(x) \cdot e^{-i x \xi} d x
$$

The new function $F$ is defined on $(-\infty, \infty)$ and may or may not be a complex value function.

## 1. Common Fourier transforms.

- If $f(x)=\left\{\begin{array}{cc}e^{-x}, & \text { for all } x \geq 0 \\ -e^{x}, & \text { for all } x<0\end{array} \quad\right.$ then $\quad \mathcal{F}\{f\}=-i \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\xi}{1+\xi^{2}}$;
- If $f(x)=\left\{\begin{array}{ll}1, & \text { for all } x \geq 0 \\ 0, & \text { for all } x<0\end{array} \quad\right.$ then $\quad \mathcal{F}\{f\}=\sqrt{\frac{2}{\pi}} \cdot \frac{\sin \xi}{\xi}$;
- If $f(x)=e^{-x^{2}} \quad$ then $\quad F(\xi)=\frac{1}{\sqrt{2}} \cdot e^{-\frac{\xi^{2}}{4}}$

2. Properties of Fourier Transform. Given $g$ and $f$ two integrable functions, the followings hold:
(i) Linearity.

$$
\mathcal{F}\{a \cdot f+b \cdot g\}=a \cdot \mathcal{F}\{f\}+b \cdot \mathcal{F}\{g\} ;
$$

(ii) First derivative

$$
\mathcal{F}\left\{f^{\prime}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime} \cdot e^{-i x \xi} d x=i \xi \mathcal{F}\{f\} ;
$$

Second derivative

$$
\mathcal{F}\left\{f^{\prime \prime}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime \prime} \cdot e^{-i x \xi} d x=-\xi^{2} \mathcal{F}\{f\} ;
$$

(iii) Convolution's theorem. Here, we denote by

$$
(f * g)(x)=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Then

$$
\mathcal{F}\{f * g\}=\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}
$$

## Inverse Fourier Transform

$$
\mathcal{F}^{-1}\{F\}=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{+\infty} F(\xi) \cdot e^{i x \xi} d \xi=f(x)
$$

where

$$
f(x)=\mathcal{F}\{F\}(x) .
$$

Thus,

$$
\mathcal{F}^{-1}\{\mathcal{F}(f) \cdot \mathcal{F}\{g\}\}(x)=(f * g)(x) .
$$

3. An application to PDEs. Let us use the Fourier Transform to derive a general formula for 1-D heat equation

$$
\begin{equation*}
u_{t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t) \quad \text { for all } x \in \mathbb{R}, t>0 \tag{3.6}
\end{equation*}
$$

with the initial data

$$
u(x, 0)=\phi(x) \quad \text { for all } x \in \mathbb{R}
$$

Step 1. Denote by

$$
U(\xi, t)=\mathcal{F}\{u(x, t)\}=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{+\infty} u(x, t) \cdot e^{-i x \xi} d x
$$

One has that

$$
U_{t}(\xi, t)=\mathcal{F}\{u(x, t)\} \quad \text { and } \quad U_{t}(\xi, t)=-\xi^{2} \cdot \mathcal{F}\left\{u_{x x}(x, t)\right\}
$$

Taking the Fourier transform in both sides of (3.6), we get

$$
U_{t}(\xi, t)==-\alpha^{2} \xi^{2} U(\xi, t), \quad U(\xi, 0)=\Phi(\xi)
$$

where

$$
\Phi(\xi)=\mathcal{F}\{\phi\}
$$

Step 2. Solving the above ODE, we obtain that

$$
U(\xi, t)=\Phi(\xi) \cdot e^{-\alpha^{2} \xi^{2} t}
$$

Step 3. The solution is

$$
\begin{aligned}
u(x, t) & =\mathcal{F}^{-1}\{U(\xi, t)\}(x) \\
& =\mathcal{F}^{-1}\left\{e^{-\alpha^{2} \xi^{2} t} \cdot \Phi(\xi)\right\}(x) \\
& =\mathcal{F}^{-1}\left\{\mathcal{F}\left\{\frac{1}{\alpha \sqrt{2 t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}\right\} \mathcal{F}\{\phi\}\right\}(x) \\
& =\left(\frac{1}{\alpha \sqrt{2 t}} \cdot e^{-\frac{x^{2}}{4 \alpha^{2} t}}\right) * \phi \\
& =\frac{1}{2 \alpha \sqrt{\pi t}} \cdot \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 \alpha^{2} t}} \cdot \phi(y) d y
\end{aligned}
$$

## 4 Orthogonal expansions

### 4.1 Inner product spaces and orthogonal basis

In this subsection, we study basic concepts in infinite dimensional vector space and definite the Fourier series.

## I. Norm spaces.

Definition 4.1 The set $H$ is a real vector space if the followings holds
(i) $\alpha \cdot f \in H \quad$ for all $\alpha \in \mathbb{R}, f \in H$;
(ii) $f+g \in H \quad$ for all $f, g \in H$.

Example 1. The sets
(a) $\mathbb{R}^{n}=\{v \mid v$ is a column real vector with $n$ components $\}$;
(b) $P_{n}=\{f(x) \mid f(x)$ is a a polynomial with degree $\leq n\}$;
(c) $\mathbf{L}^{1}(a, b)=\left\{f(x): \int_{a}^{b}|f(x)| d x<+\infty\right\}$
are vector spaces.
Inner product. We introduce $\langle\cdot, \cdot\rangle$ an inner product on $H$ which satisfies the following properties:
(i) Symmetry

$$
\langle f, g\rangle=\langle g, f\rangle \quad \text { for all } f, g \in H ;
$$

(ii) Linearity

$$
\langle\alpha \cdot f, g\rangle=\alpha \cdot\langle f, g\rangle \quad \text { and } \quad\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle
$$

for all $\alpha \in \mathbb{R}$ and $f, g, h \in H$;
(iii) Positive-definiteness

$$
\langle f, f\rangle \geq 0 \quad \text { for all } f \in H
$$

and

$$
\langle f, f\rangle=0 \quad \Longleftrightarrow \quad f=0 .
$$

Norm. The length of $f$ is defined by

$$
\|f\|=\sqrt{\langle f, f\rangle} ;
$$

We say that $f$ and $g$ are orthogonal

$$
f \perp g \quad \text { if and only if } \quad\langle f, g\rangle=0 .
$$

Definition 4.2 The subset $B \subset H$ is orthogonal if

$$
f \perp g \quad \text { for all } f \neq g \in B
$$

Example 2. Consider

$$
\mathbb{R}^{3}==\{v \mid v \text { is a column real vector with } 3 \text { components }\} .
$$

The inner product

$$
\langle v, w\rangle=v \cdot w=\sum_{i=1}^{n} v_{i} w_{i}
$$

where

$$
v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) .
$$

The norm of $v$ is

$$
\|v\|=\sqrt{\langle v, v\rangle}=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} .
$$

The set $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ where

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

are orthogonal.

Lemma 4.3 Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be orthogonal in $H$. If

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot f_{i}=\alpha_{1} \cdot f_{1}+\alpha_{2} \cdot f_{2}+\ldots+\alpha_{n} \cdot f_{n}
$$

then the coefficients $\alpha_{i}$ are computed as

$$
\alpha_{i}=\frac{\left\langle f, f_{i}\right\rangle}{\left\langle f_{i}, f_{i}\right\rangle} \quad \text { for all } i \in\{1,2, \ldots, n\}
$$

Proof. Using the linearity property of the inner product, we have

$$
\left\langle f, f_{i}\right\rangle=\left\langle\sum_{j=1}^{n} \alpha_{j} \cdot f_{j}, f_{i}\right\rangle=\sum_{j=1}^{n} \alpha_{j} \cdot\left\langle f_{j}, f_{i}\right\rangle
$$

Recalling that the set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is orthogonal, it holds

$$
\left\langle f_{j}, f_{i}\right\rangle=0 \quad \text { for all } j \neq i
$$

Therefore,

$$
\left\langle f, f_{i}\right\rangle=\alpha_{i} \cdot\left\langle f_{i}, f_{i}\right\rangle \quad \text { for all } i \in\{1,2, \ldots, n\}
$$

II. $\mathbf{L}^{2}(a, b)$ space. Given two real number $a<b$, we denote by

$$
\mathbf{L}^{2}(a, b) \doteq\left\{f:(a, b) \rightarrow \mathbb{R}: \int_{a}^{b}|f(x)|^{2} d x<+\infty\right\}
$$

It is clear that $\mathbf{L}^{2}(a, b)$ is a vector space. Indeed, for any $\alpha \in \mathbb{R}$ and $f, g \in \mathbf{L}^{2}(a, b)$, it holds

$$
\int_{a}^{b}|\alpha f(x)|^{2} d x=|\alpha|^{2} \cdot \int_{a}^{b}|f(x)|^{2} d x<+\infty
$$

and it yields $\alpha \cdot f \in \mathbf{L}^{2}(a, b)$.
On the other hand, we have

$$
\int_{a}^{b}|f(x)+g(x)|^{2} d x \leq 2 \cdot\left[\int_{a}^{b}|f(x)|^{2}+|g(x)|^{2}\right] d x<+\infty
$$

By the definition, the function $(f+g)$ is $\mathbf{L}^{2}(a, b)$.
Let us now introduce the inner product for $L^{2}(\mathbb{R})$ space. Given $f, g$ in $\mathbf{L}^{2}(a, b)$, the inner product of $f$ and $g$ is defined as

$$
\langle f, g\rangle \doteq \int_{a}^{b} f(x) g(x) d x
$$

The $\mathbf{L}^{2}$ - norm of $f$ is

$$
\|f\|_{\mathbf{L}^{2}}=\sqrt{\langle f, f\rangle}=\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Cauchy-Schwarz inequality.

$$
\langle f, g\rangle \leq\|f\|_{\mathbf{L}^{2}} \cdot\|g\|_{\mathbf{L}^{2}} \quad \text { for all } f, g \in \mathbf{L}^{2}(a, b) .
$$

Example 3. Consider three functions

$$
f_{1}(x)=1, \quad f_{2}(x)=\sin (x) \quad \text { and } \quad f_{3}(x)=\cos (x) .
$$

(a). Show that $f_{1}, f_{2}, f_{3}$ are in $\mathbf{L}^{2}(0,2 \pi)$.
(b) Compute the $\mathbf{L}^{2}$-norm of $f_{i}$ for $i \in\{1,2.3\}$.
(c) Is the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ orthogonal?

Answer. (a) and (b). We compute that

$$
\int_{0}^{2 \pi}\left|f_{1}(x)\right|^{2} d x=\int_{0}^{2 \pi} 1 d x=2 \pi<+\infty
$$

Thus, $f_{1}$ is in $\mathbf{L}^{2}(0,2 \pi)$ and

$$
\left\|f_{1}\right\|_{\mathbf{L}^{2}}=\left(\int_{0}^{2 \pi}\left|f_{1}(x)\right|^{2} d x\right)^{\frac{1}{2}}=\sqrt{2 \pi}
$$

Similarly, we compute

$$
\int_{0}^{2 \pi}\left|f_{2}(x)\right|^{2} d x=\int_{0}^{2 \pi} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (2 x)) d x=\pi<+\infty
$$

and

$$
\int_{0}^{2 \pi}\left|f_{3}(x)\right|^{2} d x=\int_{0}^{2 \pi} \cos ^{2} x d x=\frac{1}{2} \int_{0}^{2 \pi}(1+\cos (2 x)) d x=\pi<+\infty .
$$

Thus, $f_{2}$ and $f_{3}$ are in $\mathbf{L}^{2}(0,2 \pi)$ and

$$
\left\|f_{2}\right\|_{\mathbf{L}^{2}}=\left\|f_{3}\right\|_{\mathbf{L}^{2}}=\sqrt{\pi}
$$

(c). We compute

$$
\begin{aligned}
& \left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{2 \pi} f_{1}(x) \cdot f_{2}(x) d x=\int_{0}^{2 \pi} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{2 \pi}=0 \\
& \left\langle f_{1}, f_{3}\right\rangle=\int_{0}^{2 \pi} f_{1}(x) \cdot f_{3}(x) d x=\int_{0}^{2 \pi} \cos (x) d x=-\left.\sin (x)\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle f_{2}, f_{3}\right\rangle & =\int_{0}^{2 \pi} f_{1}(x) \cdot f_{3}(x) d x=\int_{0}^{2 \pi} \sin (x) \cos (x) d x \\
& =\frac{1}{2} \cdot \int_{0}^{2 \pi} \sin (2 x) d x=-\frac{1}{4} \int_{0}^{2 \pi} \cos (2 x) d x=0
\end{aligned}
$$

This implies that

$$
f_{1} \perp f_{2}, \quad f_{1} \perp f_{3} \quad \text { and } \quad f_{2} \perp f_{3} .
$$

Therefore, the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ is orthogonal.

Example 4. Let $f(x)=x^{2}$ and $g(x)=1+x$ on $[0,1]$.
(a) Compute $\|f\|_{\mathbf{L}^{2}}^{2},\|g\|_{\mathbf{L}^{2}}^{2}$ and $\langle f, g\rangle$;
(b) Compute $\|2 f+g\|_{\mathbf{L}^{2}}$.

Answer. (a). We compute

$$
\begin{gathered}
\|f\|_{\mathbf{L}^{2}}^{2}=\langle f, f\rangle=\int_{0}^{1} x^{4} d x=\frac{1}{5} \\
\|g\|_{\mathbf{L}^{2}}^{2}=\langle g, g\rangle=\int_{0}^{1}(1+x)^{2} d x=1
\end{gathered}
$$

and

$$
\langle f, g\rangle=\int_{0}^{1} x^{2}(1+x) d x=\int_{0}^{1} x^{2}+x^{3} d x=\frac{1}{3}+\frac{1}{4}=\frac{7}{12} .
$$

(b). We have that

$$
\begin{aligned}
\|2 f+g\|_{\mathbf{L}^{2}}^{2} & =\langle 2 f+g, 2 f+g\rangle \\
& =4 \cdot\langle f, f\rangle+4 \cdot\langle f, g\rangle+\langle g, g\rangle \\
& =\frac{4}{5}+4 \cdot \frac{7}{12}+1=\frac{62}{15} .
\end{aligned}
$$

Thus, the norm

$$
\|2 f+g\|_{\mathbf{L}^{2}}=\sqrt{\frac{62}{15}} .
$$

Definition 4.4 The set of function $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subset \mathbf{L}^{2}(a, b)$ is called orthonormal system on the interval $(a, b)$ if
(i) the norm $\left\|f_{i}\right\|_{\mathbf{L}^{2}}=1$ for all $i \in\{1,2, \ldots, n\}$;
(ii) For any $i \neq j \in\{1,2, \ldots, n\}$, it holds

$$
\left\langle f_{i}, f_{j}\right\rangle=0 .
$$

Example 5. The set $\left\{\sqrt{\frac{2}{\pi}} \cdot \sin x, \sqrt{\frac{2}{\pi}} \cdot \sin 2 x, \ldots, \sqrt{\frac{2}{\pi}} \cdot \sin n x\right\}$ is an orthonormal system on the interval $[0, \pi]$.

