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1 Introduction

Functional analysis is an abstract branch of mathematics analysis. It is a necessary
background is any area of analysis (e.g., real and complex analysis, convex analysis,
measure theory, numerical analysis, . . . ), and important in various fields of mathe-
matics and its applications (e.g, PDEs, calculus of variations, approximation theory,
optimal control, game theory, . . . ) .

Functional analysis is the study of

• infinite dimensional vector space over R and C .

• linear maps between them.

A key idea is to regard functions

f : Rn → R
as points in an abstract space. All information of f is considered in one single num-
ber ‖f‖-norm of f (size of f).

Basic spaces

• Metric spaces

• Normed vector spaces

• Banach spaces

• Hilbert spaces

Major and foundational results

• Contraction mapping theorem

• Uniform boundedness principle

• Open-mapping theorem

• Closed-graph theorem

• Baire category theorem

• Arzela-Ascoli theorem

• Hahn-Banach theorem

• . . .
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2 Metric spaces

Given a set X, we wish to introduce a distance d(·, ·) between 2 points in X. This
distance will allows us to define limits, convergent sequences, series and continuous
maps.

Definition 2.1 A metric on X is a nonnegative function d : X × X → [0,+∞)
satisfying the following properties:

(i). d(x, y) = 0 ⇐⇒ x = y (Identity of indiscernibles)

(ii). d(x, y) = d(y, x) (Symmetry)

(iii). d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

These conditions express intuitive notions about the concept of distance. Here,
we will call that

• d(x, y) is a distance from x to y.

• (X, d) is a metric space (equipped with metric d).

Examples of metric spaces.

(1). Real line X = R

d(x, y) = |x− y| for all x, y ∈ R (Euclidean metric in R) .

(2). n dimensional space (X = Rn)

d(x, y) =

√√√√ n∑
i=1

|xi − yi|2 (Euclidean metric in Rn) .

Notice that the metric is not unique. In this case, one can construct several
different metrics in Rn, e.g.,

d1(x, y) = max
i∈{1,2,...,n}

|xi − yi|

and

d2(x, y) =
n∑
i=1

|xi − yi| (Taxicab metric) .

Question: is d(x, y) = |x− y|2 a metric in R? NO.
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(3). Discrete metric on X

d(x, y) =

 1 if x 6= y ,

0 if x = y .

(4). On the space of continuous function from [a, b] to R

C([a, b],R) = {f : [a, b]→ R | f is continuous} .

For any f, g ∈ C([a, b],R), denote by

d(f, g) = max
t∈[a,b]

|f(t)− g(t)| .

Then (C([a, b],R), d) is a metric space.

Question: Is

d1(f, g) =

∫ b

a

|f(t)− g(t)| dt for all f, g ∈ C([a, b],R)

a metric on (C([a, b],R), d)? YES.

(5). Space of sequences: For any p ≥ 1, denote by

X := `p =

{
x = (x1, x2, . . . )

∣∣∣ ∞∑
i=1

|xi|p <∞

}
and

dp(x, y) =

(
∞∑
i=1

|xi − yi|p
)1/p

x, y ∈ lp .

In the case p = 2, we call that `2 is a Hilbert sequence space.

In the case p =∞, we have the space of bounded sequences

`∞ = {x = {xi}i≥1 | |xi| ≤ Cx for all i ≥ 1} .

The function

d∞(x, y) = sup
i∈{1,2,... }

|xi − yi| for all x, y ∈ `∞

is a metric on `∞.

Question: Is (`p, dp) a metric space?

In order to answer the above question, let us introduce the following classical in-
equalities.
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2.1 Classical inequalities

1. Convex function: The function f : [a, b]→ R is convex, i.e.,

t · f(x) + (1− t) · f(y) ≥ f(tx+ (1− t)y) for all t ∈ [0, 1] .

It is clear that the epigraph of f

Epi(f) = {(x, β) | x ∈ [a, b], β ≥ f(x)}

is convex. Moreover, if f is a C2 function and f ′′ is non-negative then f is convex.

An application: (Young’s inequality) Given a constant p > 1, let q be its con-

jugate, i.e.,
1

p
+

1

q
= 1. Then

u · v ≤ up

p
+
vq

q
for all u, v ≥ 0. (2.1)

Proof. Since u, v > 0, one can write

u = e
a
p and v = u = e

b
q

for some a, b ∈ R. Since ex is convex, we have

1

p
· ea +

1

q
· eb ≥ e

1
p
·a+ 1

q
·b

and it yields (2.1).

2. Hölder inequality for sums: Let p, q > 0 be conjugate. For any x = {xi}i≥1 ∈
`p and y = {yi}i≥1 in `q, it holds

∞∑
i=1

|xiyi| ≤

(
∞∑
i=1

|xi|p
)1/p

·

(
∞∑
i=1

|yi|q
)1/q

. (2.2)

Proof. 1. For any i = 1, 2, . . . , set

ui :=
xi(

∞∑
j=1

|xj|p
)1/p

and vi :=
yi(

∞∑
j=1

|yj|q
)1/q

,

we have that
∞∑
i=1

|ui|p =
∞∑
i=1

|vi|q = 1 . (2.3)
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Moreover, (2.2) is equivalent to

∞∑
i=1

|ui · vi| ≤ 1 .

2. From the above inequality, one has

|ui · vi| ≤
|ui|p

p
+
|vi|q

q
for all i ∈ {1, 2, . . . } .

Recalling (2.3), we obtain that

∞∑
i=1

|ui · vi| ≤
∞∑
i=1

|ui|p

p
+
|vi|q

q
= 1 .

The proof is complete.

In the case p = q = 2, (2.2) implies the Cauchy-Schwarz inequality

∞∑
i=1

|xiyi| ≤

(
∞∑
i=1

|xi|2
)1/2

·

(
∞∑
i=1

|yi|2
)1/2

. (2.4)

3. Minkowski inequality for sums: Given p ≥ 1, for every x, y ∈ `p, it holds(
∞∑
i=1

|xi + yi|p
)1/p

≤

(
∞∑
i=1

|xi|p
)1/p

+

(
∞∑
i=1

|yi|p
)1/p

(2.5)

Proof. If p = 1 then (2.5) follows from the triangle inequality in R. Otherwise, let

q be such that
1

p
+

1

q
. The inequality (2.5) is equivalent to

∞∑
i=1

|xi+yi|p ≤

(
∞∑
i=1

|xi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

+

(
∞∑
i=1

|yi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

.

Using the Hölder inequality, we get(
∞∑
i=1

|xi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

≥
∞∑
i=1

|xi| · |xi + yi|p/q,

and (
∞∑
i=1

|yi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

≥
∞∑
i=1

|yi| · |xi + yi|p/q .
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Thus,(
∞∑
i=1

|xi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

+

(
∞∑
i=1

|yi|p
)1/p

·

(
∞∑
i=1

|xi + yi|p
)1/q

≥

(
∞∑
i=1

|xi + yi|

)1+p/q

=

(
∞∑
i=1

|xi + yi|

)p

,

and this yields (2.5).

Recalling that

`p =

{
x = (x1, x2, . . . )

∣∣∣ ∞∑
i=1

|xi|p <∞

}
and

dp(x, y) =

(
∞∑
i=1

|xi − yi|p
)1/p

x, y ∈ lp .

We will show that

Lemma 2.2 (`p, d) is a metric space for all p ≥ 1 .

Proof. We first show that dp is finite. By Minkowski inequality, we estimate

dp(x, y) =

(
∞∑
i=1

|xi − yi|p
)1/p

≤

(
∞∑
i=1

|xi|p
)1/p

+

(
∞∑
i=1

|yi|p
)1/p

< +∞

for all x, y ∈ `p.

It is obvious that d is nonnegative and dp(x, y) = dp(y, x) if and only if x = y ∈ `p ,

dp(x, y) = dp(y, x) for every x, y ∈ `p .

Thus, we only need to check that d satisfies the triangle inequality, i.e.,

dp(x, y) ≤ dp(x, z) + dp(z, y) for all x, y, z ∈ `p .

Equivalently,

∞∑
i=1

(|xi − yi|)1/p ≤
∞∑
i=1

(|xi − zi|)1/p +
∞∑
i=1

(|zi − yi|)1/p .

The Minkowski inequality yields the above inequality.

To complete this subsection, let us prove an increasing property of `p.
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Lemma 2.3 (Embedding) For any 1 < p1 < p2 <∞, the following relation holds

`p1 ⊂ `p2 .

Proof. Given any x ∈ `p1 , we need to show that x ∈ `p2 . Equivalently,(
∞∑
i=1

|xi|p1
)1/p1

< ∞ =⇒

(
∞∑
i=1

|xi|p2
)1/p2

< ∞ .

This follows from Jensen’s sum inequality(
∞∑
i=1

|xi|p1
)1/p1

≥

(
∞∑
i=1

|xi|p2
)1/p2

for all 1 < p1 < p2 <∞ . (2.6)

To complete the proof, we will prove that Jensen’s sum inequality. Set

vi := |xi|p1 and p :=
p2

p1

> 1 .

The inequality (2.6) can read as

∞∑
i=1

|vi| ≥

(
∞∑
i=1

|vi|p
) 1

p

.

Thus, it suffices to show that

n∑
i=1

|vi| ≥

(
n∑
i=1

|vi|p
) 1

p

for all n ∈ N . (2.7)

For n = 2, it holds

|v1|+ |v2| ≥ (|v1|p + |v2|p)
1
p (homogeneous function of degree 1) .

Indeed, set 0 < t :=
v2

v1

, we can rewrite the above inequality as

(1 + t)p ≥ 1 + tp . (2.8)

Consider the function f(t) := (1 + t)p − 1− tp. We compute

f(0) = 0 and f ′(t) = p · (1 + t)p−1 − p · tp−1 > 0 for all t > 0 .

Thus, f(t) > 0 for all t > 0 and it yields (2.8).
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Assume that (2.7) holds for n = k ≥ 2, we need to show that it holds for n = k+ 1.
Indeed,

k+1∑
i=1

|vi| ≥ |vk+1|+

(
k∑
i=1

|vi|p
)1/p

≥

(
k+1∑
i=1

|vi|p
)1/p

.

By induction, one obtains (2.7).

More concepts.

• (Metric subspaces). Given a metric space (X, ρ), let Y be a nonempty subset
of X. Then the restriction of ρ to Y × Y defines a metric on Y and we call
(Y, ρ|Y ) is a metric subspace of (X, ρ).

• (Metric products). Given two metrics (X1, ρ1) and (X2, ρ2), define

X
.
= X1 ×X2 = {(x1, x2) | x1 ∈ X1, x2 ∈ X2}

and τ : X ×X → [0,∞) such that

τ
(
(x1, x2), (y1, y2)

)
=
√
ρ2

1(x1, y1) + ρ2
2(x2, y2)

for all (x1, x2), (y1, y2) ∈ X.