Answer. For any $k \in\{1,2, \ldots, n\}$, we compute that

$$
\|\sin k x\|_{\mathbf{L}^{2}}^{2}=\frac{2}{\pi} \cdot \int_{0}^{\pi} \sin ^{2} k x=\frac{1}{\pi} \cdot \int_{0}^{\pi} 1-\cos (2 k x) d x=1
$$

and it yields $\|\sin k x\|_{\mathbf{L}^{2}}=1$.
On the other hand, for any $k \neq m \in\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
\langle\sin k x, \sin m x\rangle & =\int_{0}^{\pi} \sin (k x) \cdot \sin (m x) d x \\
& =\frac{1}{2} \cdot \int_{0}^{\pi}[\cos ([k-m] x)-\cos ([k+m] x)]=0
\end{aligned}
$$

and it yields that $\left(\sqrt{\frac{2}{\pi}} \cdot \sin k x\right)$ and $\left(\sqrt{\frac{2}{\pi}} \cdot \sin m x\right)$ are orthogonal.
III. Orthogonal expasions. Given a orthonormal system of functions $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}$ in the space $\mathbf{L}^{2}(a, b)$. Can any function $f \in \mathbf{L}^{2}(a, b)$ be expanded in a infinite series of $\mathcal{F}$

$$
f=\sum_{n=1}^{+\infty} c_{n} \cdot f_{n}
$$

where $c_{n}$ are real coefficients.
Theorem 4.5 Let $f \in \mathbf{L}^{2}(a, b)$ and $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}$ be an orthonormal system of $\mathbf{L}^{2}(a, b)$. Assume that

$$
f=\sum_{n=1}^{+\infty} c_{n} \cdot f_{n}
$$

Then

$$
c_{n}=\left\langle f, f_{n}\right\rangle \quad \text { and } \quad\|f\|_{\mathbf{L}^{2}}^{2}=\sum_{n=1}^{+\infty} c_{n}^{2}
$$

Proof. For any $n \in\{1,2 \ldots\}$, it holds

$$
\left\langle f_{n}, f_{k}\right\rangle=0 \quad \text { for all } n \neq k
$$

We have

$$
\begin{aligned}
\left\langle f_{n}, f\right\rangle & =\left\langle f_{n}, \sum_{k=1}^{\infty} c_{k} \cdot f_{k}\right\rangle \\
& =c_{n} \cdot\left\langle f_{n}, f_{n}\right\rangle+\sum_{n \neq k=1}^{\infty} c_{k} \cdot\left\langle f_{n}, f_{k}\right\rangle=c_{n} \cdot\left\|f_{n}\right\|_{\mathbf{L}^{2}}^{2}=c_{n}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|f\|_{\mathbf{L}^{2}}^{2}=\langle f, f\rangle & =\left\langle\sum_{k=1}^{\infty} c_{k} \cdot f_{k}, f\right\rangle \\
& =\sum_{k=1}^{\infty} c_{k} \cdot\left\langle f_{k}, f\right\rangle=\sum_{k=1}^{2}\left|c_{k}\right|^{2} .
\end{aligned}
$$

Remark. The series $\sum_{n=1}^{+\infty} c_{n} \cdot f_{n}$ is called the generalized Fourier series of $f$ and $c_{n}$ are called the Fourier coefficients.

Definition 4.6 An orthonomal system $\left\{f_{1}, f_{2}, \ldots f_{n}, \ldots\right\} \subset \mathbf{L}^{2}(a . b)$ is said complete if and only if

$$
\left\langle f, f_{n}\right\rangle=0 \quad \text { for all } n \quad \Longrightarrow \quad f=0
$$

Theorem 4.7 (Fourier expansion) Assume that $\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}$ is a complete orthonormal system in $\mathbf{L}^{2}(a, b)$. Then for any $f \in \mathbf{L}^{2}(a, b)$, it holds

$$
f=\sum_{n=1}^{\infty} c_{n} \cdot f_{n}
$$

where the coefficient

$$
c_{n}=\left\langle f, f_{n}\right\rangle \quad \text { for all } n=1,2, \ldots
$$

Proof. 1. Let's consider

$$
S_{n}=\sum_{k=1}^{n} c_{k} \cdot f_{k}
$$

The orthogonal property of $\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}$ yields

$$
\left\langle f, S_{n}\right\rangle=\left\|S_{n}\right\|_{\mathbf{L}^{2}}^{2}=\sum_{k=1}^{n}\left|c_{k}\right|^{2} .
$$

Using the Cauchy-Schwarz inequality, we have that

$$
\left\|S_{n}\right\|_{\mathbf{L}^{2}}^{2}=\sum_{k=1}^{n}\left|c_{k}\right|^{2} \leq\|f\|_{\mathbf{L}^{2}}^{2}
$$

Therefore, we can show that $S_{n}$ converges to $g$ in $\mathbf{L}^{2}(a, b)$ and it yields

$$
g=\sum_{n=1}^{\infty} c_{n} \cdot f_{n}
$$

2. It remains to show that $f=g$. One can check that

$$
\left\langle f-g, f_{n}\right\rangle=0 \quad \text { for all } n=1,2, \ldots
$$

Thus, the completeness implies that $f-g=0$.

### 4.2 Classical Fourier series

1. Given $\ell>0$, denote by

$$
\mathbf{L}^{2}(-\ell, \ell)=\left\{f:\left.(-\ell, \ell) \rightarrow \mathbb{R}\left|\int_{-\ell}^{\ell}\right| f(x)\right|^{2} d x\right\}
$$

The following holds:
Lemma 4.8 The trigonometric set

$$
\mathcal{F}=\left\{1, \sin \left(\frac{m \pi x}{\ell}\right), \left.\cos \left(\frac{m \pi x}{\ell}\right) \right\rvert\, m=1,2, \ldots .\right\}
$$

is a complete orthogonal in $\mathbf{L}^{2}(-\ell, \ell)$.
From the above Lemma and Theorem 4.7, one can show that for any $f \in \mathbf{L}^{2}(-\ell, \ell)$, then $f$ can be expressed by an infinite sum functions in $\mathcal{F}$. More precisely,
Definition 4.9 For any function $f \in \mathbf{L}^{2}(-\ell, \ell)$, its Fourier series is

$$
f \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cdot \cos \frac{m \pi x}{\ell}+b_{m} \cdot \sin \frac{m \pi x}{\ell}\right)
$$

where $a_{m}$ and $b_{m}$ are Fourier coefficients and computed by

$$
a_{n}=\frac{1}{\ell} \cdot \int_{-\ell}^{\ell} f(x) \cdot \cos \frac{m \pi x}{\ell} d x
$$

and

$$
b_{n}=\frac{1}{\ell} \cdot \int_{-\ell}^{\ell} f(x) \cdot \sin \frac{m \pi x}{\ell} d x
$$

for all $m=0,1,2, \ldots$.

Example 1. Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{cl}
-1, & -\pi<x<0  \tag{4.1}\\
1, & 0<x<\pi
\end{array}\right.
$$

in $\mathbf{L}^{2}(-\pi, \pi)$.
Answer. We have $\ell=\pi$. The Fourier series of $f$ in $\mathbf{L}^{2}(-\pi, \pi)$ is

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cdot \cos m x+b_{m} \cdot \sin m x\right)
$$

The Fourier coefficients are computed by

$$
a_{0}=\frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \cdot\left[\int_{-\pi}^{0}-1 d x+\int_{0}^{\pi} 1 d x\right]=0
$$

$$
a_{m}=\frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(x) \cdot \cos m x d x=\frac{1}{\pi} \cdot\left[-\int_{-\pi}^{0} \cos m x d x+\int_{0}^{\pi} \cos m x d x\right]=0,
$$

and

$$
\begin{aligned}
b_{m} & =\frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(x) \cdot \sin m x d x=\frac{1}{\pi} \cdot\left[-\int_{-\pi}^{0} \sin x d x+\int_{0}^{\pi} \sin x d x\right] \\
& =\frac{1}{\pi} \cdot\left[-\int_{-\pi}^{0} \sin m x d x+\int_{0}^{\pi} \sin m x d x\right]=\frac{1}{m \pi} \cdot[2-\cos (-m \pi)-\cos (m \pi)] \\
& =\frac{2}{m \pi} \cdot[1-\cos (m \pi)]=\frac{2}{m \pi} \cdot\left[1-(-1)^{m}\right] .
\end{aligned}
$$

Therefore,

$$
f(x) \simeq \sum_{m=1}^{\infty} \frac{2 \cdot\left(1-(-1)^{m}\right)}{m \pi} \cdot \sin m x
$$

Example 2. Find a Fourier series for the function

$$
f(x)=x \quad \text { for all } x \in(-2,2)
$$

in $\mathbf{L}^{2}(-2,2)$.
Answer. We have that $\ell=2$. The Fourier series of $f$ in $\mathbf{L}^{2}(-2,2)$ is

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{m=1}^{+\infty}\left[a_{m} \cdot \cos \frac{m \pi x}{2}+b_{m} \cdot \sin \frac{m \pi x}{2}\right]
$$

The Fourier coefficients are computed by

$$
a_{m}=\frac{1}{2} \cdot \int_{-2}^{2} x \cos \frac{m \pi x}{2} d x=0
$$

and

$$
b_{m}=\frac{1}{2} \cdot \int_{-2}^{2} x \sin \frac{m \pi x}{2} d x=\frac{-4}{m \pi} \cdot \cos (m \pi)=\frac{4}{m \pi} \cdot(-1)^{m+1}
$$

for all $m=0,1, \ldots$ Thus,

$$
f(x) \simeq \frac{4}{\pi} \cdot \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \cdot \sin \frac{m \pi x}{2} .
$$

2. Fourier sine and Fourier cosine. Given a function $f:(-\ell, \ell) \rightarrow \mathbb{R}$ in $\mathbf{L}^{2}(-\ell, \ell)$, the followings hold:

- $f$ is even if $f(x)=f(-x)$ for all $x \in(0, \ell)$. In this case, we have

$$
\int_{-\ell}^{\ell} f(x) d x=2 \cdot \int_{0}^{\ell} f(x) d x .
$$

- $f$ is odd if $f(x)=-f(-x)$ for all $x \in(-0, \ell)$. In this case, we have

$$
\int_{-\ell}^{\ell} f(x) d x=0 .
$$

Fourier cosine. If the function $f$ is even on $(-\ell, \ell)$, then

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cdot \cos \frac{m \pi x}{\ell}
$$

where the Fourier coefficients

$$
a_{m}=\frac{2}{\ell} \cdot \int_{0}^{\ell} f(x) \cdot \cos \frac{m \pi x}{\ell} d x .
$$

Fourier sine. If the function $f$ is odd on $(-\ell, \ell)$, then

$$
f(x) \simeq \sum_{m=1}^{\infty} b_{m} \cdot \cos \frac{m \pi x}{\ell}
$$

where the Fourier coefficients

$$
b_{m}=\frac{2}{\ell} \cdot \int_{0}^{\ell} f(x) \cdot \sin \frac{m \pi x}{\ell} d x .
$$

3. Periodic functions on $\mathbb{R}$ and half-range expansion. Given a real function $f$ : $\mathbb{R} \rightarrow \mathbb{R}$, we say that $f$ is periodic with a period $P$ if

$$
f(x+P)=f(x) \quad x \in \mathbb{R}
$$

Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic with period $2 l$. Then the Fourier series of $f$ in $\mathbf{L}^{2}(-\ell, \ell)$ is

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left[a_{m} \cos \frac{m \pi x}{\ell}+b_{m} \sin \frac{m \pi x}{\ell}\right]
$$

where $a_{m}$ and $b_{m}$ are Fourier coefficients and computed by

$$
a_{n}=\frac{1}{\ell} \cdot \int_{-\ell}^{\ell} f(x) \cdot \cos \frac{m \pi x}{\ell} d x
$$

and

$$
b_{n}=\frac{1}{\ell} \cdot \int_{-\ell}^{\ell} f(x) \cdot \sin \frac{m \pi x}{\ell} d x
$$

for all $m=0,1,2, \ldots$.
Even periodic extension. Given $f:(0, \ell)$, we can extend $f$ onto $(-\ell, \ell)$ such that

$$
f(x)=f(-x) \quad \text { for all } x \in(0, \ell)
$$

Then extend $f$ into a periodic with period $P=2 \ell$, i.e.,

$$
f(x)=f(x+2 \ell) \quad \text { for all } x \in \mathbb{R}
$$

Odd periodic extension. Given $f:(0, \ell)$, we can extend $f$ onto $\mathbb{R}$ such that
(i) (Odd function) $f(-x)=-f(x)$ for all $x \in(0, \ell)$;
(ii) (Periodic function) $f(x)=f(x+2 \ell)$ for all $x \in \mathbb{R}$.

Example 3. Let $f(x)=x$ for $x \in(0,1)$. Sketch 3 periods of the even and the odd and compute the corresponding Fourier sine and cosine.

Answer. 1. Even extension. We have

$$
f_{\text {even }} \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cdot \cos m \pi x .
$$

The Fourier coefficients are computed by

$$
a_{0}=2 \cdot \int_{0}^{1} x d x=1,
$$

and

$$
a_{m}=2 \cdot \int_{0}^{1} x \cdot \cos m \pi x d x=\frac{2 \cdot\left((-1)^{m}-1\right)}{m^{2} \pi^{2}} \quad \text { for all } m=1,2 \ldots
$$

Therefore,

$$
f_{\text {even }} \simeq \frac{1}{2}+\frac{2}{\pi^{2}} \cdot \sum_{m=1}^{\infty} \frac{(-1)^{m}-1}{m^{2}} \cos m \pi x
$$

2. Odd extension. We have

$$
f_{o d d} \simeq \sum_{m=1}^{\infty} b_{m} \cdot \sin m \pi x .
$$

The Fourier coefficients are computed by

$$
b_{m}=2 \cdot \int_{0}^{1} x \cdot \sin (m \pi x) d x=\frac{2 \cdot(-1)^{m+1}}{m \pi} .
$$

Therefore,

$$
f_{o d d} \simeq \frac{2}{\pi} \cdot \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \cdot \sin (m \pi x)
$$

4. Properties of Fourier series. Given $f(x)$ and $g(x)$ in $\mathbf{L}^{2}(-\ell, \ell)$. Assume that

$$
f \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cdot \cos \frac{m \pi x}{\ell}+b_{m} \cdot \sin \frac{m \pi x}{\ell}\right)
$$

and

$$
g \simeq \frac{c_{0}}{2}+\sum_{m=1}^{\infty}\left(c_{m} \cdot \cos \frac{m \pi x}{\ell}+d_{m} \cdot \sin \frac{m \pi x}{\ell}\right) .
$$

Then the followings hold:

- For any $\alpha \in R$,

$$
\alpha \cdot f \simeq \frac{\alpha a_{0}}{2}+\sum_{m=1}^{\infty}\left(\alpha a_{m} \cdot \cos \frac{m \pi x}{\ell}+\alpha b_{m} \cdot \sin \frac{m \pi x}{\ell}\right) .
$$

- The Fourier series of the function $f+g$ is

$$
f+g \simeq \frac{\left(a_{0}+c_{0}\right)}{2}+\sum_{m=1}^{\infty}\left[\left(a_{m}+c_{m}\right) \cdot \cos \frac{m \pi x}{\ell}+\left(b_{m}+d_{m}\right) \cdot \sin \frac{m \pi x}{\ell}\right] .
$$

Theorem 4.10 (Convergence theorem) Let $f$ be in $L^{2}(-l, l)$ and piecewise smooth function and

$$
f \simeq \frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cdot \cos \frac{m \pi x}{\ell}+b_{m} \cdot \sin \frac{m \pi x}{\ell}\right)
$$

Then it holds
(1). The Fourier series converges to $f(x)$ at all points $x$ where $f$ is continuous;
(2.) The Fourier series converges to

$$
\frac{1}{2} \cdot[f(x-)+f(x+)]
$$

at points $x$ where $f$ is discontinuous.
Example 4. Given the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f$ is periodic with period $2 \pi$ and

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ 4, & 0<x<\pi .\end{cases}
$$

(a). Find the Fourier series of $f$ in $\mathbf{L}^{2}(-\pi, \pi)$.
(b). Indicate the function that the Fourier series of $f$ converges to.

Answer. (a) Let $g:(-\pi, \pi)$ be such that

$$
g(x)=2 \quad \text { for all } x \in(-\pi, \pi)
$$

We have

$$
h \doteq \frac{f-g}{2}=\left\{\begin{array}{cc}
-1, & -\pi<x<0 \\
1, & 0<x<\pi
\end{array} .\right.
$$

From example 1, the Fourier series of $h$ is

$$
h \simeq \sum_{m=1}^{\infty} \frac{2 \cdot\left(1-(-1)^{m}\right)}{m \pi} \cdot \sin m x
$$

Recalling that $f=g+2 h$, the Fourier series of $f$ is

$$
f \simeq 2+\sum_{m=1}^{\infty} \frac{4 \cdot\left(1-(-1)^{m}\right)}{m \pi} \cdot \sin m x .
$$

(b) Observe that $f$ is continuous at $x \in \mathbb{R} \backslash k \pi$. Therefore, by using the convergence theorem

- The Fourier series of $f$ converges to $f$ at $x \in \mathbb{R} \backslash k \pi$;
- The Fourier series of $f$ converges to 2 at $x=k \pi$ for all $k \in \mathbb{Z}$.


### 4.3 Sturm-Liouville problems

Let us consider a regular Sturm-Liouville system

$$
\begin{equation*}
\left[-p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda w(x) y, \quad x \in(a, b) \tag{4.2}
\end{equation*}
$$

with boundary conditions

$$
\left\{\begin{array}{c}
\alpha_{1} y(a)+\alpha_{2} y^{\prime}(a)=0  \tag{4.3}\\
\beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0
\end{array} .\right.
$$

Here

- $\alpha_{i}, \beta_{i}$ for $i \in\{1,2\}$ are given constants such that $\alpha_{i}^{2}+\beta_{i}^{2}>0$;
- $p(x), w(x)>0$ and $q(x)$ are given functions.
- $y$ and $\lambda$ are unknown function and unknown constant.

Goal: Find $\lambda \in \mathbb{R}$ such that the ODE (4.2) with boundary conditions (4.3) has a nontrivial solution $y_{\lambda}(x)$.

This type of problem is called eigenvalue problem.
Does any $\lambda \in \mathbb{R}$, the ODE (4.2) with boundary conditions (4.3) always admits a nontrivial solution?

Example 1. Solve the two points boundary problem

$$
\left\{\begin{aligned}
y^{\prime \prime}+y & =0, \\
y(0) & =0, \quad y(\pi)=2 .
\end{aligned}\right.
$$

Answer. Characteristic equation

$$
r^{2}+1=0 .
$$

Two complex conjugate roots

$$
r_{1}=i \quad \text { and } \quad r_{2}=-i .
$$

The general solution

$$
y(x)=c_{1} \cdot \cos (x)+c_{2} \cdot \sin (x) .
$$

The first boundary condition $y(0)=0$ implies that $c_{1}=0$ and it yields

$$
y(x)=c_{2} \cdot \sin (x) .
$$

The second boundary condition $y(\pi)=2$ implies that

$$
2=y(\pi)=c_{2} \cdot \sin (\pi)=0
$$

and it yields a contradiction. Thus, the ODE does not have any solution.

Definition 4.11 Assume that with $\lambda \in \mathbb{R}$, the ODE (4.2) with boundary conditions (4.3) has a nontrivial solution $y_{\lambda}(x)$. Then

- $\lambda$ is called an eigenvalue;
- $y_{\lambda}(x)$ is called an corresponding eigenfunction.
$\left(\lambda, y_{\lambda}\right)$ is called an eigen-pair of (4.2)-(4.3).

1. Two points boundary problems with constant coefficients. Let's consider the second order linear ODE with constant coefficients

$$
\left\{\begin{aligned}
y^{\prime \prime}+\lambda \cdot y & =0 \\
\alpha_{1} \cdot y(a)+\alpha_{2} \cdot y^{\prime}(a) & =0 \\
\beta_{1} \cdot y(b)+\beta_{2} \cdot y^{\prime}(b) & =0
\end{aligned}\right.
$$

Goal: Find all eigenpairs the above two points boundary problem.
Example 2. Consider the linear second order ODE

$$
y^{\prime \prime}(x)+\lambda \cdot y(x)=0
$$

with Dirichlet boundary condition

$$
y(0)=y(\pi)=0
$$

Find all eigenvalues and corresponding eigenfunctions.
Answer. The characteristic equation

$$
r^{2}+\lambda=0
$$

Three cases are consider:

- If $\lambda<0$ then

$$
r_{1}=\sqrt{|\lambda|} \quad \text { and } \quad r_{2}=-\sqrt{|\lambda|}
$$

The general solution

$$
y=c_{1} \cdot e^{-\sqrt{|\lambda|} \cdot x}+c_{2} \cdot e^{\sqrt{|\lambda|} \cdot x}
$$

The boundary conditions $y(0)=y(\pi)=0$ implies that

$$
c_{1}+c_{2}=0 \quad \text { and } \quad c_{1} \cdot e^{-\sqrt{|\lambda|} \cdot \pi}+c_{2} \cdot e^{\sqrt{|\lambda|} \cdot \pi}
$$

and it yields $c_{1}=c_{2}=0$. Thus, $y=0$ (trivial solution).

- If $\lambda=0$ then

$$
y^{\prime \prime}=0 \quad \Longrightarrow y=c_{1} \cdot x+c_{2}
$$

The boundary conditions $y(0)=y(\pi)=0$ implies that

$$
c_{2}=0 \quad \text { and } \quad c_{1} \cdot \pi+c_{2}=0
$$

and it yields $c_{1}=c_{2}=0$. Thus, $y=0$ (trivial solution).

- If $\lambda>0$ then $\lambda=k^{2}$ for $k>0$. The characteristic equation admit two complex roots

$$
r_{1}=k \cdot i \quad \text { and } \quad r_{2}=-k \cdot i
$$

The general solution

$$
y(x)=c_{1} \cdot \cos (k x)+c_{2} \cdot \sin (k x)
$$

Boundary conditions

$$
y(0)=0 \quad \Longrightarrow \quad c_{1}=0 \quad \Longrightarrow \quad y(x)=c_{2} \cdot \sin (k x)
$$

and thus

$$
y(\pi)=0 \quad \Longrightarrow \quad c_{2} \cdot \sin (k \pi)=0
$$

Since we are looking for nontrivial solution, we have

$$
\sin (k \pi)=0 \quad \Longrightarrow \quad k=n \quad \text { for all } n=1,2, \ldots
$$

Thus,

$$
\lambda=n^{2} \quad \text { and } \quad y(x)=c_{2} \cdot \sin (n x) \quad n=1,2, \ldots
$$

Eigenvalues and eigenfunctions

$$
\left\{\begin{array}{rlr}
\lambda_{n} & =n^{2} \\
y_{n}(x) & =\sin (n x)
\end{array} \quad \text { for } n=1,2, \ldots\right.
$$

Example 3. Consider the linear second order ODE

$$
y^{\prime \prime}(x)-\lambda \cdot y(x)=0
$$

with Neumann boundary condition

$$
y^{\prime}(0)=y^{\prime}(2)=0 .
$$

Find all eigenvalues and corresponding eigenfunctions.
Answer. The characteristic equation

$$
r^{2}-\lambda=0
$$

It is quite similar to the previous example, one show that if $\lambda>0$ then the above ODE has only a trivial solution.

If $\lambda=0$ then the solution

$$
y(x)=1 \quad \text { for all } x \in[0,2] .
$$

We only need to consider $\lambda<0$. In this case, one can write

$$
\lambda=-k^{2} \quad \text { for } k>0 .
$$

The general solution

$$
y(x)=c_{1} \cdot \cos (k x)+c_{2} \cdot \sin (k x) .
$$

Boundary conditions

$$
y^{\prime}(0)=0 \quad \Longrightarrow \quad c_{2}=0 \quad \Longrightarrow \quad y(x)=c_{1} \cdot \cos (k x)
$$

and thus

$$
y^{\prime}(2)=0 \quad \Longrightarrow \quad-c_{2} k \cdot \sin (2 k)=0 \quad \Longrightarrow \quad \sin (2 k)=0
$$

Therefore,

$$
2 k=n \pi \quad \text { for all } n=1,2 \ldots
$$

Eigenvalues and eigenfunctions

$$
\left\{\begin{aligned}
\lambda_{n} & =-\frac{n^{2} \pi^{2}}{4} \\
y_{n}(x) & =\cos \left(\frac{n \pi}{2} \cdot x\right)
\end{aligned} \quad \text { for } n=0,1,2 \ldots\right.
$$

Example 4. Find all positive eigenvalues and corresponding eigenfunctions

$$
\left\{\begin{array}{cl}
y^{\prime \prime}+\lambda \cdot y=0, \\
y^{\prime}(0)=0, & y(\pi)+y^{\prime}(\pi)=0 .
\end{array}\right.
$$

Answer. Set $\lambda=k^{2}$. The general solution

$$
y(x)=c_{1} \cdot \cos (k x)+c_{2} \cdot \sin (k x) .
$$

Boundary conditions

$$
y^{\prime}(0)=0 \quad \Longrightarrow \quad c_{2}=0 \quad \Longrightarrow \quad y(x)=c_{1} \cdot \cos (k x)
$$

and thus

$$
y(\pi)+y^{\prime}(\pi)=0 \quad \Longrightarrow \quad c_{1} \cos (k \pi)-c_{1} k \cdot \sin (k \pi)=0 .
$$

This implies that

$$
\frac{1}{k}=\tan (k \pi)
$$

Eigenvalues and eigenfunctions

$$
\left\{\begin{aligned}
\lambda_{n} & =\rho_{n}^{2} \\
y_{n}(x) & =\cos \left(\rho_{n} x\right)
\end{aligned} \quad \text { for } n=1,2, \ldots\right.
$$

where $\rho_{n}$ are positive solutions of the equation $\frac{1}{\rho}=\tan (\rho \pi)$
2. General theory of Sturm-Liouville problems. Let's reconsider the regular SturmLiouville system

$$
\begin{equation*}
\left[-p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda w(x) y, \quad x \in(a, b) \tag{4.4}
\end{equation*}
$$

with boundary conditions

$$
\left\{\begin{array}{l}
\alpha_{1} y(a)+\alpha_{2} y^{\prime}(a)=0  \tag{4.5}\\
\beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0 .
\end{array}\right.
$$

The second order linear differential operator

$$
L[y]=\frac{1}{w(x)} \cdot\left(-\left[p(x) y^{\prime}\right]^{\prime}+q(x) \cdot y\right)
$$

The ODE (4.4) can be rewritten as

$$
L[y]=\lambda \cdot y
$$

Denote by

$$
\mathcal{H}=\left\{f \in \mathbf{L}^{2}(a, b) \mid f \text { satisfies the boundary condition } 4.5\right\}
$$

Lemma 4.12 The operator $L$ is a self-adjoint operator on $\mathcal{H}$, i.e.,

$$
\left\langle L\left[y_{1}\right], y_{2}\right\rangle=\left\langle y_{1}, L\left[y_{2}\right]\right\rangle \quad \text { for all } y_{1}, y_{2} \in \mathcal{H}
$$

Answer. By using the integrating by parts, a direct computation yields

$$
\int_{a}^{b} L\left[y_{1}\right](x) \cdot y_{2}(x) d x=\int_{a}^{b} y_{1}(x) \cdot L\left[y_{2}\right](x) d x
$$