The following relation of equivalence between metrics on a given set X is useful.

Definition 2.4 (Equivalence) Two metrics ρ1 and ρ2 on X are equivalent if any
only if there exist λ1, λ2 > 0 such that

λ1 · ρ1(x1, x2) ≤ ρ2(x1, x2) ≤ λ2 · ρ1(x1, x2) for all (x1, x2) ∈ X ×X .

Definition 2.5 (Isometry) A mapping f : (X, ρ) → (Y, σ) is said to be isometry
if any only if

σ(f(x1), f(x2)) = ρ(x1, x2) for all (x1, x2) ∈ X ×X .

In addition, if f(X) = Y then (X, ρ) and (Y, σ) are isometric.

2.2 Open sets, closed sets and neighborhood

Given a metric space (X, d), let us first introduce fundamental subsets of X associ-
ated to the distance d.
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Definition 2.6 Given a point a ∈ X and r > 0, we denote by

B(a, r) =
{
y ∈ X

∣∣ d(a, y) < r
}

(open ball) ,

B(a, r) =
{
y ∈ X

∣∣ d(a, y) ≤ r
}

(closed ball) ,

and

S(a, r) = B(a, r)\B(a, r) =
{
y ∈ X

∣∣ d(a, y) = r
}

(sphere) .

It is clear that

B(a, r) ⊆ B(a, r) ⊆ B(a, r1) for all 0 < r < r1 .

Examples 1. Let X = R2 = {(x1, x2) | x1, x2 ∈ R}.

(a) If d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2 for all x, y ∈ R2 then

B(0, 1) = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}

S(0, 1) = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1} .

(b) If d(x, y) = |x1 − y1|+ |x2 − y2| for all x, y ∈ R2 then
B(0, 1) = {(x1, x2) ∈ R2 : |x1|+ |x2| < 1}

S(0, 1) = {(x1, x2) ∈ R2 : |x1|+ |x2| = 1} .
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Example 2. Let (X, d) be is discrete metric space

d(x, y) =

 1 if x 6= y ,

0 if x = y .

For any a ∈ X, we have

B(a, 1) = {a}, B(0, 1) = X, S(a, 1) = X\{a}

and
B(a, 1/2) = {a}, B(a, 3/2) = X, S(x, 1/2) = ∅ .

Definition 2.7 (Open and closed sets) Let M be a subset of X. We say that

• M is a open set in (X, d) if and only if for every x ∈M

B(x, rx) ⊆ M for some rx > 0 .

• M is a closed set in (X, d) if and only if

M c = X\M = {x ∈ X | x /∈M} is open .
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It is clear that ∅ and X are open and closed. By the definition, it is sufficient to
show that X is open.

B(a, 1) ⊆ X for all a ∈ X

and X is open.

Claim 1. Given a ∈ X and r > 0, the ball B(a, r) is open.

Proof. Let b ∈ B(a, r), we have

rb := r − d(a, b) > 0 .

We will show that
B(b, rb) ⊂ B(a, r) (2.9)

and this implies that B(a, r) is open.

For any y ∈ B(b, rb), by the triangle inequality, it holds

d(a, y) ≤ d(a, b) + d(b, y) < d(a, b) + rb = r

and it yields y ∈ B(a, r). Thus, (2.9) holds.

Main properties: Given (X, d) a metric space, the followings holds
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(i) If {Uα} is a collection of open sets in (X, d) then U =
⋃
α

Uα is open.

(ii) If U and V are open then U ∩ V is also open.

Proof. (i). For any x ∈ U , there exists α0 such that x ∈ Uα0 . Since Uα0 is open,
there exists rx > 0 such that

B(x, rx) ⊂ Uα0 ⊆ U .

By the definition of open set, one has that the set U is open.

(ii). For any x ∈ U ∩ V , we need to find rx > 0 such that

B(x, rx) ⊂ U ∩ V . (2.10)

Since U and V are open, there exists r1, r2 > 0 such that

B(x, r1) ⊂ U and B(x, r2) ⊂ V .

Set rx = min{r1, r2} > 0, we obtain (2.10).

Definition 2.8 (Topological space) Given X, let T be a collection of subsets of
X such that

(1) ∅ and X are in T ;

(2) If Uα ∈ X for α ∈ I, then
⋃
α∈I Uα ∈ T ;

(3) If U, V ∈ T then U ∩ V ∈ T .

Then, (X, T ) is a topological space.

The following holds:

Proposition 2.8.1 A metric space (X, d) is a topological space, i.e., the collection
of open sets for the metric d is a topology for X.

2.3 Continuous maps on metric space

Given two metric spaces (X, ρ) and (Y, σ), consider a map

f : (X, ρ) −→ (Y, σ)

x ∈ X 7−→ f(x) ∈ Y .

Question What does it means for f to be continuous at x ∈ X?
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Recall that a function f : R −→ R is continuous at a point x ∈ X if any only
if for every ε > 0, there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| ≤ ε . (2.11)

Set d(x, y) = |x− y|. The condition for continuity (2.11) can be written as

d(x, y) < δ =⇒ d(f(x), f(y)) ≤ ε .

This leads to the following definition.

Definition 2.9 The map f : (X, ρ) −→ (Y, σ) is continuous at x if and only if for
every ε > 0, there exists δ > 0 such that

ρ(x, y) < δ =⇒ σ(f(x), f(y)) ≤ ε .

The above condition can be rewritten as

f(y) ∈ B(f(x), ε) for all y ∈ B(x, δ) .

Equivalently,

f(B(x, δ)) ⊂ B(f(x, ε)) .

We say that the function f is continuous on A ⊆ X if and only if f is continuous
at all x ∈ A.

Theorem 2.10 A map f : (X, ρ)→ Y (, σ) is continuous of X if and only if

U = f−1(V ) is open in X for all V open in Y .
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Proof. (=⇒) Assume that f is continuous on X, we need to show that

V ⊂ Y open =⇒ f−1(V ) open .

For any given x ∈ f−1(V ), we need to find δ > 0 such that B(x, δ) ⊂ f−1(V ).
Equivalently,

f(B(x, δ)) ⊂ V . (2.12)

Since f(x) ∈ V , there exists ε > 0 such that B(f(x), ε) ⊂ V . By the continuity
property of f , there exists δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε)

and it yields (2.12).

(⇐=) Assume that

V ⊂ Y open =⇒ f−1(V ) open ,

we show that f is continuous.

Fix x ∈ X, for every ε > 0, find δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε) .

Equivalently,
B(x, δ) ⊂ f−1(B(f(x, ε))) . (2.13)

Since B(f(x), ε) is open in Y , the set f−1(B(f(x, ε))) is open in X. Observe that
x ∈ f−1(B(f(x, ε))), there exists δ > 0 such that (2.13) holds.

Some concepts. We say that

• M is a neighborhood of x if there exists ε > 0 such that

B(x, ε) ⊂ M .

• x is an interior of M if M is a neighborhood of x. The set

Int(M) := M o = {x ∈M | x is an interior of M} .

is the interior of M

Claim. M o is the largest open set contained in M .

Proof. Homework problem.
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Denote by
M = X\(X\M)o is the closure of M ,

and
∂M = M\M o is the boundary of M

It holds
M o ⊆ M ⊆ M .

Moreover, the following holds

Claim. M is the smallest closed set which contains M .

Proof. Homework problem.

As a consequence of the above claims, one has that

• If M is an open set in (X, d) then M o = M ;

• If M is a closed set in (X, d) then M = M .

Let’s now introduce concept of dense sets and separable property of a metric space.

Definition 2.11 (Dense set and separable metric space) The subset M ⊂ X
is dense in (X, d) if

M = X .

The metric space (X, d) is called “separable” if X has a countable dense subset.

Notice that if M is dense in (X, d) then every nonempty open subset of X contains at
least one point of M . Indeed, assume by a contradiction, there exists an nonempty
open set U of X such that

U ∩M = ∅ .

By the definition of open set, there exists a small ball B(x, ε) ⊂ U and it yields that

B(x, ε) ⊂ X\M .

Thus, x is in (X\M)o and it yields a contradiction.

Some examples.

• Q is dense in R .

• Rn with Eucliean distance is separable.

• Is (`p, dp) separable for all p ≥ 1?

Proposition 2.11.1 A metric space is separable if any only if there exists a count-
able collection {On}n≥1 of open subsets of X such that any open subset of X is the
union of a subcollection of {On}n≥1.
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Proof. 1. Assume that X is separable, i.e.,

X = {x1, x2, . . . , xn, . . . }.

Consider the a countable collection of open balls {B(xn, 1/m)}n,m≥1 in X. Let U ⊂
X be an open set. For any x ∈ U , there exists m ∈ N such that B(x, 2/mx) ⊆ U .
On the other hand, since x ∈ {x1, x2, . . . , xn, . . . }, one can find a point xn,x ∈
{x1, x2, . . . , xn, . . . } such that x ∈ B(xn,x, 1/mx). Hence,

x ∈ B(xn,x, 1/mx) ⊂ U,

and this implies that U is the union of a subcollection of {B(xn, 1/m)}n,m≥1.

2. Assume that there exists a countable collection {On}n≥1 of open subsets of X
such that any open subset of X is the union of a subcollection of {On}n≥1. For every
n ≥ 1, we pick xn ∈ On. The set {x1, x2, . . . , xn, . . . } is dense in X.

2.4 Convergence, Cauchy sequence, and completeness

Given a metric space (X, d) and a sequence {xn}n≥1 in X

Definition 2.12 The sequence {xn}n≥1 converges to x ∈ X if

lim
n→∞

d(xn, x) = 0 ,

i.e., for every ε > 0, there exists Nε > 0 such that

xn ∈ B(xn, ε) for all n ≥ Nε .

In this case, we say that x is a limit of {xn}n≥1 and denote by x = limn→∞ xn.

Example. Given X = (−1, 1] and d(x, y) = |x − y| for all x, y ∈ X, let {xn}n≥1

be such that xn = −1 +
1

n
. One has that {xn}n≥1 converges to 1 in R but does not

converge in X since −1 /∈ X.

Properties of convergence sequences. Let {xn}n≥1 be a sequence in (X, d) which
converges to x. Then the following holds:

(a) The limit of {xn}n≥1 is unique.

(b) {xn}n≥1 is a bounded sequence, i.e., there exists a ∈ X and M > 0 such that

xn ∈ B(a,M) for all n ≥ 1 .
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(c) If {yn}n≥1 converges to y in (X, d) then

lim
n→∞

d(xn, yn) = d(x, y) .

Proof. (1). Assume that {xn}n≥1 also converges to y. We need to show that x = y.
By the triangle inequality, we estimate

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y) for all n ≥ 1 .