Lemma 4.13 Let $\left(\lambda_{1}, y_{1}\right)$ and $\left(\lambda_{2}, y_{2}\right)$ be eigenpairs of (4.4)-(4.5). If $\lambda_{1} \neq \lambda_{2}$ then $y_{1}$ are $y_{2}$ are orthogonal in $\mathcal{H}$.
Answer. By the definition of eigen-pairs, we have

$$
L\left[y_{1}\right]=\lambda_{1} \cdot y_{1} \quad \text { and } \quad L\left[y_{2}\right]=\lambda_{2} \cdot y_{2}
$$

In particular, this implies that

$$
\left\langle L\left[y_{1}\right], y_{2}\right\rangle=\lambda_{1} \cdot\left\langle y_{1}, y_{2}\right\rangle
$$

and

$$
\left\langle y_{1}, L\left[y_{2}\right]\right\rangle=\lambda_{2} \cdot\left\langle y_{1}, y_{2}\right\rangle .
$$

Since $L$ is self-adjoint, we obtain

$$
\lambda_{1} \cdot\left\langle y_{1}, y_{2}\right\rangle=\lambda_{2} \cdot\left\langle y_{1}, y_{2}\right\rangle
$$

and this yields $\left\langle y_{1}, y_{2}\right\rangle=0$.
Lemma 4.14 An eigenvalue $\lambda$ has a unique corresponding eigenfunction up to a constant multiple, i.e., if $y_{1}$ and $y_{2}$ are corresponding eigenfunctions of $\lambda$ then

$$
\begin{equation*}
y_{2}=c \cdot y_{1} \quad \text { for all } x \in(a, b) . \tag{4.6}
\end{equation*}
$$

Answer. Introduce the Wronskian of two functions

$$
W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

we compute that

$$
\frac{d}{d x}\left(\frac{y_{1}}{y_{2}}\right)=\frac{y_{2}^{\prime} y_{1}-y_{1} y_{2}^{\prime}}{y_{1}^{2}}=\frac{W\left[y_{1}, y_{2}\right]}{y_{1}^{2}}
$$

On the other hand, a direct computation yields

$$
\begin{aligned}
\frac{d}{d x}(p \cdot W) & =\left[p y_{1} y_{2}^{\prime}\right]^{\prime}-\left[p y_{1}^{\prime} y_{2}\right]^{\prime} \\
& =\left[p y_{2}^{\prime}\right]^{\prime} \cdot y_{1}-\left[p y_{1}^{\prime}\right]^{\prime} \cdot y_{2} \\
& =\left(q \cdot y_{2}-L\left[y_{2}\right]\right) \cdot y_{1}-\left(q \cdot y_{1}-L\left[y_{1}\right]\right) \cdot y_{2} \\
& =y_{2} \cdot L\left[y_{1}\right]-y_{1} L\left[y_{2}\right]
\end{aligned}
$$

Thus, if $y_{1}$ and $y_{2}$ are corresponding eigenfunctions of $\lambda$ then

$$
\frac{d}{d x}(p \cdot W)(x)=y_{2} \cdot L\left[y_{1}\right]-y_{1} L\left[y_{2}\right]=0
$$

and this yields

$$
(p \cdot W)(x)=\text { constant }=c \quad \text { for all } x \in(a, b)
$$

However, the Wronskian of these function

$$
W\left[y_{1}, y_{2}\right](a)=y_{1}(a) y_{2}^{\prime}(a)-y_{1}^{\prime}(a) y_{2}(a)=0
$$

because $y_{1}$ and $y_{2}$ satisfies the same boundary condition at $a$. Thus,

$$
W\left[y_{1}, y_{2}\right](x)=0 \quad \text { for all } x \in(a, b),
$$

the two functions must be linearly dependent.
We conclude this subsection with a main theorem.

Theorem 4.15 Consider the Sturm-Liouville problems

$$
\left[-p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda w(x) y, \quad x \in(a, b)
$$

with boundary conditions

$$
\left\{\begin{array}{rl}
\alpha_{1} y(a)+\alpha_{2} y(a) & =0 \\
\beta_{1} y(b)+\beta_{2} y(b) & =0
\end{array} .\right.
$$

with $\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$ and $\beta_{1}^{2}+\beta_{2}^{2} \neq 0$. Then the followings hold:
(i) There are countably infinite number of real eigenvalues

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\ldots \quad \text { and } \quad \lim _{n \rightarrow \infty} \lambda_{n}=+\infty .
$$

(ii) For each eigenvalue $\lambda_{i}$, there is a unique corresponding eigenfunction up to a constant multiple.
(iii) Given $\lambda_{i}$ and $\lambda_{j}$ such that $\lambda_{i} \neq \lambda_{j}$, the corresponding eigenfunctions $y_{i}$ and $y_{j}$ are orthogonal.
(iv) For any $u \in \mathcal{H}$, one has

$$
u=\sum_{n=1}^{+\infty} c_{n} \cdot y_{n}
$$

where the coefficients are computed by

$$
c_{n}=\frac{\left\langle u, y_{n}\right\rangle}{\left\|y_{n}\right\|^{2}} \quad \text { for all } n \in \mathbb{Z}^{+}
$$

## 5 Linear Partial differential equations on bounded domains

Consider a linear PDEs on a bounded domain in $\mathbb{R}^{2}$

$$
\begin{equation*}
A(u(x, y))=0 \quad \text { for all }(x, y) \in \Omega \subset \mathbb{R}^{2} \tag{5.1}
\end{equation*}
$$

where

- $A$ is a given linear differential operator
- $u$ is an unknown of variables $x$ and $y$.

Our goal is to derive the general formula of solution $u$ to 5.1 by using the method of separation of variables.

## Method of separation of variables.

- Step 1: Seek for solutions of the form

$$
u(x, y)=F(x) \cdot G(y)
$$

where $F$ is an unknown of $x$ and $G$ an unknown of $y$.
Plug $u=F G$ into the PDE (5.1), one obtains ODEs for $F$ and $G$. Together with boundary conditions, the ODE becomes Sturm-Liouville problems.

- Step 2: Solve Sturm-Liouville problems to obtain eigen-functions $F_{n}$ and $G_{n}$. Thus, particular solution of (5.1) is

$$
u_{n}(x, y)=F_{n}(x) \cdot G_{n}(y) .
$$

- Step 3: The set of particular solutions $\left\{u_{1}, u_{2}, \ldots, u_{n}, \ldots\right\}$ is a complete and orthogonal in a suitable space. Therefore, the general solution is

$$
u=\sum_{n=1}^{+\infty} c_{n} \cdot u_{n}
$$

where the constant $c_{n}$ will be the coefficients of the Fourier series of initial data or boundary data.

### 5.1 1-D heat equation on bounded domain

1. Dirichlet boundary condition. Consider the 1-D heat equation with Dirichlet boundary condition

$$
\left\{\begin{aligned}
& u_{t}(x, t)=c^{2} \cdot u_{x x}(x, t), x \in(0, L), t>0 \\
& u(0, t)=u(L, t)=0, \quad t>0, \\
& u(x, 0)=f(x), \quad \text { for all } x \in[0, L],
\end{aligned}\right.
$$

where

- $c$ is a given constant which is the diffusivity of the rod;
- $L$ is the length of the rod;
- $f$ is the given initial temperature.

Goal: Find $u(x, t)$ the temperature at point $x \in(0, L)$ at time $t>0$.
Answer. It is divided into several steps:
Step 1: (Separating variable) Seek solutions for the form

$$
u(x, t)=F(x) \cdot G(t) .
$$

We compute

$$
u_{t}=F(x) \cdot G^{\prime}(t), \quad u_{x x}=F^{\prime \prime}(x) \cdot G(t) .
$$

Plug these into the heat equation, we obtain

$$
F(x) \cdot G^{\prime}(t)=c^{2} \cdot F^{\prime \prime}(x) \cdot G(t) .
$$

This implies that

$$
\frac{F^{\prime \prime}(x)}{F(x)}=\frac{G^{\prime}(t)}{c^{2} G(t)}=\text { constant }=-\lambda
$$

The ODEs of $F$ and $G$

$$
\left\{\begin{aligned}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, & & x \in(0, L), \\
G^{\prime}(t)+\lambda c^{2} G(t) & =0, & & t \geq 0 .
\end{aligned}\right.
$$

Step 2: Solve for $F$ and $G$. The boundary conditions

$$
u(0, t)=F(0) \cdot G(t)=0 \quad \Longrightarrow \quad F(0)=0,
$$

and

$$
u(L, t)=F(L) \cdot G(t)=0 \quad \Longrightarrow \quad F(L)=0
$$

Two points boundary problem (Sturm-Liouville problem)

$$
\left\{\begin{aligned}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, \quad x \in(0, L) \\
F(0)=F(L) & =0
\end{aligned}\right.
$$

Eigenvalues and corresponding eigenfunctions

$$
\left\{\begin{aligned}
\lambda_{n} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
F_{n}(x) & =\sin \left(\frac{n \pi}{L} \cdot x\right)
\end{aligned} \quad \text { for } n=1,2, \ldots\right.
$$

For any $n \geq 1$, the equation

$$
G^{\prime}(t)+\lambda_{n} c^{2} \cdot G(t)=0 .
$$

and the general solution

$$
G_{n}(t)=e^{-c^{2} \lambda_{n} t} .
$$

Step 3. (Find the general solution). Particular solutions of the above 1-D heat equation

$$
u_{n}(x, t)=F_{n}(x) \cdot G_{n}(t)=e^{-\frac{n^{2} c^{2} \pi^{2}}{L^{2}} \cdot t} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right) .
$$

The general solution

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} c_{n} \cdot u_{n}(x, t) \\
& =\sum_{n=1}^{\infty} c_{n} \cdot e^{-\frac{n^{2} c^{2} \pi^{2}}{L^{2}} \cdot t} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
\end{aligned}
$$

Step 4: Find $c_{n}$ by the initial conditions

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} c_{n} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

The $c_{n}$ are coefficients of Fourier sine for the odd extension of $f$

$$
c_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi x}{L}\right) d x .
$$

Summary. 1-D heat equation with Dirichlet boundary condition

$$
\left\{\begin{aligned}
u_{t}(x, t) & =c^{2} \cdot u_{x x}(x, t), \quad x \in(0, L), t>0 \\
u(0, t) & =u(L, t)=0, \quad t>0 \\
u(x, 0) & =f(x), \quad x \in[0, L]
\end{aligned}\right.
$$

The general solution

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \cdot e^{-\frac{n^{2} c^{2} \pi^{2}}{L^{2}} \cdot t} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

where the coefficients are computed by

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

or

$$
c_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi x}{L}\right) d x .
$$

## Discussion of the solution

- The solution is harmonic oscillation in $x$ and exponential decay in $t$.
- As time $t$ goes to $+\infty$, the solution $u(t, x)$ goes to 0 for all $x \in \mathbb{R}$.

Example 1. Solve the following 1-D heat equation

$$
\left\{\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), \quad x \in(0,1), t>0 \\
u(0, t) & =u(1, t)=0, \quad t>0, \\
u(x, 0) & =10 \sin (\pi x)+5 \sin (3 \pi x), \quad \text { for all } x \in[0,1]
\end{aligned}\right.
$$

Answer. We have

$$
c=1, \quad L=1 \quad \text { and } \quad f(x)=10 \sin (\pi x)+5 \sin (3 \pi x) .
$$

The general solution

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \cdot e^{-n^{2} \pi^{2} t} \cdot \sin (n \pi x)
$$

The initial data implies that

$$
10 \sin (\pi x)+5 \sin (3 \pi x)=f(x)=\sum_{n=1}^{\infty} c_{n} \cdot \sin (n \pi x)
$$

Comparing the coefficients, we obtain

$$
c_{1}=10, \quad c_{3}=5 \quad \text { and } \quad c_{n}=0 \quad \text { for all } n \neq 1,3 .
$$

The solution is

$$
u(x, t)=10 \cdot e^{-\pi^{2} \cdot t} \cdot \sin (\pi x)+5 \cdot e^{-9 \pi^{2} t} \cdot \sin (3 \pi x) .
$$

Example 2. Consider the 1-D heat equation

$$
\left\{\begin{aligned}
u_{t}(x, t)-u & =4 u_{x x}(x, t), \quad x \in(0,3 \pi), t>0 \\
u(0, t) & =u(3 \pi, t)=0, \quad t>0, \\
u(x, 0) & =\sin x-2 \sin 2 x+3 \sin 3 x, \quad \text { for all } x \in[0,3 \pi]
\end{aligned}\right.
$$

Find the temperature at $x=\frac{\pi}{2}$ at time $t=1$.
Answer. 1. Set

$$
v=e^{-t} \cdot u
$$

We compute

$$
v_{t}=e^{-t} \cdot\left[u_{t}-u\right] \quad \text { and } \quad v_{x x}=e^{-t} \cdot u_{x x}
$$

Thus, $v$ is the solution of

$$
\left\{\begin{aligned}
v_{t}(x, t) & =4 v_{x x}(x, t), \quad x \in(0,3 \pi), t>0 \\
v(0, t) & =v(3 \pi, t)=0, \quad t \geq 0, \\
v(x, 0) & =\sin x-2 \sin 2 x+3 \sin 3 x, \quad \text { for all } x \in[0,3 \pi]
\end{aligned}\right.
$$

2. Solve for $v$. We have

$$
c=2, \quad L=3 \pi \quad \text { and } \quad f(x)=\sin x-2 \sin 2 x+3 \sin 3 x .
$$

The general solution is

$$
v(x, t)=\sum_{n=1}^{\infty} c_{n} \cdot e^{-\frac{4 n^{2}}{9} \cdot t} \cdot \sin \frac{n x}{3} .
$$

The initial condition implies that

$$
\sum_{n=1}^{\infty} c_{n} \cdot \sin \frac{n x}{3}=\sin x-2 \sin 2 x+3 \sin 3 x .
$$

Compare the coefficients, we obtain that

$$
c_{3}=1, \quad c_{6}=-2, \quad c_{9}=3 \quad \text { and } \quad c_{n}=0 \quad \text { for all } n \neq 3,6,9
$$

Thus,

$$
v(x, t)=e^{-4 t} \cdot \sin x-2 e^{-16 t} \cdot \sin (2 x)+3 e^{-36 t} \cdot \sin 3 x
$$

3. The solution is

$$
u(x, t)=e^{t} \cdot v(x, t)=e^{-3 t} \cdot \sin x-2 e^{-15 t} \cdot \sin (2 x)+3 e^{-35 t} \cdot \sin 3 x
$$

In particular,

$$
u(\pi / 2,1)=e^{\frac{-3}{2}}-3 e^{-\frac{35}{2}} .
$$

2. Neumann boundary condition. Consider the 1-D heat equation with Neumann boundary condition

$$
\left\{\begin{array}{l}
u_{t}(x, t)=c^{2} \cdot u_{x x}(x, t), \quad x \in(0, L), t>0 \\
u_{x}(0, t)=u_{x}(L, t)=0, \quad t>0 \\
u(x, 0)=f(x), \quad x \in[0, L]
\end{array}\right.
$$

Goal: Find $u(x, t)$.
Answer. 1. Seek for solutions for the form

$$
u(x, t)=F(x) \cdot G(t)
$$

ODEs for $F$ and $G$

$$
\left\{\begin{aligned}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, & & x \in(0, L), \\
G^{\prime}(t)+\lambda c^{2} G(t) & =0, & & t \geq 0 .
\end{aligned}\right.
$$

2. Solve for $F$ and $G$. The boundary conditions

$$
u_{x}(0, t)=F^{\prime}(0) \cdot G(t)=0 \quad \Longrightarrow \quad F^{\prime}(0)=0,
$$

and

$$
u_{x}(L, t)=F^{\prime}(L) \cdot G(t)=0 \quad \Longrightarrow \quad F^{\prime}(L)=0 .
$$

Two points boundary problem (Sturm-Liouville problem)

$$
\left\{\begin{aligned}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, \quad x \in(0, L), \\
F^{\prime}(0)=F^{\prime}(L) & =0
\end{aligned}\right.
$$

Eigenvalues and corresponding eigenfunctions

$$
\left\{\begin{aligned}
\lambda_{n} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
F_{n}(x) & =\cos \left(\frac{n \pi}{L} \cdot x\right)
\end{aligned} \quad \text { for } n=0,1,2, \ldots\right.
$$

Solve for $G$. For any $n \in \mathbb{N}$,

$$
G^{\prime}(t)+c^{2} \lambda_{n} G(t)=0 .
$$

Thus,

$$
G_{n}(t)=e^{-\frac{n^{2} \pi^{2} c^{2}}{L^{2}} \cdot t}, \quad n=0,1,2, \ldots
$$

3. Particular solutions of the above heat equation

$$
u_{n}(x, t)=F_{n}(x) \cdot G_{n}(t)=e^{-\frac{n^{2} \pi c^{2}}{L^{2}} \cdot t} \cdot \cos \left(\frac{n \pi}{L} \cdot x\right), \quad n=0,1,2, \ldots
$$

The general solution

$$
u(x, t)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot e^{-\frac{n^{2} \pi^{2} c^{2}}{L^{2}} \cdot t} \cdot \cos \left(\frac{n \pi}{L} \cdot x\right)
$$

4. The initial condition implies that

$$
f(x)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot \cos \left(\frac{n \pi}{L} \cdot x\right)
$$

and it yields

$$
c_{0}=\frac{1}{L} \cdot \int_{0}^{L} f(x) d x
$$

and

$$
c_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \cos \left(\frac{n \pi x}{L}\right) d x .
$$

Summary. 1-D heat equation with Neumann boundary condition

$$
\left\{\begin{array}{l}
u_{t}(x, t)=c^{2} \cdot u_{x x}(x, t), \quad x \in(0, L), t>0 \\
u_{x}(0, t)=u_{x}(L, t)=0, \quad t \geq 0, \\
u(x, 0)=f(x), \quad x \in[0, L]
\end{array}\right.
$$

The general solution

$$
u(x, t)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot e^{-\frac{n^{2} \pi c^{2}}{L^{2}} \cdot t} \cdot \cos \left(\frac{n \pi}{L} \cdot x\right)
$$

where the coefficients can be computed by

$$
f(x)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot \cos \left(\frac{n \pi}{L} \cdot x\right)
$$

or

$$
c_{0}=\frac{1}{L} \cdot \int_{0}^{L} f(x) d x
$$

and

$$
c_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \cos \left(\frac{n \pi x}{L}\right) d x .
$$

## Discussion of the solution

- The solution is harmonic oscillation in $x$ and exponential decay in $t$.
- As time $t$ goes to $+\infty$, the solution $u(t, x)$ goes to the average value of the initial temperature

$$
\lim _{t \rightarrow+\infty} u(t, x)=\frac{1}{L} \cdot \int_{0}^{L} f(x) d x .
$$

Example 3. Solve the heat equation with Neumann boundary condition

$$
\left\{\begin{array}{l}
u_{t}(x, t)=9 \cdot u_{x x}(x, t), \quad x \in(0,2 \pi), t>0 \\
u_{x}(0, t)=u_{x}(2 \pi, t)=0, \quad t \geq 0, \\
u(x, 0)=2+\frac{1}{2} \cdot \cos x-3 \cdot \cos 3 x, \quad x \in[0, L]
\end{array}\right.
$$

Answer. We have

$$
c=3, \quad L=2 \pi \quad \text { and } \quad f(x)=2+\frac{1}{2} \cdot \cos x-3 \cos 3 x
$$

The general solution is

$$
u(x, t)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot e^{-\frac{9 n^{2}}{4} t} \cdot \cos \left(\frac{n}{2} \cdot x\right)
$$

Initial condition

$$
f(x)=c_{0}+\sum_{n=1}^{+\infty} c_{n} \cdot \cos \left(\frac{n}{2} \cdot x\right)=2+\frac{1}{2} \cdot \cos x-3 \cos 3 x
$$

Compare the coefficients, we get

$$
c_{0}=2, \quad c_{2}=\frac{1}{2}, \quad c_{6}=-3 \quad \text { and } \quad c_{n}=0 \quad \text { for all } n \neq 0,2,6 .
$$

The solution is

$$
u(x, t)=2+\frac{1}{2} e^{-9 t} \cos x-3 e^{-81 t} \cos 3 x
$$

3. Steady state of heat equation. Consider the 1-D heat equation

$$
\left\{\begin{array}{c}
u_{t}(x, t)=c^{2} \cdot u_{x x}(x, t), \quad x \in(0, L), t>0 \\
\text { Boundary Conditions } .
\end{array}\right.
$$

As $t \rightarrow+\infty$, solution does not change in time anymore, as it reaches a steady state. Call it $U(x)$. Informally,

$$
U(x)=\lim _{t \rightarrow+\infty} u(t, x) \quad \text { for all } x \in[0, L]
$$

Goal: How to find $U(x)$ ?
Since $U$ does not depend on time $t$ and satisfies the heat equation, one has

$$
U_{t}=0 \quad \text { and } \quad U_{x x}=0 .
$$

Thus,

$$
U(x)=A x+B
$$

where constants $A$ and $B$ are identified by boundary conditions.
Example 4. Find the steady state of the heat equation

$$
\left\{\begin{array}{l}
u_{t}(x, t)=4 \cdot u_{x x}(x, t), \quad x \in(0,2), t>0 \\
u(0, t)=1 \quad u(2, t)=3 .
\end{array}\right.
$$

Answer. We have

$$
U(x)=A x+B .
$$

The boundary conditions imply that

$$
U(0)=1, \quad \text { and } \quad U(2)=3
$$

Thus,

$$
B=1 \quad \text { and } \quad 2 A+B=3
$$

and it yields $B=1$ and $A=1$. The steady state is

$$
U(x)=x+1
$$

Example 5. Find the steady state of the heat equation

$$
\left\{\begin{array}{rc}
u_{t}(x, t)=4 \cdot u_{x x}(x, t), \quad x \in(0,1), t>0 \\
u(0, t)+u^{\prime}(0, t)=1 & u(1, t)-u^{\prime}(1, t)=2 .
\end{array}\right.
$$

Answer. We have

$$
U(x)=A x+B .
$$

The boundary conditions imply that

$$
U(0)+U^{\prime}(0)=1, \quad \text { and } \quad U^{\prime}(1)-U(1)=2
$$

Thus,

$$
A+B=1 \quad \text { and } \quad-B=2
$$

and it yields $A=3$ and $B=-2$. The steady state is

$$
U(x)=3 x-2
$$

4. Non-homogeneous boundary conditions. Let's consider the heat equation with non-homogeneous boundary conditions

$$
\left\{\begin{aligned}
u_{t}(x, t)= & c^{2} \cdot u_{x x}(x, t), \quad x \in(0, L), t>0 \\
& \text { Nonhomogeneous boundary conditions } \\
u(x, 0)= & f(x), \quad x \in[0, L]
\end{aligned}\right.
$$

How to solve?

Step 1: Find the steady state $U(x)$.

Step 2. Set $v(x, t)=u(x, t)-U(x)$. Then $v$ is the solution of

$$
\left\{\begin{array}{rlr}
v_{t}(x, t)=c^{2} \cdot v_{x x}(x, t), \quad x \in(0, L), t>0 \\
& \text { Homogeneous boundary conditions } \\
v(x, 0)= & f(x)-U(x), \quad x \in[0, L]
\end{array}\right.
$$

Solve for $v$.

Step 3. The solution is

$$
u(x, t)=U(x)+v(x, t)
$$

Example 6. Solve the heat equation with non-homogeneous condition

$$
\left\{\begin{aligned}
u_{t}(x, t)=4 \cdot u_{x x}(x, t), \quad x \in(0, \pi), t>0 \\
u(0, t)=1, \quad u(\pi, t)=3, \quad t>0 \\
u(x, 0)=\frac{2}{\pi} \cdot x+e^{x}+1, \quad x \in[0, \pi]
\end{aligned}\right.
$$

Answer. Step 1. Find a steady state

$$
U(x)=a x+b
$$

Initial condition implies that

$$
U(0)=1 \quad \Longrightarrow \quad b=1
$$

and

$$
U(\pi)=3 \quad \Longrightarrow \quad a \pi+b=3
$$

Thus, $a=\frac{2}{\pi}, b=1$ and the steady state

$$
U(x)=\frac{2}{\pi} \cdot x+1
$$

Step 2. Set $v(x, t) \doteq u(x, t)-U(x)$. Then $v$ is the solution of the heat equation with Dirichlet boundary conditions

$$
\left\{\begin{aligned}
& v_{t}(x, t)=4 \cdot v_{x x}(x, t), \quad x \in(0, \pi), t>0 \\
& u(0, t)=u(\pi, t)=0, t>0, \\
& v(x, 0)=u(x, 0)-U(x)=e^{x}, \quad x \in[0, \pi]
\end{aligned}\right.
$$

We have

$$
c=2 \quad \text { and } \quad f(x)=e^{x} .
$$

The general solution is

$$
v(x, t)=\sum_{n=1}^{\infty} c_{n} \cdot e^{-4 n^{2} t} \cdot \sin n x
$$

where

$$
c_{n}=\frac{2}{\pi} \cdot \int_{0}^{\pi} e^{x} \cdot \sin (n x) d x, \quad \text { for all } n=1,2, \ldots
$$

Step 3. The solution is

$$
u(x, t)=U(x)+v(x, t)=U(x)=\frac{2}{\pi} \cdot x+1+\sum_{n=1}^{\infty} c_{n} \cdot e^{-4 n^{2} t} \cdot \sin n x
$$

where

$$
c_{n}=\frac{2}{\pi} \cdot \int_{0}^{\pi} e^{x} \cdot \sin (n x) d x=\frac{n\left(1-e^{\pi} \cdot(-1)^{n}\right)}{n^{2}+1}, \quad \text { for all } n=1,2, \ldots
$$

Example 7. Find the solution of the 1-D heat equation with non-homogeneous boundary condition

$$
\left\{\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t), \quad x \in(0,2), t>0 \\
u_{x}(0, t)=u_{x}(2, t)=1, \quad t \geq 0 \\
u(x, 0)=\frac{\cos (\pi x)}{\pi}+2 \cos (2 \pi x)+x+1, \quad x \in[0,2]
\end{array}\right.
$$

Answer. 1. Find a steady state

$$
U(x)=a x+b
$$

Initial condition implies that

$$
U_{x}(0)=U_{x}(2)=1 \quad \Longrightarrow \quad a=1
$$

Thus,

$$
U(x)=x+b .
$$

Choose $b=0$, we have that $U(x)=x$.
2. Set $v(x, t) \doteq u(x, t)-U(x)$. Then $v$ is the solution of the heat equation with Neumnann boundary condition

$$
\left\{\begin{array}{l}
v_{t}(x, t)=v_{x x}(x, t), \quad x \in(0,1), t>0 \\
v_{x}(0, t)=v_{x}(2, t)=0, \quad t>0, \\
v(x, 0)=u(x, 0)-U(x)=\frac{\cos (\pi x)}{\pi}+2 \cos (2 \pi x), \quad x \in[0,2]
\end{array}\right.
$$

We have

$$
c=1 \quad \text { and } \quad f(x)=1+\frac{\cos (\pi x)}{\pi}+2 \cos (2 \pi x) .
$$

The general solution

$$
v(x, t)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{-\frac{n^{2} \pi^{2}}{4} t} \cdot \cos \left(\frac{n \pi}{2} x\right) .
$$

Initial condition implies that

$$
1+\frac{\cos (\pi x)}{\pi}+2 \cos (2 \pi x)=c_{0}+\sum_{n=1}^{\infty} c_{n} \cdot \cos \left(\frac{n \pi}{2} x\right)
$$

and it yields

$$
c_{0}=1, \quad c_{2}=\frac{1}{\pi}, \quad c_{4}=2 \quad \text { and } \quad c_{n}=0 \quad \text { for all } n \neq 0,2,4 .
$$

Thus,

$$
w(x, t)=1+\frac{1}{\pi} e^{-\pi^{2} t} \cos (\pi x)+2^{-4 \pi^{2} t} \cos (2 \pi x) .
$$

3. The solution is

$$
u(x, t)=w(x, t)+U(x)=1+x+\frac{1}{\pi} e^{-\pi^{2} t} \cos (\pi x)+2^{-4 \pi^{2} t} \cos (2 \pi x)
$$

### 5.2 1-D Wave equation on bounded domain

Consider 1-D wave equation in an interval $[0, L]$

$$
\left\{\begin{align*}
& u_{t t}(x, t)=c^{2} \cdot u_{x x}(x, t), \text { for all } x \in[0, L], t>0  \tag{5.2}\\
& u(0, t)=u(L, t)=0, \quad \text { for all } t \geq 0, \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \quad \text { for all } x \in[0, L],
\end{align*}\right.
$$

where

- $L$ is the length of the string;
- $c^{2}=\frac{T}{\rho}$ with tensor $T$ and density $\rho$.