Taking n→∞, we obtain that

0 ≤ d(x, y) ≤ lim sup
n→∞

[d(x, xn) + d(xn, y)] = 0

and it yields d(x, y) = 0.

(2). For ε = 1, there exists N1 ∈ N such that

xn ∈ B(x, 1) for all n ≥ N1 .

Choosing M := 1 +

N1∑
i=1

d(x, 1), we have

xn ∈ B(x,M) for all n ≥ 1 .

(3.) Observe that

0 ≤ |d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y) .

Taking n→∞, we obtain that

0 ≤ lim sup
n→∞

|d(xn, yn)− d(x, y)| ≤ lim sup
n→∞

[d(xn, x) + d(yn, y)| = 0

and it yields
lim
n→∞

d(xn, yn) = d(x, y) .

The proof is complete.

Proposition 2.12.1 Let E ⊂ X. Then the following statements are equivalent

(i). x ∈ E;

(ii) B(x, r) ∩ E 6= ∅ for all r > 0;

(iii) There exists a sequence {xn}n≥1 ⊂ E such that lim
n→∞

xn = x .
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Proof. [(i) =⇒ (ii)] Recalling that

E = X\(X\E)o .

If x ∈ E then x /∈ (X\E)o. By the definition, we have

B(x, r) ∩ E 6= ∅ for all r > 0

[(ii) =⇒ (iii)] For every n ≥ 1, one has

B(x, 1/n) ∩ E 6= ∅ .

Pick any xn ∈ B(x, 1/n) ∩ E for all n ≥ 1, the sequence {xn}n≥1 converges to x .

[(iii) =⇒ (i)] Assume that there exists a sequence {xn}n≥1 ⊂ E such that
lim
n→∞

xn = x. We need to show that x ∈ E = X\(X\E)o. Assume by a contra-

diction, there exists r > 0 such that B(x, r) ⊂ X\E. This implies that

B(x, r) ∩ E = ∅

and it yields a contradiction.

Definition 2.13 (Cauchy sequence) A sequence {xn}n≥1 is Cauchy if for every
ε > 0, there exists Nε > 0 such that

d(xn, xm) < ε for all n,m > Nε .

The following lemma state a connection between Cauchy sequence and convergent
sequence.
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Lemma 2.14 A convergent sequence is a Cauchy sequence.

Proof. Let {xn}n ≥ be a convergent sequence in (X, d). Assume that

lim
n→∞

xn = x ∈ X .

This implies that for every ε′ > 0 there exists Nε′ such that

d(xn, x) ≤ ε′ for all n ≥ Nε′ .

Using triangle inequality, we estimate

d(xn, xm) ≤ d(xn, x) + d(x, xm) ≤ 2ε′ for all n,m ≥ Nε′

Choosing ε = 2ε′, one have that

d(xn, xm) ≤ ε for all n,m ≥ Nε ,

and it implies that {xn}n≥1 is a Cauchy sequence.

Is a Cauchy sequence convergent?

In R, d(x, y) = |x − y|, every Cauchy sequence converges to a limit in R. How-
ever, it does not hold in general.

Example. Consider X = (0, 1) and d(x, y) = |x − y|. One can see that the
sequence {1/n}n≥ is a Cauchy sequence but it does not converges since 0 /∈ X. In
this case, the metric space (X, d) is incomplete.

Definition 2.15 The metric space (X, d) is complete if every Cauchy sequence is
convergent. Otherwise, it is incomplete.

Some examples.

(a) The metric space
X = R, d(x, y) = |x− y|

is complete.

(b) The metric space

X = Rn, d(x, y) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2

is complete.
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(c) Recalling that

`p =

{
x = {xn}n≥1 :

∞∑
n=1

|xn|p <∞

}
and

dp(x, y) =

(
∞∑
n=1

|xn − yn|p
) 1

p

for all x, y ∈ `p,

one has that (`p, dp) is complete.

(d) Let `∞ be the set of bounded sequence in R. Denote by

d∞(x, y) = sup
n≥1
|xn − yn| x, y ∈ `∞ .

Then (`∞, d∞) is complete.

(e) Given two constant −∞ < a < b <∞, denote by

C([a, b]) := {f : [a, b]→ R is continuous}

and
d(f, g) := max

t∈[a,b]
|f(t)− g(t)| for all f, g ∈ C([a, b]) .

The metric space (C([a, b]), d) is complete.

(f) However, if we consider C([a, b]) with the metric

d1(f, g) =

∫ b

a

|f(t)− g(t)| dt,

the (C([a, b]), d1) is incomplete.

Let us give an example to show that the metric space (C([a, b]), d1) is incomplete.
Without loss of generality, we assume that a = −1, b = 1. Consider the sequence of
function {fn}n≥ ∈ C([−1, 1]) such that

fn(x) =


1 if − 1 ≤ x ≤ − 1

n
,

−nx if
−1

n
≤ x ≤ 1

n
,

−1 if
1

n
≤ x ≤ 1 .
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A direct computation yields

d1(fn, fm) =
|m− n|
mn

for all m,n ≥ 1 .

and it yields {fn}n≥1 is a Cauchy sequence in C([−1, 1]).
However, fn converges pointwise to

f(x) =

 1 if − 1 ≤ x < 0 ,

−1 if 0 < x ≤ 1

which is discontinuous. Hence, (C([−1, 1]), d1) is incomplete.

To conclude this subsection, let’s show that

Proposition 2.15.1 The metric space (C([a, b]), d) is complete.

Proof. Let {fn}n≥1 be a Cauchy sequence in C([a, b]), i.e. for every ε > 0, there
exists Nε > 0 such that

d(fn, fm) = max
t∈[a,b]

|fn(t)− fm(t)| < ε for all m,n ≥ Nε . (2.14)

We need to find f ∈ C([a, b]) such that fn converges to f in (C([a, b]), d), i.e.,

lim
n→∞

d(fn, f) = 0 . (2.15)
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From (3.1), for every t ∈ [a, b], it holds

|fn(t)− fm(t)| < ε for all m,n ≥ Nε .

Thus, the sequence {fn(t)}n≥1 is Cauchy in R for every t ∈ [a, b]. Denote by

f(t) := lim
n→∞

fn(t) for all t ∈ [a, b] .

To complete the proof, we will show that

(i) f is continuous in [a, b];

(ii) limn→∞ d(fm, f) = 0 .

1. To proof (i), we estimate

|f(t)− f(s)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(s)|+ |fn(s)− f(s)|

≤ |f(t)− fm(t)|+ |fm(t)− fn(t)|+ |fn(t)− fn(s)|

+ |fn(s)− fm(s)|+ |fm(s)− f(s)|

≤ 2d(fm, fn) + |fn(t)− fn(s)|+ |fm(t)− f(t)|+ |fm(s)− f(s)| .

For ε > 0, choose Nε > 0 such that

d(fm, fn) <
ε

4
for all n,m ≥ Nε ,

we have

|f(t− f(s)| ≤ ε

2
+ |fn(t)− fn(s)|+ |fm(t)− f(t)|+ |fm(s)− f(s)| .

Taking m→∞, we obtain that

|f(t)− f(s)| ≤ ε

2
+ |fn(t)− fn(s)|+ lim

m→∞
[|fm(t)− f(t)|+ |fm(s)− f(s)|]

=
ε

2
+ |fn(t)− fn(s)| .

Since fn is continuous, there exists ε > 0 such that

|fn(t)− fn(s)| < ε

2
for all s ∈ (t− ε, t+ ε)

and this implies that

|f(t)− f(s)| < ε for all s ∈ (t− ε, t+ ε) .
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Hence, f is continuous on [a, b].

2. We now show that
lim
n→∞

d(fn, f) = 0 .

We estimate

|fn(t)− f(t)| ≤ |fn(t)− fm(t)|+ |fm(t)− f(t)|

≤ d(fn, fm) + |fm(t)− f(t)| .

For ε > 0, choose Nε > 0 such that

d(fm, fn) < ε for all n,m ≥ Nε ,

we have
|fn(t)− f(t)| < ε+ |fm(t)− f(t)| .

Taking m→∞, we obtain that

|fn(t)− f(t)| < ε+ lim
m→∞

|fm(t)− f(t)| = ε for all n ≥ Nε .

Thus,
d(fn, f) = sup

t∈[a.b]

|fn(t)− f(t)| ≤ ε n ≥ Nε ,

and this implies that fn converges to f in (C([a, b]), d). Therefore, the metric space
(C([a, b]), d) is complete.

2.5 Compact sets

Definition 2.16 Given a metric space (X, d), the subset K ⊂ X is compact if and
only if for any open cover of K

K ⊆
⋃
α∈I

Oα, Oα open ,

there exists α1, α2, . . . , αN ∈ I such that

K ⊆
N⋃
i=1

Oαi
.

Examples. Consider X = R and d(x, y) = |x− y|. Then

• the set [0, 1) is not compact, and

• the set [0, 1] is compact .
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Definition 2.17 The set K ⊂ X is called totally bounded if for every ε > 0 there
exist a finite number of points a1, a2, . . . , aN ∈ X such that

K ⊆
N⋃
i=1

B(ai, ε) .

It is clear that if the set K is totally bounded then it is bounded. Indeed,

K ⊆
N⋃
i=1

B(ai, ε) =⇒ K ⊆ B(a1, r1) with r1 = ε+ max
i∈{1,...,N}

d(a1, ai) .

However, in general

K is bounded ; K is totally bounded .

Example. Consider the metric space

X = {x1, x2, . . . , xn, . . . }

and

d(x, y) =

 1 if x 6= y ,

0 if x = y .

The set K = B(0, 3/2) is bounded. However, there does not exists a finite number
of points a1, a2, . . . , aN ∈ X such that

X = K ⊆
N⋃
i=1

B(ai, 1/2) =
N⋃
i=1

{ai} = {a1, a2, . . . , aN} .
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In this case, K is bounded but not totally bounded.

It is clear that if K is compact then K is totally bounded. Indeed, for every ε > 0,
it holds

K ⊆
⋃
x∈K

B(x, ε) .

Since K is compact, there exists a finite number of points {x1, . . . , xN} ⊂ K such
that

K ⊆
N⋃
i=1

B(xi, ε)

and K is totally bounded.

Theorem 2.18 Given a metric space (X, d) and a subset K ⊂ X. The following
statements are equivalent:

(i) K compact;

(ii) K is totally bounded and K is complete;

(iii) K is sequentially compact, i.e., for every sequence {xn}n≥1 ⊆ K, there exists
a subsequence {xnk

}nk≥1 ⊆ {xn}n≥1 which converges to x ∈ K .

Proof. [(ii) =⇒ (i)] Assume that K is not compact. Then there exists a collection
of open subsets {Oλ}λ∈Λ such that

K ⊆
⋃
λ∈Λ

Oλ ,

but

K *
N⋃
i=1

Oλi for all N ∈ N, {λ1, λ2, . . . ,ΛN} ⊂ Λ.