Find $u(x, t)$.

## How to solve?

Step 1. (Separate variables) Look for a solution of form

$$
u(x, t)=F(x) \cdot G(t)
$$

We compute

$$
u_{t t}=F(x) \cdot G^{\prime \prime}(t) \quad \text { and } \quad u_{x x}=F^{\prime \prime}(x) \cdot G(t)
$$

Plug these into (5.2), we get

$$
F(x) \cdot G^{\prime \prime}(t)=c^{2} \cdot F^{\prime \prime}(x) \cdot G(t)
$$

and it yields

$$
\frac{F^{\prime \prime}(x)}{F(x)}=\frac{G^{\prime \prime}(t)}{c^{2} \cdot G(t)}=-\lambda
$$

Thus, $F$ and $G$ are solutions of the ODEs

$$
\left\{\begin{array}{rlrl}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, & & x \in(0, L), \\
G^{\prime \prime}(t)+\lambda c^{2} G(t) & =0, & t \geq 0
\end{array}\right.
$$

Step 2. Solve for $F$ and $G$. The boundary conditions

$$
u(0, t)=F(0) \cdot G(t)=0 \quad \Longrightarrow \quad F(0)=0
$$

and

$$
u(L, t)=F(L) \cdot G(t)=0 \quad \Longrightarrow \quad F(L)=0
$$

Two points boundary problem (Sturm-Liouville problem)

$$
\left\{\begin{aligned}
F^{\prime \prime}(x)+\lambda \cdot F(x) & =0, \quad x \in(0, L) \\
F(0)=F(L) & =0
\end{aligned}\right.
$$

Eigenvalues and corresponding eigenfunctions

$$
\left\{\begin{aligned}
\lambda_{n} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
F_{n}(x) & =\sin \left(\frac{n \pi}{L} \cdot x\right)
\end{aligned} \quad \text { for } n=1,2, \ldots\right.
$$

Solve for $G$. For any $n$, we have

$$
G^{\prime \prime}(t)+\frac{n^{2} c^{2} \pi^{2}}{L^{2}} \cdot G(t)=0
$$

Thus,

$$
G_{n}(t)=c_{n} \cdot \cos \left(\frac{n c \pi}{L} \cdot t\right)+d_{n} \cdot \sin \left(\frac{n c \pi}{L} \cdot t\right)
$$

Particular solution

$$
u_{n}(x, t)=F_{n}(x) \cdot G_{n}(t)=\left[c_{n} \cdot \cos \left(\frac{n c \pi}{L} \cdot t\right)+d_{n} \cdot \sin \left(\frac{n c \pi}{L} \cdot t\right)\right] \cdot \sin \left(\frac{n \pi}{L} \cdot x\right) .
$$

Step 3. General solution

$$
u(x, t)=\sum_{n=1}^{+\infty}\left[c_{n} \cdot \cos \left(\frac{n c \pi}{L} \cdot t\right)+d_{n} \cdot \sin \left(\frac{n c \pi}{L} \cdot t\right)\right] \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

where

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

and

$$
g(x)=\sum_{n=1}^{\infty} \frac{n c \pi}{L} \cdot d_{n} \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

Therefore,
$c_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi}{L} \cdot x\right) d x \quad$ and $\quad d_{n}=\frac{2}{n c \pi} \cdot \int_{0}^{L} g(x) \cdot \sin \left(\frac{n \pi}{L} \cdot x\right) d x$.

Remark. If $g=0$ then $d_{n}=0$ and

$$
u(x, t)=\sum_{n=1}^{+\infty} c_{n} \cdot \cos \left(\frac{n c \pi}{L} \cdot t\right) \cdot \sin \left(\frac{n \pi}{L} \cdot x\right)
$$

If $f=0$ then $c_{n}=0$ and

$$
u(x, t)=\sum_{n=1}^{+\infty} d_{n} \cdot \sin \left(\frac{n c \pi}{L} \cdot t\right) \cdot \sin \left(\frac{n \pi}{L} \cdot x\right) .
$$

Example 1. Find the solution of the following equation

$$
\left\{\begin{aligned}
u_{t t}(x, t)=9 \cdot u_{x x}(x, t), & \text { for all } x \in[0, \pi], t>0 \\
u(0, t)=u(\pi, t)=0, & \text { for all } t \geq 0, \\
u(x, 0)=\sin x-\sin (3 x) & \text { for all } x \in[0, \pi], \\
u_{t}(x, 0)=\sin (2 x)+5 \sin (4 x) & \quad \text { for all } x \in[0, \pi] .
\end{aligned}\right.
$$

Answer. We have

$$
c=3, \quad L=\pi, \quad f(x)=\sin x-\sin (3 x) \quad \text { and } \quad g(x)=\sin (2 x)+5 \sin (4 x) .
$$

The general solution is

$$
\left.u(x, t)=\sum_{n=1}^{\infty}\left[c_{n} \cdot \cos (3 n t)+d_{n} \sin (3 n t)\right] \cdot \sin (n x)\right]
$$

The coefficients are computed by

$$
\sin (x)-\sin (3 x)=\sum_{n=1}^{\infty} c_{n} \cdot \sin (n x)
$$

and

$$
\sin (2 x)+5 \sin (4 x)=\sum_{n=1}^{+\infty} 3 n d_{n} \cdot \sin (n x) .
$$

This implies

$$
c_{1}=1, \quad c_{3}=-1, \quad c_{n}=0 \quad \text { for all } n \neq 1,3
$$

and

$$
d_{2}=\frac{1}{6}, \quad d_{4}=\frac{5}{12}, \quad d_{n}=0 \quad \text { for all } n \neq 2,4
$$

The solution is

$$
u(x, t)=\cos (3 t) \cdot \sin x+\frac{1}{6} \sin (6 t) \sin (2 x)-\cos (9 t) \sin (3 x)+\frac{5}{12} \sin (12 t) \sin (4 x)
$$

Example 2. Find the solution of the following equation

$$
\left\{\begin{aligned}
u_{t t}(x, t)=9 \cdot u_{x x}(x, t)+t, \quad \quad \text { for all } x \in[0, \pi], t>0, \\
u(0, t)=u(\pi, t)=0 \quad \text { for all } t \geq 0, \\
u(x, 0)=\sin x-\sin (3 x) \quad \text { for all } x \in[0, \pi] \\
u_{t}(x, 0)=-\frac{x(x-\pi)}{18}+\sin (2 x)+5 \sin (4 x) \quad \text { for all } x \in[0, \pi]
\end{aligned}\right.
$$

Answer. Set $v=u+\frac{x(x-\pi)}{18} \cdot t$, we compute

$$
\begin{gathered}
v_{t t}=u_{t t} \quad \text { and } \quad v_{x x}=u_{x x}+\frac{t}{9} \\
v(0, t)=u(0, t)=0, \quad v(\pi, t)=u(\pi, t)=0
\end{gathered}
$$

and

$$
v_{t}(x, 0)=u_{t}(x, 0)+\frac{x(x-\pi)}{18}=\sin (2 x)+5 \sin (4 x), \quad v(x, 0)=\sin x-\sin (3 x) .
$$

Thus, $v$ solves the equation

$$
\left\{\begin{aligned}
v_{t t}(x, t)=9 \cdot v_{x x}(x, t), \quad \text { for all } x \in[0, \pi], t>0 \\
v(0, t)=0, \quad v(\pi, t)=0 \quad \text { for all } t \geq 0, \\
v(x, 0)=\sin x-\sin (3 x) \quad \text { for all } x \in[0, \pi], \\
v_{t}(x, 0)=\sin (2 x)+5 \sin (4 x) \quad \text { for all } x \in[0, \pi] .
\end{aligned}\right.
$$

Thus,

$$
v(x, t)=\cos (3 t) \cdot \sin x+\frac{1}{6} \sin (6 t) \sin (2 x)-\cos (9 t) \sin (3 x)+\frac{5}{12} \sin (12 t) \sin (4 x)
$$

and this yields

$$
\begin{aligned}
u(x, t)=-\frac{x(x-\pi) t}{18} & +\cos (3 t) \cdot \sin x \\
& +\frac{1}{6} \sin (6 t) \cdot \sin (2 x)-\cos (9 t) \cdot \sin (3 x)+\frac{5}{12} \sin (12 t) \cdot \sin (4 x)
\end{aligned}
$$

Example 3. Solve the nonhomogeneous PDE with given boundary and initial conditions

$$
\left\{\begin{aligned}
& u_{t t}(x, t)=u_{x x}(x, t)+x, \quad \text { for all } x \in[0,1], t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \quad \text { for all } t>0, \\
& u(x, 0)=-\frac{x^{3}}{6}+\frac{x}{6}+\sin (\pi x)-2 \sin (3 \pi x), \quad u_{t}(x, 0)=0
\end{aligned}\right.
$$

Answer. 1. By superposition principle, we have

$$
u(x, t)=v(x, t)+w(x)
$$

where $w$ is the solution of

$$
\left\{\begin{aligned}
w^{\prime \prime}(x) & =-x \\
w(0) & =w(1)=0
\end{aligned}\right.
$$

and $v$ is the solution of

$$
\left\{\begin{aligned}
& v_{t t}(x, t)=v_{x x}(x, t), \quad \text { for all } x \in[0,1], t>0 \\
& v(0, t)=0, \quad v(1, t)=0 \quad \text { for all } t>0, \\
& v(x, 0)=u(0, x)-w(x), \quad v_{t}(x, 0)=0 \quad \text { for all } x \in[0,1]
\end{aligned}\right.
$$

2. Solve for $w$, we get

$$
w(x)=-\frac{x^{3}}{6}+\frac{x}{6} \quad \text { for all } x \in[0,1] .
$$

To solve for $v$, we have
$c=1, \quad L=1, \quad g(x)=0 \quad$ and $\quad f(x)=u(0, x)-w(x)=\sin (\pi x)-2 \sin (3 \pi x)$
The general solution is

$$
v(x, t)=\sum_{n=1}^{+\infty} c_{n} \cdot \cos (n \pi t) \cdot \sin (n \pi x)
$$

with

$$
\sin (\pi x)-2 \sin (3 \pi x)=\sum_{n=1}^{+\infty} c_{n} \cdot \sin (n \pi x)
$$

Compare the coefficients, we get

$$
c_{1}=1, \quad c_{3}=-2 \quad \text { and } \quad c_{n}=0 \quad \text { for all } n \neq 1,3,
$$

and this yields

$$
v(x, t)=\cos (\pi t) \cdot \sin (\pi x)-2 \cos (3 \pi t) \cdot \sin (3 \pi x) .
$$

Thus, the solution is

$$
u(x, t)=-\frac{x^{3}}{6}+\frac{x}{6}+\cos (\pi t) \cdot \sin (\pi x)-2 \cos (3 \pi t) \cdot \sin (3 \pi x)
$$

Nonhomogenous wave equations. In general, to solve the nonhomogeneous PDE

$$
\left\{\begin{aligned}
& u_{t t}(x, t)=\alpha^{2} \cdot u_{x x}(x, t)+k(x) \text { for all } x \in[0, L], t>0 \\
& u(0, t)=a, \quad u(L, t)=b \quad \text { for all } t>0, \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x),
\end{aligned}\right.
$$

we will use the superposition principle

$$
u(x, t)=v(x, t)+w(x)
$$

where $w(x)$ solves the equation

$$
\left\{\begin{array}{l}
w^{\prime \prime}(x)=-\frac{k(x)}{\alpha^{2}} \quad \text { for all } x \in(0, L) \\
w(0)=a, \quad w(L)=b,
\end{array}\right.
$$

and $v$ solves the homogeneous PDE

$$
\left\{\begin{aligned}
v_{t t}(x, t)=\alpha^{2} \cdot v_{x x}(x, t) \quad \text { for all } x \in[0, L], t>0 \\
u(0, t)=0, \quad u(L, t)=0 \quad \text { for all } t>0, \\
u(x, 0)=f(x)-w(x), \quad u_{t}(x, 0)=g(x)
\end{aligned}\right.
$$

Example 4. Solve the following nonhomogeneous PDE

$$
\left\{\begin{array}{rlr}
u_{t t}(x, t)=u_{x x}(x, t)+x & \text { for all } x \in[0,1], t>0 \\
u(0, t)=1, \quad u(1, t)=2 & \text { for all } t>0, \\
u(x, 0)=-\frac{x^{3}}{6}+\frac{7 x}{6}+1, & u_{t}(x, 0)=-\sin (\pi x)+2 \sin (3 \pi x) .
\end{array}\right.
$$

Answer. 1. By superposition principle, we have

$$
u=v+w(x)
$$

where is the solution of

$$
\left\{\begin{aligned}
w^{\prime \prime}(x) & =-x \\
w(0) & =1, \quad w(1)=2
\end{aligned}\right.
$$

and $v$ is the solution of

$$
\left\{\begin{aligned}
v_{t t}(x, t) & =v_{x x}(x, t), \quad \text { for all } x \in[0,1], t>0 \\
v(0, t) & =0, \quad v(1, t)=0 \quad \text { for all } t>0 \\
v(x, 0) & =u(0, x)-w(x), \quad v_{t}(x, 0)=-\sin (\pi x)+2 \sin (3 \pi x)
\end{aligned}\right.
$$

2. Solve for $w$, we get

$$
w(x)=-\frac{x^{3}}{6}+\frac{7 x}{6}+1 \quad \text { for all } x \in[0,1] .
$$

To solve for $v$, we have

$$
c=1, \quad L=1, \quad f(x)=0 \quad \text { and } \quad g(x)=-\sin (\pi x)+2 \sin (3 \pi x) .
$$

The general solution is

$$
u(x, t)=\sum_{n=1}^{+\infty} d_{n} \cdot \sin (n \pi t) \cdot \sin (n \pi x) .
$$

with

$$
-\sin (\pi x)+2 \sin (3 \pi x)=\sum_{n=1}^{+\infty} n \pi d_{n} \cdot \sin (n \pi x)
$$

Comparing the coefficients, we get

$$
d_{1}=-\frac{1}{\pi}, \quad d_{3}=\frac{2}{3 \pi} \quad \text { and } \quad d_{n}=0 \quad \text { for all } n \neq 1,3 .
$$