Since K is totally bounded, one can construct a sequence of nonempty closed sets
{Fi}i≥1 satisfying the following properties:

(i) Fi+1 ⊆ Fi ⊆ K and limi→∞ diam(Fi) = 0;

(ii) Fi can not be covered by a finite number of open sets of {Oλ}λ∈Λ.

Cantor intersection theorem implies that

∞⋂
i=1

Fi = {x} ∈ K ⊂
⋃
λ∈Λ

Oλ .

Thus, there exists λ0 ∈ Λ and r0 > 0 such that

B(x, r0) ⊂ Oλ0 .
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On the other hand, since limi→∞ diam(Fi) = 0, there exists n0 ∈ N such that

Fn0 ⊆ B(x, r0) ⊆ Oλ0

and it yields a contradiction.

To complete this part, let’s construct the sequence of close set {Fi}i≥1. Since K
is totally bounded, it holds

K ⊆
n1⋃
i=1

B(ai, 1/2) for all ai ∈ X .

There exists i1 ∈ {1, . . . , n1} such that the set B(ai1 , 1/2)∩K is non-empty and can
not be covered by a finite number of open sets of {Oλ}λ∈Λ. In particular, the closed
set

F1
.
= B(ai1 , 1/2) ∩K 6= ∅

is totally bounded with diam(F1) ≤ 1 and can not be covered by a finite number of
open sets of {Oλ}λ∈Λ.

Similarly, one can find a ball B(ai2 , 1/4) such that B(ai2 , 1/4) ∩ F1 is non-empty
and can not be covered by a finite number of open sets of {Oλ}λ∈Λ. In particular,
the closed set

F2
.
= B(ai2 , 1/4) ∩ F1 6= ∅

is totally bounded with diam(F2) ≤ 1/2 and can not be covered by a finite number
of open sets of {Oλ}λ∈Λ. Continuing in this way we can construct a sequence of sets
{F1}i≥1 which satisfies (i) and (ii).

[(iii) =⇒ (ii)] It is easy to show that K is complete. Now, assume that K is
not totally bounded. Then there exists δ > 0 such that K can not be covered by
a finite number of ball with radius δ. In this case, we will construct a sequence
{xn}n≥1 which does not admit any convergent subsequence. Take any x1 ∈ K, we
pick

x2 ∈ K\B(x1, δ), x3 ∈ K\[B(x1, δ) ∪B(x2, δ)] ,

and
xn+1 ∈ K\[B(x1, δ) ∪B(x2, δ) · · · ∪B(xn, δ)] .

With this construction, we have that the sequence {xn}n≥1 ⊂ K satisfies

d(xn, xm) > δ for all n 6= m.

Thus, the sequence {xn}n≥1 does not admit any convergent subsequence.
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[(i) =⇒ (iii)] Assume that K is compact. Given any sequence {xn}n≥1 ⊆ K, we
need to construct a subsequence {xnk

}nk≥1 ⊆ {xn}n≥1 which converges to x ∈ K .
Consider the closed set

Fk = {xk, xk+1, . . . } ,

we first claim that
∞⋂
k=1

Fk 6= ∅ .

Let Ok = X\Fk be open sets in X. Assume by a contradiction that
∞⋂
k=1

Fk = ∅,

then De Morgan’s identities

∞⋃
k=1

Ok =
∞⋃
k=1

[X\Fk] = X\

[
∞⋂
k=1

Fk

]
= X .

In particular, K ⊆
∞⋃
k=1

Ok and thus K is covered by finite number of open sets in

{Ok}k≥1, i.e.,

K ⊆
N⋃
i=1

Oki = X\

[
N⋂
i=1

Fki

]
for some ki ≥ 1.

This yields a contradiction.
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Now, take a point x̄ ∈
∞⋂
k=1

Fk, we will construct a subsequence {xnk
}k≥1 ⊂ {xn}n≥1

such that limk→∞ xnk
= x̄. For every ` ≥ 1, it holds

B(x̄, 1/`)
⋂
{x`, x`+1, . . . } 6= ∅ .

By induction, for any k ≥ 1, we pick a point xnk+1
∈ B

(
x̄, 1

k+1

)⋂
{xnk

, xnk+1, . . . }.
It is clear that {xnk

}k≥1 is a subsequence of {xn}n≥1 and

0 ≤ lim sup
k→1

d(xnk
, x̄) ≤ lim sup

k→∞

1

k
= 0 .

Thus, the subsequence {xnk
}k≥1 ⊂ {xn}n≥1 converges to x̄.

As a consequence, we have the following corollary

Corollary 2.19 Given a set K ⊂ Rn, the followings are equivalent:

(i) K is compact;

(ii) K is closed and bounded;

(iii) K is sequentially compact.

Notice that the equivalence of (i) and (ii) is known as the Heine-Borel theorem and
that of (i) and (iii) the Bolzano-Weierstrass theorem.

Corollary 2.20 A compact metric space (X, d) is separable.

Proof. Since X is compact, X is totally bounded. Thus, for every natural number
n, we have

X =
Mn⋃
i=1

B(xn,i, 1/n).

We can see that the set S =
⋃
n≥1

{xn,1, . . . , xn,Mn} is countable and dense in X.

Let us give some applications of theorem 2.18.

Proposition 2.20.1 Given two metric spaces (X, d) and (Y, σ), let f : X → Y be
a continuous map. Then, f(A) is compact in (Y, σ) for all A compact in (X, d).
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Proof. From theorem 2.18, we only need to show that the set f(A) is sequentially
compact in (Y, σ), i.e., for every sequence {f(xn)}n≥1 ⊂ f(A), find a subset sequence
{xnk
}k≥1 of {xn}n≥1 such that {f(xnk

)}k≥1 converges ȳ ∈ f(A) in (Y, σ). Since A is
compact, there exists {xnk

}k≥1 ⊂ {xn}n≥1 such that {xnk
}k≥1 converges to x̄ ∈ A.

By the continuity of f , it holds that

lim
k→∞

f(xnk
) = f(x̄) ∈ f(A) .

The proof is complete.

Proposition 2.20.2 Assume that (X, d) is a compact metric space. Then any con-
tinuous map f : X → Y is uniformly continuous, i.e., for every ε > 0, there exists
δ > 0 such that

σ(f(x), f(y)) < ε for all d(x, y) < δ .

Proof. The map f is continuous on X, i.e., for every ε > 0 and x ∈ X there exists
rx > 0 such that

σ(f(x), f(y)) ≤ ε

2
for all y ∈ B(x, rx) .

By the triangle inequality, we get

σ(f(y), f(z)) ≤ ε for all y, z ∈ B(x, rx) .

Set Ox := B(x, rx), we have that X =
⋃
x∈X Ox.

Lebesgue covering lemma. Assume that the metric space (X, d) is compact and

X =
⋃
x∈X

Ox. Then there exists a constant δ > 0 such that for every x ∈ X, it holds

B(x, δ) ⊂ Oz for some z ∈ X .

Thus, for any x, y ∈ X such that d(x, y) < δ, there exists z ∈ X such that

x, y ∈ B(x, δ) ⊂ Oz for some z ∈ X .

In particular, this implies that

σ(f(y), f(x)) ≤ ε

and this complete the proof.

Following the same idea in Proposition 2.15.1, one can show that

Proposition 2.20.3 Assume that (X, d) is a compact metric space. Then the met-
ric space (C(X), d∞) with

C(X) = {f : X → R is continuous}

and
d∞(f, g) = max

x∈X
d(f(x), g(x)) for all f, g ∈ C(X)

is complete.
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2.6 Basic theorems

In this subsection, we will introduce some basic theorems.

Theorem 2.21 (Completion) For a metric space (X, d), there exists a complete
metric space (X̃, d̃) such that there exist a dense set W ⊂ X̃ and a bijective isometry
T : X → W , i.e.,

T (X) = W and d(x, y) = d̃(T̃ (x), T̃ (y)) for all x, y ∈ X .

1. The Banach contraction principle. Given two metric space (X, d) and (Y, σ),
we say that the map f : X → Y is contractive if and only if there exists 0 < c < 1
such that

σ(f(x), f(y)) ≤ c · d(x, y) for all x, y ∈ X .

The following holds:

Theorem 2.22 (Banach contraction principle) Let (X, d) be a complete met-
ric space and the map T : X → X is contractive. Then T has a unique fixed points
x̄, i.e.,

T (x̄) = x̄ .

Proof. Since T is contractive, we have

d(T (x), T (y)) ≤ c · d(x, y) for all x, y ∈ X

for some 0 < c < 1. This implies that T has at most one fixed point. It remains to
show that T has a fixed points.

1. Take any a ∈ X, the sequence {xn}n≥0 is constructed by

x0 = a, xn+1 = T (xn) for all n ≥ 0 .

Observe that

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ c · d(xn, xn−1) for all n ≥ 1 .

By induction, we get

d(xn+1, xn) ≤ cn · d(a, T (a)) for all n ≥ 0 .

2. We show that {xn}n≥0 is Cauchy in (X, d). For any 0 ≤ n < m ∈ N, it holds

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤ d(a, T (a)) ·
m−1∑
k=n

ck

= d(a, T (a)) · c
n(1− cm−n)

1− c
≤ d(a, T (a)) · cn

1− c
.
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Since 0 < c < 1, it holds that limn→∞ d(a, T (a)) · cn

1−c = 0. Thus, {xn}n≥0 is a
Cauchy sequence.

3. Since (X, d) is complete, the Cauchy sequence {xn}n≥0 converges to x̄ ∈ X.
Notice that T is continuous on X and it implies

x̄ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T (x̄).

Thus, x̄ is a unique fixed point of T .
Give given an open set O ∈ R2, let g : O → R be a continuous function. Consider

the ordinary differential equation
x′(t) = f(t, x(t)) for all t ∈ (a, b),

x(t0) = x0.

(2.16)

Then, x(·) is a Carathéodory solution of (2.16) if and only if x(·) is absolutely
continuous and

x(t) = x0 +

∫ t

t0

f(s, x(s))ds for all t ∈ (a, b).

Theorem 2.23 (The Picard Local Existence Theorem) Assume that

|f(t, x2)− f(t, x1)| ≤ M · |x2 − x1| for all (t, x2), (t, x1) ∈ O.

Then, for every (t0, x0) ∈ O, there exists an open interval I containing t0 on which
the ODE (2.16) has a unique Carathéodory solution.

Idea of the proof. There exists a small interval I and a closed subset XI ⊂ C(I)
such that the operator T : XI → XI

T [y](t) = y0 +

∫ t

t0

f(s, y(s))ds for all t ∈ I,

is contractive. Thus, T achieves a unique fixed point x which is the unique solution
to the ODE (2.16).