Thus,

$$
v(x, t)=-\frac{1}{\pi} \cdot \sin (\pi t) \sin (\pi x)+\frac{2}{3 \pi} \cdot \sin (3 \pi t) \sin (3 \pi x)
$$

and this yields

$$
u(x, t)=-\frac{x^{3}}{6}+\frac{7 x}{6}+1-\frac{1}{\pi} \cdot \sin (\pi t) \sin (\pi x)+\frac{2}{3 \pi} \cdot \sin (3 \pi t) \sin (3 \pi x)
$$

Example 5. Solve the following nonhomogeneous PDE

$$
\left\{\begin{aligned}
u_{t t}(x, t)=u_{x x}(x, t)+x+2 t & & \text { for all } x \in[0,1], t>0 \\
u(0, t)=1, \quad u(1, t)=2 & & \text { for all } t>0, \\
u(x, 0)=-\frac{x^{3}}{6}+\frac{7 x}{6}+1, & & u_{t}(x, 0)=-x(x-1)-\sin (\pi x)+2 \sin (3 \pi x)
\end{aligned}\right.
$$

Answer. Set $v=u+x(x-1) t$, we compute

$$
\begin{gathered}
v_{t t}=u_{t t} \quad \text { and } \quad v_{x x}=u_{x x}+2 t, \\
v(0, t)=u(0, t)=1, \quad v(1, t)=u(1, t)=2, \quad v(x, 0)=-\frac{x^{2}}{2}+\frac{3 x}{2}+1,
\end{gathered}
$$

and

$$
v_{t}(x, 0)=u_{t}(x, 0)+x(x-1)=-\sin (\pi x)+2 \sin (3 \pi x)
$$

Thus, $v$ solves the equation

$$
\left\{\begin{array}{rlr}
v_{t t}(x, t)=v_{x x}(x, t)+x \quad & \text { for all } x \in[0,1], t>0 \\
v(0, t)=1, \quad v(1, t)=2 \quad \text { for all } t>0 \\
v(x, 0)=-\frac{x^{3}}{6}+\frac{7 x}{6}+1, \quad v_{t}(x, 0)=-\sin (\pi x)+2 \sin (3 \pi x)
\end{array}\right.
$$

From example 4, we know that

$$
v(x, t)=-\frac{x^{2}}{2}+\frac{3 x}{2}+1-\frac{1}{\pi} \cdot \sin (\pi t) \sin (\pi x)+\frac{2}{3 \pi} \cdot \sin (3 \pi t) \sin (3 \pi x)
$$

Thus, the solution is

$$
u(x, t)=-x(x-1) t-\frac{x^{3}}{6}+\frac{7 x}{6}+1-\frac{1}{\pi} \cdot \sin (\pi t) \sin (\pi x)+\frac{2}{3 \pi} \cdot \sin (3 \pi t) \sin (3 \pi x)
$$

### 5.3 Laplace equation in 2D

Consider the Laplace equation

$$
\Delta u(x, y)=0 \quad \text { for all }(x, y) \in \Omega \subseteq \mathbb{R}^{2}
$$

with

$$
\Delta u=u_{x x}+y_{y y} .
$$

The above equation is the steady state of the 2D heat equation

$$
u_{t}(x, y, t)=c^{2} \cdot \Delta u(t, x, y) \quad \text { for all } t \geq 0,(x, y) \in \Omega \subseteq \mathbb{R}^{2}
$$

and its solution is a harmonic function.

### 5.3.1 Laplace equation in rectangular domain

Given positive constant $a, b$, consider the Laplace equation

$$
\Delta u(x, y)=0 \quad \text { for all }(x, y) \in(0, a) \times(0, b)
$$

with the boundary conditions

$$
\left\{\begin{array}{lll}
u(0, y)=g_{1}(y), & u(a, y)=g_{2}(y) & \text { for all } y \in(0, b) \\
u(x, 0)=f_{1}(x), & u(b, x)=f_{2}(x) & \text { for all } y \in(0, a)
\end{array}\right.
$$

Goal: Given $f_{1}, f_{2}, g_{1}$ and $g_{2}$, can we find $u$ ?
By using a superposition principle of a linear PDE and a change of variables, one can reduce the study to the following case:

## CASE 1:

$$
g_{1}=0, \quad g_{2}=0 \quad \text { and } \quad f_{1}=0 .
$$

In this case, a solution can be found by using the method of separation of variable.
Step 1. (Separate variables) Look for a solution of form

$$
u(x, y)=F(x) \cdot G(y)
$$

we derive the ODEs for $F$ and $G$

$$
F^{\prime \prime}(x)+\lambda \cdot F(x)=0 \quad \text { and } \quad G^{\prime \prime}(y)-\lambda \cdot G(y)=0
$$

Step 2. Solve for $F$. Since $u(0, y)=u(a, y)=0$, one has that

$$
F(0)=F(a)=0
$$

The two points boundary problem

$$
\left\{\begin{array}{l}
F^{\prime \prime}(x)+\lambda \cdot F(x)=0 \\
F(0)=F(a)=0
\end{array}\right.
$$

has eigen-pairs

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{a^{2}}, \quad F_{n}(x)=\sin \left(\frac{n \pi x}{a}\right) \quad \text { for all } n=1,2, \ldots
$$

For every $n \geq 1$, solve the corresponding ODE for $G$

$$
G^{\prime \prime}(y)-\frac{n^{2} \pi^{2}}{a^{2}} \cdot G(y)=0,
$$

we get

$$
G_{n}(y)=\frac{A_{n}}{2} \cdot e^{\frac{n \pi}{a} \cdot y}+\frac{B_{n}}{2} \cdot e^{-\frac{n \pi}{a} \cdot y}
$$

The boundary condition implies that

$$
G_{n}(0)=0 \quad \Longrightarrow \quad B_{n}=-A_{n} .
$$

Thus,

$$
G_{n}(y)=A_{n} \cdot \frac{e^{\frac{n \pi}{a} \cdot y}-e^{-\frac{n \pi}{a} \cdot y}}{2}=A_{n} \cdot \sinh \left(\frac{n \pi}{a} \cdot y\right)
$$

Step 3. The solution is

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{a} \cdot y\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

with

$$
f_{2}(x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi b}{a}\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

and

$$
A_{n}=\frac{2}{a \cdot \sinh \left(\frac{n \pi b}{a}\right)} \cdot \int_{0}^{a} f_{2}(x) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right) d x
$$

Example 1. Solve the Laplace equation

$$
\Delta u(x, y)=0 \quad \text { for all }(x, y) \in(0,1) \times(0,1)
$$

with boundary conditions

$$
\left\{\begin{array}{l}
u(0, y)=u(1, y)=0 \quad \text { for all } y \in(0,1) \\
u(x, 0)=0, \quad u(1, x)=x(1-x) \quad \text { for all } y \in(0,1) .
\end{array}\right.
$$

Answer. We have

$$
a=1, \quad b=1 \quad \text { and } \quad f_{2}(x)=x(1-x)
$$

The general solution is

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh (n \pi y) \cdot \sin (n \pi x)
$$

Here, the coefficients are computed by

$$
\begin{aligned}
A_{n} & =\frac{2}{\sinh (n \pi)} \cdot \int_{0}^{1} x(1-x) \sin (n \pi x) d x \\
& =\frac{4}{\sinh (n \pi)} \cdot \frac{1-\cos (n \pi)}{n^{3} \pi^{3}}=\frac{4}{\sinh (n \pi)} \cdot \frac{1-(-1)^{n}}{n^{3} \pi^{3}} .
\end{aligned}
$$

Thus, the solution is

$$
u(x, y)=4 \cdot \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{3} \pi^{3} \sinh (n \pi)} \cdot \sinh (n \pi y) \cdot \sin (n \pi x) .
$$

Summary. The Laplace equation

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0, a) \times(0, b) \\
u(0, y)=u(a, y)=0 \quad y \in(0, b) \\
u(x, 0)=0, \quad u(x, b)=f(x) \quad x \in(0, a)
\end{array}\right.
$$

has the solution

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{a} \cdot y\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

with

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi b}{a}\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

and

$$
A_{n}=\frac{2}{a \cdot \sinh \left(\frac{n \pi b}{a}\right)} \cdot \int_{0}^{a} f(x) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right) d x .
$$

CASE 2: Let us now consider the Laplace equation

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0, a) \times(0, b) \\
u(0, y)=u(a, y)=0 \quad y \in(0, b) \\
u(x, 0)=f(x), \quad u(x, b)=0 \quad x \in(0, a)
\end{array}\right.
$$

In this case, the function

$$
v(x, y)=u(x, b-y) \quad \text { for all }(x, y) \in(0, a) \times(0, b)
$$

solve the equation

$$
\left\{\begin{array}{l}
\Delta v(x, y)=0 \quad(x, y) \in(0, a) \times(0, b) \\
v(0, y)=v(a, y)=0 \quad y \in(0, b) \\
v(x, 0)=0, \quad v(x, b)=f(x) \quad x \in(0, a)
\end{array}\right.
$$

From case 1, we have

$$
v(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{a} \cdot y\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

with

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi b}{a}\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

and

$$
A_{n}=\frac{2}{a \cdot \sinh \left(\frac{n \pi b}{a}\right)} \cdot \int_{0}^{a} f(x) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right) d x
$$

Thus, the solution is

$$
u(x, y)=v(x, b-y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{a} \cdot(b-y)\right) \cdot \sin \left(\frac{n \pi}{a} \cdot x\right)
$$

CASE 3: Consider the Laplace equation

$$
\begin{cases}\Delta u(x, y)=0 & (x, y) \in(0, a) \times(0, b) \\ u(0, y)=0, & u(a, y)=f(y) \quad y \in(0, b) \\ u(x, 0)=0, & u(x, b)=0 \quad x \in(0, a)\end{cases}
$$

In this case, we set

$$
v(y, x)=u(x, y) \quad \text { for all }(x, y) \in(0, a) \times(0, b)
$$

Then $v$ define on $(0, b) \times(0, a)$ solves the equation

$$
\begin{cases}\Delta v(x, y)=0 & (x, y) \in(0, b) \times(0, a) \\ v(0, y)=0, & v(b, y)=0 \quad y \in(0, a) \\ v(x, 0)=0, & u(x, a)=f(x) \quad x \in(0, b)\end{cases}
$$

From the case 1, we have

$$
v(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{b} \cdot y\right) \cdot \sin \left(\frac{n \pi}{b} \cdot x\right)
$$

with

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi a}{b}\right) \cdot \sin \left(\frac{n \pi}{b} \cdot x\right)
$$

and

$$
A_{n}=\frac{2}{b \cdot \sinh \left(\frac{n \pi a}{b}\right)} \cdot \int_{0}^{b} f(x) \cdot \sin \left(\frac{n \pi}{b} \cdot x\right) d x
$$

Thus, the solution is

$$
u(x, y)=v(y, x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{b} \cdot x\right) \cdot \sin \left(\frac{n \pi}{b} \cdot y\right)
$$

CASE 4: Similarly, one can show that the Laplace equation

$$
\begin{cases}\Delta u(x, y)=0 & (x, y) \in(0, a) \times(0, b) \\ u(0, y)=f(y), & u(a, y)=0 \quad y \in(0, b) \\ u(x, 0)=0, & u(x, b)=0 \quad x \in(0, a)\end{cases}
$$

has the solution

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi}{b} \cdot(a-x)\right) \cdot \sin \left(\frac{n \pi}{b} \cdot y\right)
$$

with

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh \left(\frac{n \pi a}{b}\right) \cdot \sin \left(\frac{n \pi}{b} \cdot x\right)
$$

and

$$
A_{n}=\frac{2}{b \cdot \sinh \left(\frac{n \pi a}{b}\right)} \cdot \int_{0}^{b} f(x) \cdot \sin \left(\frac{n \pi}{b} \cdot x\right) d x
$$

Using a superposition principle, we can solve Laplace equation with general boundary condition.

Example 2. Solve the Laplace equation

$$
\Delta u(x, y)=0 \quad \text { for all }(x, y) \in(0,1) \times(0,1)
$$

with boundary conditions

$$
\left\{\begin{array}{l}
u(0, y)=u(1, y)=1 \quad \text { for all } y \in(0,1) \\
u(x, 0)=x, \quad u(1, x)=1-x \quad \text { for all } y \in(0,1) .
\end{array}\right.
$$

Answer. The solution $u$ is computed by

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)+u_{3}(x, y)+u_{4}(x, y)
$$

where

- $u_{1}$ is the solution to

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0,1) \times(0,1) \\
u(0, y)=u(1, y)=0 \quad y \in(0,1) \\
u(x, 0)=0, \quad u(x, 1)=(1-x) \quad x \in(0,1)
\end{array}\right.
$$

- $u_{2}$ is the solution to

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0,1) \times(0,1) \\
u(0, y)=u(1, y)=0 \quad y \in(0,1) \\
u(x, 0)=x, \quad u(x, 1)=0 \quad x \in(0,1)
\end{array}\right.
$$

- $u_{3}$ is the solution to

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0,1) \times(0,1) \\
u(0, y)=1, \quad u(1, y)=0 \quad y \in(0,1) \\
u(x, 0)=u(x, 1)=0 \quad x \in(0,1)
\end{array}\right.
$$

- $u_{4}$ is the solution to

$$
\left\{\begin{array}{l}
\Delta u(x, y)=0 \quad(x, y) \in(0,1) \times(0,1) \\
u(0, y)=0, \quad u(1, y)=1 \quad y \in(0,1) \\
u(x, 0)=u(x, 1)=0 \quad x \in(0,1)
\end{array}\right.
$$

From case 1 and case 2, we have

$$
u_{1}(x, y)=\sum_{n=1}^{\infty} A_{n} \cdot \sinh (n \pi y) \cdot \sin (n \pi x)
$$

and

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} B_{n} \cdot \sinh (n \pi(1-y)) \cdot \sin (n \pi x)
$$

with

$$
\left\{\begin{array}{l}
A_{n}=\frac{2}{\sinh (n \pi)} \cdot \int_{0}^{1}(1-x) \sin (n \pi x) d x=\frac{2}{n \pi \sinh (n \pi)} \\
B_{n}=\frac{2}{\sinh (n \pi)} \cdot \int_{0}^{1} x \sin (n \pi x) d x=\frac{2(-1)^{n+1}}{n \pi \sinh (n \pi)}
\end{array}\right.
$$

From case 3 and case 4, we have

$$
u_{3}(x, y)=\sum_{n=1}^{\infty} C_{n} \cdot \sinh (n \pi x) \cdot \sin (n \pi y)
$$

and

$$
u_{4}(x, y)=\sum_{n=1}^{\infty} D_{n} \cdot \sinh (n \pi(1-x)) \cdot \sin (n \pi y)
$$

with

$$
C_{n}=D_{n}=\frac{2}{\sinh (n \pi)} \cdot \int_{0}^{1} \sin (n \pi x) d x=\frac{2 \cdot\left(1-(-1)^{n}\right)}{n \pi \sinh (n \pi)}
$$

Therefore, the solution is

$$
\begin{aligned}
u(x, y)=\sum_{n=1}^{\infty} \frac{2}{n \pi \sinh (n \pi)} \cdot[ & \left(\sinh (n \pi y)+(-1)^{n+1} \cdot \sinh (n \pi(1-y))\right) \cdot \sin (n \pi x) \\
+ & \left.\left(1-(-1)^{n}\right) \cdot(\sinh (n \pi x)+\sinh (n \pi(1-x))) \cdot \sin (n \pi y)\right]
\end{aligned}
$$

for $(x, y) \in[0,1] \times[0,1]$.