2. The Arzelà-Ascoli theorem. Given a metric space (X, d), a collection F of
real-valued functions f : X → R is equicontinuous at x ∈ X if for every ε > 0, there
exists δ > 0 such that

|f(x)− f(y)| ≤ ε for all f ∈ F , y ∈ B(x, δ).

We say that F is equicontinuous on X if it is equicontinuous at every point x ∈ X.
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Theorem 2.24 (Arzelà-Ascoli) Given a compact metric space (X, d), let {fn}n≥1

be a uniformly bounded and equicontinuous sequence of real value functions on X,
i.e.,

• There exists M > 0 such that

sup
x∈X

|fn(x)| ≤ M for all n ∈ N;

• For every x ∈ X and ε > 0, there exists δx > 0 such that

|fn(x)− fn(y)| ≤ ε for all y ∈ B(x, δx), n ∈ N.

Then there exists {fnk
}nk≥1 ⊂ {fn}n≥1 such that {fnk

}k≥1 converges uniformly to
f ∈ C(X,R), i.e.,

lim
nk→∞

[
sup
x∈X

∣∣fnk
(x)− f(x)

∣∣] = 0 .

Sketch of proof. 1. Since X is a compact metric space, it is separable. Thus, one
can construct a subsequence {fnk

}nk≥1 ⊆ {fn}n≥1 such that fnk
converges point-wise

on all of X to a real function f on X, i.e.,

lim
nk→∞

fnk
(x) = f(x) for all x ∈ X .

2. We claim that f is continuous. Fix any x ∈ X, for every ε > 0, there exists
δx > 0 such that

|fnk
(x)− fnk

(y)| ≤ ε for all nk ≥ 1, y ∈ B(x, δx) .

The triangle inequality implies that

|f(x)− f(y)| ≤ |fnk
(x)− f(x)|+ |fnk

(x)− f(nk)(y)|+ |fnk
(y)− f(y)|

≤ ε+ |fnk
(x)− f(x)|+ |fnk

(y)− f(y)|

for all nk ≥ 1 and y ∈ B(x, δx). Taking nk to ∞, we get

|f(x)− f(y)| ≤ ε for all y ∈ B(x, δx)

and it yields the continuity of f at x.

3. To complete the proof, we need to show that fnk
converges uniformly to f

in C(X). Hint: Equicontinuity of {fnk
}nk≥1, and totally boundedness of X.

Corollary 2.25 Given a compact metric space (X, d), let F be a subset of C(X).
Then F is compact if F is closed, uniformly bounded and equicontinuous.
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To conclude this subsection, we will introduce the Baire category theorem.

Theorem 2.26 (Baire category) Let (X, d) be a complete metric space. The fol-
lowing holds:

(i) For any {On}n≥1 countable collections of open dense subset of X, the set

O =
∞⋂
n=1

On

is dense in X.

(ii) For any {Fn}n≥1 countable collections of hollow subset of X, the set

F =
∞⋃
n=1

Fn

is hollow. (Notice that B is hollow in X if and only if X\B is dense in X)

Sketch of proof. Using De Morgan’s identity, one can show that (i) and (ii) are
equivalent. Thus, we only need to prove (i). Given x0 ∈ X and r0 > 0, we need to
show that [

∞⋂
n=1

On

]⋂
B(x0, r) 6= ∅ .

Since O1 is dense in X, one has that the open set O1 ∩B(x0, r0) is nonempty. This
implies that there exist x1 ∈ X and 0 < r1 < 1 such that

B(x1, r1) ⊆ O1 ∩B(x0, r)

Similarly, since O2 is dense in X, one has that the open set B(x1, r1) ∩ O2 is
nonempty. This implies that there exist x2 ∈ X and 0 < r2 < 1/2 such that

B(x2, r2) ⊆ O2 ∩B(x1, r1).

By induction method, one obtains a decreasing sequence of closed balls B(xn, rn)
such that

lim
n→∞

rn = 0 and B(xn, rn) ⊆ On for all n ≥ 1.

In particular, by the Cantor intersection theorem, we get

x̄ =
⋂
n≥1

B(xn, rn) ⊆
∞⋂
n=1

On

and this yields

x̄ ∈

[
∞⋂
n=1

On

]⋂
B(x0, r).

The proof is complete.
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Corollary 2.27 Let (X, d) be a complete metric space and {Fn}n≥1 a countable

collection of closed subsets of X. If
∞⋃
n=1

Fn has nonempty interior, then there exists

n0 ∈ N such that Fn0 has also nonempty interior.

Proof. Assume by a contradiction that Fn does not have empty interior for all
n ≥ 1. This implies that On := X\Fn is open dense subset of X for every n. Using

the Baire category theorem, we have that X\

(
∞⋃
n=1

Fn

)
=
∞⋂
n=1

On is dense in X and

it yields a contradiction.

Corollary 2.28 Let F be a family of continuous real-valued functions on a complete
metric space (X, d) that is pointwise bounded, i.e., for every x ∈ X there exists
Mx > 0 such that

|f(x)| ≤ Mx for all f ∈ F .

Then there is a nonempty open subset O of X on which F is uniformly bounded,
i.e.,

sup
x∈O
|f(x)| ≤ M for all f ∈ F

for some M > 0.

Proof. For every n ≥ 1, consider the closed set

En = {x ∈ X : |f(x)| ≤ n for all f ∈ F}

Since F is pointwise bounded, it holds that X =
⋃
n≥1

En. By the previous corollary,

there exists a natural number n0 such that En0 contain an open ball B(x0, r0) and
this yields

sup
x∈B(x0,r0)

|f(x)| ≤ n0 for all f ∈ F .

The proof is complete.

Corollary 2.29 Given a complete metric space (X, d), let (fn)n≥1 be a sequence
in C(X) that converges pointwise to the real value function f . Then there exists
a dense subset D of X for which (fn)n≥1 is equicontinuous and f is continuous at
each point in D.

Idea of the proof. For every n,m ∈ N, define

En,m =

{
x ∈ X :

∣∣fj(x)− fk(x)
∣∣ ≤ 1

m
for all j, k ≥ m

}
,
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we have that En,m is closed in X and thus

D
.
= X\

[ ⋃
n,m∈N

∂En,m

]
is dense in X.

One shows that (fn)n≥1 is equicontinuous and f is continuous at each point in D.

3 Banach spaces and linear operators

3.1 Normed spaces

1. Vector spaces. X is a vector space on the field R if the following holds:

(a). Addition + : X ×X → X

• x+ y = y + x (commutative)

• (x+ y) + z = x+ (y + z) (associate)

• There exists 0 and −x such that

x+ (−x) = 0 and x+ 0 = x .

(b). Multiplication by scalar: · : R×X → X

• α · (β · x) = (αβ) · x for all α, β ∈ R, x ∈ X
• 1 · x = x for all x ∈ X

(c). Linear property

α · (x+ y) = αx+ αy and (α + β) · x = α · x+ β · x

for all α, β ∈ R, x, y ∈ X.

Some examples. Let’s introduce here some basic vector spaces

(a). `2 =

{
x = {xn}n≥1 :

∞∑
n=1

|xn|2 < +∞

}
is a vector space over R.

(b). C([a, b]) = {f : [a, b]→ R : f is continuous} is a vector space over R.

(c). C0([a, b]) = {f ∈ C([a, b]) : f(a) = f(b) = 0} is a vector space over R.

(d). Cc([a, b]) = {f ∈ C0([a, b]) : f has a compact support} is a vector space
over R.

The following theorem holds
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Theorem 3.1 Let X be a non-empty vector space then X has a Hamel basis, i.e.,
there exists a linear independent subset B ⊂ X such that

span(B) =

{
n∑
i=1

λi · ei : λi ∈ R, ei ∈ B, n ≥ 1

}
= X.

2. Normed spaces. Given a vector space X, let’s consider a metric distance d on
X which has the following properties:

(P1). Invariant under a translation.

d(x+ z, y + z) = d(x, y) .

(P2). Positively homogeneous.

d(λx, λy) = λ · d(x, y) .

(P3). Convexity. Every ball B(a, r) is convex.

The invariant under translation implies that

d(x, y) = d(x− y, 0) .

Thus, the metric d(·, ·) can be entirely determined by

x 7→ ‖x‖ := d(x, 0) .

Here, ‖x‖ is called norm of X.

Definition 3.2 (Normed spaces) Let X be a vector space. A norm on X is a
map x 7→ ‖x‖ such that

(i). ‖x‖ ≥ 0 and ‖x‖ = 0 if any only if x = 0;

(ii). ‖α · x‖ = |α| · ‖x‖ for all α ∈ R and x ∈ X;

(iii). Triangle inequality.

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .

We call (X, ‖ · ‖) is a normed space.

It is clear that

Lemma 3.3 (Distance defined by a norm) Let ‖ · ‖ be a norm on X. Then

d(x, y) := ‖x− y‖ for all x, y ∈ X

is a metric distance and d satisfies (P1)-(P3).
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Proof. It is clear that

d(x, y) = 0 and x = y

and
d(x, y) = d(y, x) for all x, y ∈ X .

Let’s prove the triangle inequality

d(x, y) + d(y, z) = |x− y|+ ‖y − z‖

≤ ‖x− y + y − x‖ = ‖x− z‖ = d(x, z)

for all x, y, z ∈ X.

The properties (P1) and (P2) are trivial. Let’s show that B(a, r) is convex, i.e.,
for every x, y ∈ B(a, r), it holds

tx+ (1− t)y ∈ B(a, r) for all t ∈ (0, 1).

Using the triangle inequality, we estimate

‖tx+ (1− t)y‖ ≤ t · ‖x‖+ (1− t) · ‖y‖ < ta+ (1− t)a = a

and it yields the above inclusion.

Let’s recall some basic notations and defitnions:

• Open ball.
B(a, r) = {x ∈ X | ‖x− a‖ < r};

• Closed ball.
B(a, r) = {x ∈ X | ‖x− a‖ ≤ r};

• Sphere.
S(a, r) = {x ∈ X | ‖x− a‖ = r}.

Sequences and series. A sequence {xn}n≥1 ⊂ X is

• bounded if there exits M > 0 such that {xn}n≥1 ⊆ B(0,M).

• Cauchy if for every ε > 0, there exists Nε > 0 such that

‖xn − xm‖ ≤ ε for all n,m ≥ Nε.

• converges to x ∈ X if for every ε > 0, there exists Nε > 0 such that

‖xn − x‖ ≤ ε for all n ≥ Nε.
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Given a sequence {xn}n≥1, the series

∞∑
n=1

xn = x1 + x2 + . . .

converges to x ∈ X if and only if its partial sum sn =
n∑
i=1

xi converges to x.

Definition 3.4 A series
∞∑
n=1

xn is absolutely convergent in (X, ‖ · ‖) if and only if

∞∑
n=1

‖xn‖ converges in R.

Continuity. Given two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), the function
f : X → Y is continuous at x if and only if for every ε >, there exists δ > 0 such
that

‖f(x)− f(y)‖Y ≤ ε for all ‖x− y‖X ≤ δ.

Equivalent norms. Given a vector space X, two norms ‖·‖1 and ‖·‖2 are equivalent
if any only if there exists λ ≥ 1 such that

1

λ
· ‖x‖1 ≤ ‖x‖2 ≤ λ · ‖x‖1

for all x ∈ X.

3.2 Banach space

Definition 3.5 A normed space (X, ‖ · ‖) is called Banach if it is complete, i.e.,
every Cauchy sequence {xn}n≥1 converges to x ∈ X.

Example 1. Consider the finite-dimensional space

Rn = {x = (x1, x2, . . . , xn) | xi ∈ R}

with Euclidean norm

‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

n

We have that (Rn, ‖ · ‖2) is a Banach space.

Example 2. On Rn, consider an alternative norm

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p

for p ≥ 1. Then (Rn, ‖ · ‖p) is also a Banach space.
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Example 3. Given a closed interval [a, b], recalling that

C([a, b],R) = {f : [a.b]→ R : f is continuous}

and
‖f‖∞ = max

x∈[a,b]
|f(x)| for all f ∈ C([a, b],R).

Then (C([a, b],R), ‖ · ‖∞) is a Banach space.

Proof. Given a Cauchy sequence {fn}n≥1 ⊂ C([a, b],R), we need to show that
{fn}n≥1 converges to f ∈ C([a, b],R).

1. It is clear that {fn}n≥1 is bounded in (C([a, b],R), ‖ · ‖∞), i.e.,

‖fn‖∞ = max
x∈[a.b]

|fn(x)| ≤ M for all n ≥ 1

for some constant M . Thus, {fn}n≥1 is uniformly bounded.

2. We claim that {fn}n≥1 is equicontinuous on [a, b]. Given x ∈ [a, b], for any ε > 0,
we need to find δ > 0 such that

|fn(x)− fn(y)| ≤ ε for all y ∈ B(x, δ), n ≥ 1. (3.1)

Since {fn}n≥1 is Cauchy in C([a, b],R), ‖ · ‖∞), one can find 1 < n0 ∈ N such that

‖fn − fn0‖∞ ≤
ε

3
for all n ≥ n0.

On the other hand, by the continuity of fi, for every i ∈ {1, 2, . . . , n0}, there exists
δi > 0 such that

|fi(y)− fi(x)| ≤ ε

3
for all y ∈ B(x, δi), i ∈ {1, 2, . . . , n0}.

We show that (3.1) holds for δ = mini∈{1,2,...,n0} δi. Indeed, for every n ≥ n0 and
y ∈ B(x, δ), it holds

|fn(y)− fn(x)| ≤ |fn0(y)− fn0(x)|+ 2 · ‖fn − fn0‖∞ ≤
ε

3
+ 2 · ε

3
= ε .

Thus, {fn}n≥1 is equicontinuous on [a, b]

3. By the Arzalà-Ascoli theorem, there exists a subsequence {fnk
}k≥1 ⊂ {fn}n≥1

which converges to f in (C([a, b],R), ‖ · ‖∞). Since {fn}n≥1 is Cauchy, it converges
to f in (C([a, b],R), ‖ · ‖∞).

Example 4. Fixed p ≥ 1, recalling that

`p =

{
x = {xn}n≥1

∣∣∣ ∞∑
n=1

|xn|p < +∞

}
,
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and

‖x‖p =

(
∞∑
n=1

|xn|p
) 1

p

.

Then (`p, ‖ · ‖p) is a Banach space.

Lemma 3.6 Let (X, ‖ · ‖) be a Banach space and Y ⊆ X be a subspace of X. Then
(Y, ‖ · ‖) is a Banach space if any only if Y is closed in X.

Proof. Assume that Y is closed in X. For Cauchy sequence {xn}n≥1 ⊂ Y ⊆ X, it
converges to x in X. Since Y is closed, one has that x ∈ Y . Thus, {xn}n≥1 converges
to x in (Y, ‖ · ‖).

Assume that (Y, ‖ · ‖) is a Banach space. Let {xn}n≥1 be a sequence in Y which
converges to x ∈ X. We have that {xn}n≥1 is a Cauchy sequence in Y . Thus, it
converges to y ∈ X and it yields x = y.

Lemma 3.7 Let (X, ‖ · ‖) be a Banach space. If the series
∞∑
n=1

xn is absolutely

convergent then it converges.

Proof. For every n ≥ 1, consider the partial sum

sn = x1 + x2 + · · ·+ xn.

We need to show that {sn}n≥1 is a Cauchy sequence in X. One has that

‖sm − sn‖ ≤
m∑

k=n+1

‖xk‖ for all n < m .

Since the series
∞∑
n=1

xn is absolutely convergent, it holds

m∑
k=n+1

‖xk‖ ≤ ε for all n,m ≥ Nε

for some Nε. This implies that

‖sm − sn‖ ≤ ε for all n,m ≥ Nε

and {sn}n≥1 is a Cauchy sequence in X. Thus, {sn}n≥1 converges in (X, ‖ · ‖)
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3.3 Finite dimensional normed spaces

We say that X is a finite dimensional vector space if there exists {e1, e2, . . . , en}
such that

X = span {e1, e2, . . . , eN} :=

{
n∑
i=1

λi · ei
∣∣ λi ∈ R

}
.

If {e1, e2, . . . , e} is linearly independent then dim(X) = n.

Lemma 3.8 A finite dimensional normed space (X, ‖ · ‖) is complete.

Proof. Assume that dim(X) = n, we have

X =

{
n∑
i=1

λi · ei
∣∣ λi ∈ R

}
for some linearly independent set of vectors {e1, e2, . . . , en}. Consider a Cauchy
sequence {xk}k≥1 in (X, ‖ · ‖). For every k ≥ 1, one write

xk =
n∑
i=1

λ
(i)
k · ei .

Linear combination lemma. There exists a constant c > 0 such that

‖α1e1 + α2e2 + · · ·+ αnen‖ ≥ c · (|α1|+ |α2|+ · · ·+ |αn|) .

We estimate

‖xk − xl‖ =

∥∥∥∥∥
n∑
i=1

(
λ

(i)
k − λ

(i)
l

)
· ei

∥∥∥∥∥ ≥ c ·
n∑
i=1

∣∣∣λ(i)
k − λ

(i)
l

∣∣∣ .
In particular, ∣∣∣λ(i)

k − λ
(i)
l

∣∣∣ ≤ ‖xk − xl‖
c

for all i ∈ {1, 2, . . . , n}.

Thus, the sequence {λ(i)
k }k≥1 is Cauchy in R and

lim
k→∞

λ
(i)
k = λ

(i)
.

Finally, we show that {xk}k≥1 converges to x̄ =
∑n

i=1 λ
(i) · ei. Indeed, using the

triangle inequality, we estimate

‖xk − x̄‖ =

∥∥∥∥∥
n∑
i=1

(
λ

(i)
k − λ̄

(i)
)
· ei

∥∥∥∥∥ ≤
n∑
i=1

∣∣∣λ(i)
k − λ̄

(i)
∣∣∣ · ‖ei‖

≤ max{‖e1‖, ‖e2‖, . . . , ‖en‖} ·
n∑
i=1

∣∣∣λ(i)
k − λ̄

(i)
∣∣∣ .

41



Since {λ(i)
k }k≥1 converges to λ̄(i) for all i ∈ {1, 2, . . . , n}, the right hand side converges

to 0 as k tends to +∞ and this complete the proof.

As a consequence of theorem 2.18, the following holds

Corollary 3.9 (Compactness) Let (X, ‖·‖) be a finite dimensional normed space.
A subset M ⊆ X is compact if and only if M is closed and bounded.

The following theorem state that every norm in a finite dimensional vector space is
equivalent.

Theorem 3.10 Let X be a finite dimensional vector space. All norms in X are
equivalent.

Proof. Let ‖ · ‖1 and ‖ · ‖2 be norms in X. We need to find λ > 1 such that

1

λ
· ‖x‖1 ≤ ‖x‖2 ≤ λ · ‖x‖1 for all x ∈ X. (3.2)

1. Assume that dim(X) = n. There exists n linear independent set of vectors
{e1, e2, . . . , en} such that

X = span{e1, e2, . . . , en} .
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By the linear combination lemma, for any k = 1, 2, there exists λk < 0 such that∥∥∥∥∥
n∑
i=1

αi · ei

∥∥∥∥∥
k

≥ λk ·
n∑
i=1

|αi|.

2. For any x ∈ X, one can write

x =
n∑
i=1

αi · ei

for some αi ∈ R. We estimate

λ1 ·
n∑
i=1

|αi| ≤ ‖x‖1 =

∥∥∥∥∥
n∑
i=1

αi · ei

∥∥∥∥∥
1

≤
n∑
i=1

|αi| · ‖ei‖1 ≤ M1 ·
n∑
i=1

|αi|

and

λ2 ·
n∑
i=1

|αi| ≤ ‖x‖2 =

∥∥∥∥∥
n∑
i=1

αi · ei

∥∥∥∥∥
2

≤
n∑
i=1

|αi| · ‖ei‖2 ≤ M2 ·
n∑
i=1

|αi|

where Mk = maxi∈{1,2,...n} ‖ei‖k for k = 1, 2. This implies that

λ2

M1

· ‖x‖1 ≤ ‖x‖2 ≤
M2

λ1

· ‖x1‖.

Set λ := max
{
M1

λ2
, M2

λ1

}
, (3.2) holds.

Question. It is known that if (X, ‖ · ‖) is a finite dimensional normed space
then the closed unit ball

B(0, 1) =
{
x ∈ X

∣∣ ‖x‖ ≤ 1
}

is compact. Is the reversed side still true?

Theorem 3.11 Let (X, ‖ · ‖) be a normed space. If B(0, 1) is compact then X is
finite dimensional.

Proof. 1. Assume that B(0, 1) is compact. There exists a set of N vectors
{p1, p2, . . . , pN} such that

B(0, 1) =
N⋃
i=1

B(pi, 1/2) .

The vector subspace
V = span {p1, p2, . . . .pN}
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is finite dimensional and closed in X.

2. To complete the proof, we will show that

V = X .

Assume by a contradiction, there exists x0 ∈ X such that x0 /∈ V . Denote by

r = dV (x0) = inf
y∈V
‖x0 − y‖

Since V is a finite dimensional space, one can show that r is positive and there exists
y0 ∈ V such that

‖x0 − y0‖ = dV (x0) = r .