### 5.3.2 Temperature in a disk

Consider the Laplace equation

$$
\left\{\begin{array}{lll}
\Delta u & =0 & \text { in } B(0, R) \\
u & =f & \text { on } \partial B(0, R) .
\end{array}\right.
$$

Polar coordinate: By a change of variables

$$
\begin{cases}x=r \cdot \cos (\theta) \\ y=r \cdot \sin (\theta) & \text { for all } 0 \leq r \leq R, 0 \leq \theta \leq 2 \pi \\ v(r, \theta)=u(r \cdot \cos \theta, r \sin \theta), & \end{cases}
$$

we compute

$$
\begin{aligned}
& v_{r}=u_{x} \cdot \cos \theta+u_{y} \cdot \sin \theta \\
v_{r r}= & {\left[u_{x x} \cdot \cos \theta+u_{x y} \cdot \sin \theta\right] \cdot \cos \theta+\left[u_{x y} \cdot \cos \theta+u_{y y} \cdot \sin \theta\right] \cdot \sin \theta } \\
= & u_{x x} \cdot \cos ^{2} \theta+2 \cdot u_{x y} \sin \theta \cdot \cos \theta+u_{y y} \cdot \sin ^{2} \theta
\end{aligned}
$$

and

$$
\begin{gathered}
v_{\theta}=-r \cdot \sin \theta \cdot u_{x}+r \cdot \cos \theta \cdot u_{y}, \\
v_{\theta \theta}= \\
=r^{2} \cdot\left[u_{x x} \cdot \sin ^{2} \theta-2 \cdot u_{x y} \sin \theta \cdot \cos \theta+u_{y y} \cdot \cos ^{2} \theta\right]-r \cdot\left[u_{x} \cdot \cos \theta+u_{y} \cdot \sin \theta\right] \\
= \\
r^{2} \cdot\left[u_{x x} \cdot \sin ^{2} \theta-2 \cdot u_{x y} \sin \theta \cdot \cos \theta+u_{y y} \cdot \cos ^{2} \theta\right]-r \cdot v_{r} .
\end{gathered}
$$

Thus, $v$ solves the equation

$$
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} v}{\partial \theta^{2}}=0 \quad \text { for all }(r, \theta) \in(0, R) \times(0,2 \pi)
$$

with boundary conditions

$$
\begin{cases}v(r, 0)=v(r, 2 \pi) & x \in[0, R] \\ v(R, \theta)=g(\theta)=f(R \cos \theta, R \sin \theta) & \theta \in[0,2 \pi]\end{cases}
$$

Goal: Given $R$ and $g$, find $v$ in $[0, R] \times[0,2 \pi]$.

1. Using the method of separation of variables, we seek particular solutions of form

$$
v(r, \theta)=F(r) \cdot G(\theta)
$$

From the PDEs, one derive the ODEs for $F$ and $G$

$$
\left\{\begin{array}{l}
G^{\prime \prime}(\theta)+\lambda \cdot G(\theta)=0 \\
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)-\lambda F(r)=0
\end{array}\right.
$$

2. From the boundary condition, we solve the two points boundary problem

$$
G^{\prime \prime}(\theta)+\lambda \cdot G(\theta)=0, \quad G(0)=G(2 \pi)
$$

and get eigenpairs

$$
\lambda_{n}=n^{2}, \quad G_{n}(\theta)=a_{n} \cdot \cos (n \theta)+b_{n} \cdot \sin (n \theta) \quad \text { for all } n=0,1,2, \ldots
$$

For every $n=0,1, \ldots$, the corresponding ODEs for $F$

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)-n^{2} F(r)=0
$$

has the general solution

$$
F_{n}(r)=c_{n} \cdot\left(\frac{r}{R}\right)^{n} .
$$

3. Finally, the solution $v$ is

$$
v(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot\left[A_{n} \cdot \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

with

$$
A_{0}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g(\theta) d \theta, \quad A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cdot \cos (n \theta) d \theta
$$

and

$$
B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cdot \sin (n \theta) d \theta
$$

for all $n \geq 1$.

Example 1. Solve the Laplace equation

$$
\left\{\begin{array}{lll}
\Delta u & =0 & \text { in } B(0,1) \\
u & =f & \text { on } \partial B(0,1)
\end{array}\right.
$$

where

$$
f(\cos \theta, \sin \theta)=1+\sin \theta+\frac{1}{2} \sin (3 \theta)+\cos (4 \theta) \quad \theta \in[0,2 \pi]
$$

Answer. We have

$$
R=1 \quad \text { and } \quad g(\theta)=1+\sin \theta+\frac{1}{2} \sin (3 \theta)+\cos (4 \theta)
$$

The general solution is

$$
v(r, \theta)=A_{0}+\sum_{n=1}^{\infty} r^{n} \cdot\left[A_{n} \cdot \cos (n \theta)+B_{n} \sin (n \theta)\right] \quad \text { for all } 0<r \leq 1, \theta \in[0,2 \pi]
$$

From the boundary condition, one has

$$
1+\sin \theta+\frac{1}{2} \sin (3 \theta)+\cos (4 \theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cdot \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

and this yields

$$
A_{0}=1, \quad B_{1}=1, \quad B_{3}=\frac{1}{3} \quad \text { and } \quad A_{4}=1
$$

Thus, the solution is

$$
v(r, \theta)=1+r \sin \theta+\frac{r^{3}}{2} \sin (3 \theta)+r^{4} \cos (4 \theta)
$$

Poisson integral formula. Consider Laplace equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad \text { for all }(r, \theta) \in(0, R) \times(0,2 \pi)
$$

with boundary conditions

$$
u(R, \theta)=g(\theta) \quad \text { for all } \theta \in[0,2 \pi) .
$$

The separation of variables solution is

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot\left[A_{n} \cdot \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

with

$$
A_{0}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g(\theta) d \theta, \quad A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cdot \cos (n \theta) d \theta
$$

and

$$
B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cdot \sin (n \theta) d \theta \quad \text { for all } n \geq 1
$$

We compute that

$$
\begin{aligned}
u(r, \theta) & =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g(\alpha) d \alpha+\frac{1}{\pi} \cdot\left[\frac{r}{R}\right)^{n} \cdot \int_{0}^{2 \pi} g(\alpha) \cdot(\cos (n \alpha) \cos (n \theta)+\sin (n \alpha) \sin (n \theta)] d \alpha \\
& =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left[1+2 \sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot \cos [n(\theta-\alpha)]\right] \cdot g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left[1+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot\left(e^{i n(\theta-\alpha)}+e^{-i n(\theta-\alpha)}\right)\right] \cdot g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left[1+\frac{r e^{i(\theta-\alpha)}}{R-r e^{i(\theta-\alpha)}}+\frac{r e^{-i(\theta-\alpha)}}{R-r e^{-i(\theta-\alpha)}}\right] \cdot g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left[\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\alpha)+r^{2}}\right] \cdot g(\alpha) d \alpha .
\end{aligned}
$$

The last equation is the Poisson Integral formula of the Laplace equation

$$
u(r, \theta)=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left[\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\alpha)+r^{2}}\right] \cdot g(\alpha) d \alpha
$$

### 5.3.3 Exterior Dirichlet problem and the Dirichlet problem in an Annulus

1. Exterior Dirichlet problem Consider Laplace equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad \text { for all }(r, \theta) \in(R, \infty) \times(0,2 \pi)
$$

with boundary conditions

$$
u(R, \theta)=g(\theta) \quad \text { for all } \theta \in[0,2 \pi)
$$

By using the same argument in the previous one, we obtain that

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left(\frac{R}{r}\right)^{n} \cdot\left[A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

with

$$
A_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta, \quad B_{0}=0
$$

and

$$
A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cos (n \theta) d \theta, \quad B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \sin (n \theta) d \theta
$$

for all $n \geq 1$.
Example 1. The Exterior problem

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad \text { for all }(r, \theta) \in(1, \infty) \times(0,2 \pi)
$$

with boundary conditions

$$
u(1, \theta)=1+\sin (\theta)+\cos (3 \theta) \quad \text { for all } \theta \in[0,2 \pi) .
$$

has the solution

$$
u(r, \theta)=1+\frac{1}{r} \cdot \sin (\theta)+\frac{1}{r^{3}} \cdot \sin (3 \theta) .
$$

2. Dirichlet problem in an Annulus. Consider the Laplace equation between two circles

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad R_{1}<r<R_{2}
$$

with boundary condition

$$
u\left(R_{1}, \theta\right)=g_{1}(\theta) \quad \text { and } \quad u\left(R_{2}, \theta\right)=g_{2}(\theta) \quad \text { for all } \theta \in[0,2 \pi) .
$$

By using the method of separation of variable, one gets

$$
u(r, \theta)=a_{0}+b_{0} \ln r+\sum_{n=1}^{\infty}\left[a_{n} r^{n}+b_{n} r^{-n}\right] \cdot \cos (n \theta)+\left[c_{n} r^{n}+d_{n} r^{-n}\right] \cdot \sin (n \theta)
$$

where

$$
\left\{\begin{array}{l}
a_{0}+b_{0} \ln R_{1}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g_{1}(s) d s \\
a_{0}+b_{0} \ln R_{2}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g_{2}(s) d s
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
a_{n} R_{1}^{n}+b_{n} R_{1}^{-n}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} g_{1}(s) \cdot \cos (n s) d s \\
a_{n} R_{2}^{n}+b_{n} R_{2}^{-n}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} g_{2}(s) \cdot \cos (n s) d s
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
c_{n} R_{1}^{n}+d_{n} R_{1}^{-n}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} g_{1}(s) \cdot \sin (n s) d s \\
c_{n} R_{2}^{n}+d_{n} R_{2}^{-n}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} g_{2}(s) \cdot \sin (n s) d s
\end{array}\right.
$$

Example 1. Solve the Laplace equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad 1<r<2
$$

with boundary condition

$$
u(1, \theta)=0 \quad \text { and } \quad u(2, \theta)=\sin \theta \quad \text { for all } \theta \in[0,2 \pi) .
$$

Answer. We have

$$
R_{1}=1, \quad R_{2}=2, \quad g_{1}(\theta)=0, \quad g_{2}(\theta)=\sin \theta
$$

A direct computation yields

$$
a_{n}=b_{n}=0 \quad \text { for all } n \geq 0
$$

and

$$
c_{n}=d_{n}=0 \quad \text { for all } n \geq 2
$$

It remains to compute $c_{1}$ and $d_{1}$. Since

$$
\frac{1}{\pi} \cdot \int_{0}^{2 \pi} \sin ^{2}(s) d s=1
$$

one has

$$
c_{1}+d_{1}=0 \quad \text { and } \quad 2 c_{1}+\frac{d_{1}}{2}=1
$$

and this yields

$$
c_{1}=2 / 3 \quad \text { and } \quad d_{1}=-2 / 3
$$

Thus,

$$
u(r, \theta)=\frac{2}{3} \cdot\left(r-\frac{1}{r}\right) \cdot \sin \theta \quad \text { for all }(r, \theta) \in[1,2] \times[0,2 \pi]
$$

Example 2. Solve the Laplace equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad 1<r<2
$$

with boundary condition

$$
u(1, \theta)=3 \quad \text { and } \quad u(2, \theta)=5 \quad \text { for all } \theta \in[0,2 \pi)
$$

Answer. We have

$$
R_{1}=1, \quad R_{2}=2, \quad g_{1}(\theta)=3, \quad g_{2}(\theta)=5
$$

It is clear that

$$
a_{n}=b_{n}=c_{n}=d_{n}=0 \quad \text { for all } n \geq 1
$$

and

$$
\left\{\begin{array}{ll}
a_{0} & =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} 3 d s=3 \\
a_{0}+b_{0} \ln 2 & =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} 5 d s=5
\end{array} \quad \Longrightarrow \quad a_{0}=3, \quad b_{0}=\frac{2}{\ln 2} .\right.
$$

Thus, the solution is

$$
u(r, \theta)=2+\frac{2}{\ln 2} \cdot \ln r .
$$

Example 3. Solve the Laplace equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad 1<r<2
$$

with boundary condition

$$
u(1, \theta)=0 \quad \text { and } \quad u(2, \theta)=\sin \theta \quad \text { for all } \theta \in[0,2 \pi) .
$$

Answer. We have

$$
R_{1}=1, \quad R_{2}=2, \quad g_{1}(\theta)=\sin \theta, \quad g_{2}(\theta)=\sin \theta .
$$

The coefficients $a_{0}, b_{0}, a_{n}, b_{n}, c_{n}, d_{n}$ are zero excepts for $c_{1}, d_{1}$. We have

$$
\left\{\begin{array}{l}
c_{1}+d_{1}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} \sin ^{2} s d s=1 \\
4 c_{1}+\frac{1}{4} d_{1}=\frac{1}{\pi} \cdot \int_{0}^{2 \pi} \sin ^{2}(s) d s=1
\end{array}\right.
$$

and this yields

$$
c_{1}=\frac{1}{3} \quad \text { and } \quad d_{1}=\frac{2}{3} .
$$

Thus, the solution is

$$
u(r, \theta)=\left(\frac{r}{3}+\frac{2}{3 r}\right) \cdot \sin \theta
$$