Set

z0 =
x0 − y0

‖x0 − y0‖
∈ B(0, 1) .

There exists k ∈ {1, 2, . . . , N} such that

z0 ∈ B(pk, 1/2) =⇒ ‖z0 − pk‖ <
1

2
.

Observe that
x0 = y0 + r · z0 = (y0 + r · pk) + r · (z − pk)

Thus, the vector
y1 = y0 + r · pk ∈ V ,

satisfies

‖x0 − y1‖ = r · ‖z − pk‖ <
r

2
.

44



This implies that

r = dV (x0) <
r

2
.

and it yields a contradiction.

3.4 Linear bounded operators

Given two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), consider a map

T : D(T ) ⊆ X −→ R(T ) ⊆ Y.

Definition 3.12 We say that T is a linear operator if

(i). D(T ) is a subspace of X

(ii). For any x, y ∈ D(T ) and α, β ∈ R, it holds

T (α · x+ β · y) = α · T (x) + β · T (y).

Notice that If T is linear then

(a). 0 ∈ D(T ) and T (0) = 0;

(b). R(T ) is a subspace of Y ;

(c). For any αi ∈ R and xi ∈ X, it holds

T

(
n∑
i=1

αi · xi

)
=

n∑
i=1

αi · T (xi).

Some examples.

Example 1. Let X = Rn and Y = R. Given a unit vector v ∈ Rn, the map
Tv : X → Y , denoted by

Tv(x) = 〈x, v〉 for all x ∈ Rn.

is a linear operator.

Riesz representation theorem in Rn. Let T : Rn → R be a linear operator.
Show that there exists a unique v ∈ Rn such that

T (x) = 〈v, x〉 =
n∑
i=1

vixi
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for all x ∈ Rn.

Example 2. (Integration) The map T : C([a, b])→ R, denoted by

T (f) =

∫ b

a

f(t) dt for all f ∈ C([a, b])

is a linear operator.

Example 3. (Differentiation) The map T : D(T ) ⊆ C([a, b]) → R(T ) ⊆ C([a, b]),
denoted by

T (f) = f ′ for all f ∈ C([a, b])

is a linear operator.

Example 4. (Projection) Let (Rn, ‖ · ‖) be an Euclidean space and Y be a vector
subspace of Y . The projection PY : Rn → Y , denoted by

‖x− PY (x)‖ = min {‖x− y‖ | y ∈ Y } for all x ∈ X,

is a linear operator.

Proof. Assume that

Y = span {e1, e2, . . . , em} and X = span {e1, e2, . . . , en}

where ‖ei‖ = 1 and ei ⊥ ej for all i 6= j. For any

x =
n∑
i=1

αi · ei ∈ Rn ,

it holds

PY (x) =
m∑
i=1

αi · ei .

Indeed, for any

y =
m∑
i=1

λi · ei ∈ Y

We compute that

∥∥x− y∥∥2
=

∥∥∥∥∥
m∑
i=1

(λi − αi) · ei +
m∑

j=m+1

αj · ej

∥∥∥∥∥
2

=
m∑
i=1

|λi − αi|2 +
n∑

j=m+1

|αj|2

46



≥
n∑

j=m+1

|αj|2

This implies that

PY (x) =
m∑
i=1

αi · ei = argmin
y∈Y

‖x− y‖2.

Thus, PY is a linear operator.

Null space. The kernel (null space) of T is denoted by

N (T ) = T−1{0} =
{
x ∈ D(T )

∣∣ T (x) = 0
}
.

Since T is linear, the set N (T ) is a vector space.

Lemma 3.13 Let T : D(T ) → R(T ) be linear. Then T is invertible if only if
N (T ) = 0. Moreover, T−1 : R(T )→ D(T ) is linear.

Proof. 1. Since T is surjective, one only needs to show that T is injective, i.e.,

T (x) 6= T (y) for all x 6= y.

Equivalently,

T (z) 6= 0 for all z 6= 0 ⇐⇒N (T ) = T−(0) = 0.

2. T−1 is linear. Indeed,

T−1(α1 · y1 + α2 · y2) = x

implies that
T (x) = α1 · y1 + α2 · y2.

Set x1 = T−1(y1) and x2 = T−1(y2), we have

y1 = T (x1) and y2 = T (x2).

This implies that
T (α1 · x1 + α2 · x2) = T (x)

and it yields
x = α1 · x1 + α2 · x2.

Equivalently,

T−1(α1 · y1 + α2 · y2) = α1 · T−1(y1) + α2 · T−1(y2)

and this complete the proof.
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Definition 3.14 (Bounded linear operators) Let T : D(T ) = X → Y be linear
operator. We say that T is bounded if and only if

‖T‖∞ := sup
‖x‖≤1

‖T (x)‖ < +∞.

Some examples.

Example 1. (Matrices as linear operators) Given n × m matrix A, the map T :
Rm → Rn defined by

T (x) = [A · xT ]T

is a linear bounded operator.

Example 2. For any p ≥ 1, recalling that

`p :=

{
x = (xn)n≥1 :

∞∑
n=1

|xn|p < +∞

}
.

Given an arbitrary sequence λ = (λn)n≥1, define T : X → X such that

T (x1, x2, . . . ) = (λ1x1, λ2x2, . . . ).

Two cases may occur

(i). If the sequence (λn)n≥1 is bounded then T is bounded and

‖T‖∞ = sup
‖x‖≤1

‖T (x)‖ = sup
k≥1
|λk|.

(ii) If the sequence (λn)n≥1 is unbounded then T is unbounded.

Example 3. Consider the normed space

X = C((0, 1),R) = {f : (0, 1)→ R : f is continuous and bounded}

and
‖f‖ = sup

x∈(0,1)

|f(t)|

The differential operator Λ(f) = f ′ is linear but not bounded. Indeed, let

fk(x) = sin(kπx) x ∈ (0, 1).

We have
Λ(f)(x) = f ′k(x) = kπ · cos(kπx) x ∈ (0, 1).
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A direct computation yields

‖fk‖ = 1 and ‖Λ(fk)‖ = kπ .

Thus,
sup
‖f‖≤1

‖Λ(f)‖ = +∞.

Lemma 3.15 Let T : X → Y be a linear bounded operator. Then

‖T (x)‖Y ≤ ‖T‖∞ · ‖x‖X for all x ∈ X ,

and

‖T‖∞ = sup
‖x‖X=1

‖T (x)‖Y = sup
x∈X\{0}

‖T (x)‖Y
‖x‖X

.

Theorem 3.16 (Linear operators in finite dimensional spaces) Let (X, ‖·‖X)
and (Y, ‖ · ‖Y ) be normed spaces with dim(X) = n. Then a linear operator T :
X → Y is bounded.

Proof. Assume that
X = span {e1, e2, . . . , en}

where {e1, e2, ..., en} is linearly independent,

For any x ∈ X, it holds

x =
n∑
i=1

αi · ei αi ∈ R.

Since T is linear, we estimate

‖T (x)‖Y =

∥∥∥∥∥
n∑
i=1

αxi · T (ei)

∥∥∥∥∥
Y

≤ M ·
n∑
i=1

|αxi |

where M = maxi∈1,n ‖T (ei)‖.

On the other hand, by the linear combination lemma, there exists a constant λ such
such that ∥∥∥∥∥

n∑
i=1

αi · ei

∥∥∥∥∥
X

≥ λ ·
n∑
i=1

|αi| for all αi ∈ R.

This implies that

‖T (x)‖Y ≤
M

λ
· ‖x‖X for all x ∈ X.

Thus, T is bounded.

49



Theorem 3.17 (Continuity and boundedness) Let T : X → Y be a linear op-
erator. Then T is continuous at 0 if and only if T is bounded.

Proof. 1. Assume that T is bounded. We have

‖T (x)‖ ≤ ‖T‖∞ · ‖x‖ for all x ∈ X.

The linearity of T implies that

‖T (x)− T (y)‖ = ‖T (x− y)‖ ≤ ‖T‖∞ · ‖x− y‖ for all x, y ∈ X.

Thus, T is continuous.

2. Assume that T is continuous at 0. There exists δ > 0 such that

‖T (x)‖ ≤ 1 for all x ∈ B(0, δ).

Since B(0, δ) = δ ·B(0, 1), we obtain that

‖T (x)‖ ≤ 1

δ
for all x ∈ B(0, 1).

Thus,

‖T‖∞ = sup
x∈B(0,1)

‖T (x)‖ ≤ 1

δ

and T is bounded.

Corollary 3.18 Let T : X → Y be a linear operator. Then the followings hold

• If T is continuous at x0 then T is continuous on X.

• If T is a bounded operator then the null set N (T ) = T−1({0}) is a closed
vector space in X.

Given two normed space (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), denote by

B(X, Y ) = {T : X → Y | T is a bounded linear operator}

and
‖T‖∞ = sup

‖x‖≤1

‖T (x)‖.

It is easy to show that
(
B(X, Y ), ‖ · ‖∞

)
is normed vector space.

Theorem 3.19 (Completeness) Assume that (Y, ‖ · ‖Y ) is a Banach space. Then(
B(X, Y ), ‖ · ‖∞

)
is a Banach space.
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Proof. Let {Tn}n≥1 be a Cauchy sequence in
(
B(X, Y ), ‖ · ‖∞

)
. We need to find

T ∈ B(X, Y ) such that
lim
n→∞

‖Tn − T‖∞ = 0.

1. For any ε > 0, there exists Nε > 0 such that

‖Tn − Tm‖∞ = sup
‖x‖=1

‖Tn(x)− Tm(x)‖ ≤ ε for all n,m > Nε.

In particular, for every x ∈ S(0, 1), the sequence {Tn(x)}n≥1 is a Cauchy sequence
in (Y, ‖ · ‖Y ). Since (Y, ‖ · ‖Y ) is complete, it holds

lim
n→∞

Tn(x) = y := T (x).

The map T is define on S(0, 1). We extend the map T to X by

T (0) = 0 and T (x) = ‖x‖ · T
(

x

‖x‖

)
for all x ∈ X\{0}.

It is clear that for all x ∈ X

lim
n→∞

Tn(x) = ‖x‖ · lim
n→∞

Tn

(
x

‖x‖

)
= ‖x‖ · T

(
x

‖x‖

)
= T (x). (3.3)

2. We claim that T ∈ B(X, Y ).

• T is linear. Indeed, for any x1, x2 ∈ X and α1, α2 ∈ R, it holds

T (α1x1 + α2x2) = lim
n→∞

Tn(α1x1 + α2x2) = lim
n→∞

[α1 · Tn(x1) + α2 · T (x2)]

= α1 · lim
n→∞

T (x1) + α2 · lim
n→∞

T (x2) = α1 · T (x1) + α2 · T (x2).

• T is bounded. Indeed, since {Tn}n≥1 is a Cauchy sequence in
(
B(X, Y ), ‖·‖∞

)
,

it is bounded, i.e. there exists M > 0 such that

‖Tn‖∞ ≤ M for all n ≥ 1

Thus, for any x ∈ X, it holds

‖T (x)‖ = lim
n→∞

‖Tn(x)‖ ≤ M · ‖x‖

and it yields ‖T‖∞ ≤M .

3. To complete the proof, we show that Tn converges to T in
(
B(X, Y ), ‖ · ‖∞

)
, i.e.

lim
n→∞

‖Tn − T‖∞ = 0 .
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For every ε > 0, find Nε > 0 such that

sup
‖x‖=1

∥∥Tn(x)− T (x)
∥∥ ≤ ε for all n ≥ Nε.

Since {Tn}n≥1 is Cauchy in
(
B(X, Y ), ‖ · ‖∞

)
, there exists Nε > 0 such that

‖Tn − Tm‖∞ < ε for all n,m ≥ Nε.

Thus, for every x ∈ S(0, 1), it holds

‖Tn(x)− T (x)‖ ≤ ‖Tn(x)− Tm(x)‖+ ‖Tm(x)− T (x)‖

≤ ‖Tn − Tm‖∞ + ‖Tm(x)− T (x)‖

≤ ε+ ‖Tm(x)− T (x)‖ for all n,m ≥ Nε.

Taking m to +∞, we get

‖Tn(x)− T (x)‖ ≤ ε for all x ∈ S(0, 1), n ≥ Nε

and it yields
‖Tn − T‖∞ ≤ ε for all n ≥ Nε.

Corollary 3.20 Given (X, ‖·‖) a normed space, the normed space (B(X,R), ‖·‖∞)
is Banach.

3.5 Fundamental theorems

1. The uniform boundedness principle. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be
normed spaces with (X, ‖ · ‖X) complete. Denote by

B(X, Y ) =
{
T : X → Y

∣∣ T is a linear bounded operator
}
.

the set of all linear bounded operators.

Theorem 3.21 (Banach-Steinhaus) Let F ⊂ B(X, Y ) be any subset of bounded
linear operators. Assume that for any x ∈ X, there exists Mx > 0 such that

sup
T∈F

‖T (x)‖Y ≤ Mx.

Then F is uniformly bounded in B(X, Y ), i.e., there exists a constant M > 0 such
that

sup
T∈F

‖T‖∞ ≤ M.
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Proof. The proof is divided into several steps:

1. Observe that

sup
x∈B(x0,r)

‖T (x)‖Y ≤ K =⇒ ‖T‖∞ ≤
‖T (x0)‖Y +K

r
.

Hence, if there exists n0, r0 > 0 and x0 ∈ X such that

‖T (x)‖Y ≤ n0 for all x ∈ B(x0, r0), T ∈ F , (3.4)

then

sup
T∈F

‖T‖∞ ≤ M := sup
T∈F

‖T (x0)‖Y +K0

r0

≤ Mx0 + n0

r0

.

For any n ∈ N, consider the set

Sn :=
{
x ∈ X

∣∣ ‖T (x)‖Y > n for some T ∈ F
}
.

If there exists n0 ∈ N such that Sn0 is not dense in X then there exists x0 ∈ X and
r0 > 0 such that

B(x0, r0)
⋂

Sn0 = ∅

and this yields (3.4).

2. Assume that Sn is dense for every n ∈ N. Observe that the set

Sn =
{
x ∈ T−1(Y \B̄(0, n)) for some T ∈ F

}
=

⋃
T∈F

T−1(Y \B̄(0, n))

is open. Using Baire Category theorem, the set

S =
∞⋂
n=1

Sn is dense in X.

In particular, S is non-empty. Let x̄ ∈ S =
∞⋂
n=1

Sn. We have that for every n ≥ 1,

there exists Tn ∈ F such that ‖Tn(x)‖Y > n. This implies that

sup
T∈F

‖T (x̄)‖Y = sup
n≥1
‖Tn(x̄)‖Y = +∞

and it yields a contradiction.
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Corollary 3.22 (Continuity of the point-wise limit) Let Λn ⊂ B(X, Y ) be such
that

lim
n→∞

Λn(x) = Λ(x) for all x ∈ X.

Then Λ is a bounded linear operator and

‖Λ‖∞ ≤ sup
n∈N
‖Λn‖∞ < ∞.

2. The open mapping theorem. Given (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) two normed
spaces.

Definition 3.23 We say that the function f : X → Y is open if and only if

f(U) is open in Y for every open U in X.

It is easy to show that f is open if and only if for every x ∈ X and r > 0, it holds

f(BX(x, r)) ⊇ BY (f(x), δ)

for some δ > 0.

Theorem 3.24 (Open mapping theorem) Assume that (X, ‖ · ‖X) and (Y, ‖ · ‖)
are Banach spaces. Let Λ : X → Y be linear, bounded, and surjective (Λ(X) = Y ).
Then the map Λ is open

Proof. By the linear property of Λ,

Λ(BX(x, r)) = Λ(x) + r · Λ(BX(0, 1)),

we need to show that there exists δ > 0 such that

BY (0, δ) ⊆ Λ(BX(0, 1)).

1. Let’s first show that
BY (0, δ1) ⊆ Λ(BX(0, 1))

for some δ1 > 0. Observe that

BY (0, δ1) =
1

2
·BY (y0, δ1) +

1

2
·BY (−y0, δ0)

for every y0 ∈ Y . Thus, if we can show that

BY (y0, δ0) ⊆ Λ(BX(0, 1))

then by the symmetry of Λ(BX(0, 1)), we have

BY (−y0, δ0) ⊆ Λ(BX(0, 1))
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and the convexity of Λ(BX(0, 1)) yields

BY (0, δ1) =
1

2
·BY (y0, δ1) +

1

2
·BY (−y0, δ0) ⊆ Λ(BX(0, 1)).

Therefore, one only needs to show that Λ(BX(0, 1)) has a nonempty interior.

2. Assume by a contradiction that Λ(BX(0, 1)) has empty interior. It is clear
that

Λ(BX(0, n)) = n · Λ(BX(0, 1))

has also empty interior for every n ≥ 1. Thus, the set

Fn = Y \Λ(BX(0, n))

is open and dense in Y . By Barie category theory, the set

F =
∞⋂
n=1

Fn

is dense in X. In particular, F is nonempty. On the other hand, since Λ(X) = Y ,
we have

F =
∞⋂
n=1

Fn = Y \

[
∞⋃
n=1

Λ(B(0, n))

]
= Y \Λ(X) = ∅

and it yields a contradiction.

3. We already showed that Λ(BX(0, 1)) contains an open ball BY (0, δ1) for some
δ1 > 0. To conclude the proof, let’s show that

BY (0, δ1/2) ⊂ Λ(BX(0, 1)).

Given any ȳ ∈ B(0, δ1/2), we want to find a sequence sn ∈ B(0, 1) such that

lim
n→∞

Λ(sn) = ȳ.

How to construct {sn}n≥1 The idea is to find

sn =
n∑
i=1

xi

such that

• ‖xi‖ ≤ 2−i for all i ≥ 1,

• ‖ȳ − Λ(sn)‖ ≤ 2−(n+1)δ1 for all n ≥ 1.
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In this case, one can see that {sn}n≥1 is a Cauchy sequence and thus converges to
s̄ ∈ B(0, 1). Thus,

ȳ = lim
n→∞

Λ(sn) = Λ(s̄) ∈ Λ(BX(0, 1)).

4. To complete the proof, let us construct {xn}n≥1. By the linear property of Λ, we
have that

BY (0, 2−nδ1) ⊆ Λ(BX(0, 2−n)) for all n ≥ 1.

For n = 1, we have
ȳ ∈ BY (0, δ1/2) ⊆ Λ(BX(0, 2−1).

Pick x1 ∈ B(0, 2−1) such that

ȳ1 := ȳ − Λ(x1) ∈ BY (0, 2−2δ1).

For n = 2, we have

ȳ1 ∈ BY (0, 2−2δ1) ⊆ Λ(BX(0, 2−2δ1)).

Pick x2 ∈ BX(0, 2−2) such that

ȳ2 := ȳ1 − Λ(x2) ∈ BY (0, 2−3δ1)

and this yields
‖ȳ − Λ(x1)− Λ(x2)‖ = ‖y3‖ ≤ 2−3 · δ1.

Assume that we can construct {x1, x2, . . . , xn} such that

ȳn+1 = ȳ−Λ
( n∑
i=1

xn

)
∈ BY (0, 2−(n+1)δ1) and ‖xi‖ ≤ 2−i for all i ∈ 1, n.

We have
ȳn+1 = ∈ BY (0, 2−(n+1)δ1) ⊆ Λ(BX(0, 2−(n+1))).

and there exists xn+1 ∈ BX(0, 2−(n+1)) such that

ȳn+1 = ȳ −
n+1∑
i=1

Λ(xi) ∈ BY (0, 2−(n+2)δ1).

The proof is complete.

Corollary 3.25 If X, Y are Banach and Λ : X → Y is continuous, linear, and
bijective. Then Λ−1 : Y → X is a linear bounded operator.
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2. The closed graph theorem. Given (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) Banach spaces,
the product space

X × Y = {(x, y)
∣∣ x ∈ X, y ∈ Y }

with
‖(x, y)‖ = ‖x‖+ ‖y‖

is also a Banach space.

Definition 3.26 Let Λ : Dom(Λ) ⊆ X → Y be a linear operator. We say that Λ is
closed is the graph of Λ

Graph(Λ) = {(x, T (x)) | x ∈ Dom(T )}

is closed in X × Y .

From the definition, one can see that Λ is closed if any only if for every {xn}n≥1 ⊂
Dom(Λ), if

lim
n→∞

xn = x and lim
n→∞

T (xn) = y

then
x ∈ Dom(Λ) and T (x) = y.

It is clear that if Λ is continuous then Λ is closed.

Theorem 3.27 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. If T : X → Y is
a closed linear operator with Dom(T ) = X then T is bounded.

Proof. Since T is a closed linear operator, the graph of T

Γ := Graph(T ) = {(x, T (x)) : x ∈ X}

is a closed vector subspace in X × Y . Since X × Y is a Banach space, (Γ, ‖ · ‖) is
also a Banach space. Consider the following projections

πX : Γ→ X and πY : Γ→ Y

defined by

πX(x, T (x)) = x and πY (x, T (x)) = T (x) for all x ∈ X.

One can see that both πX and πY are linear bounded operators. Moreover,

T (x) = πY ◦ π−1
X (x) for all x ∈ X.

Thus, T is continuous if the linear map

π−1
X : Γ→ X

is continuous. Since (Γ, ‖ · ‖) and (X, ‖ · ‖X) are Banach spaces and

πX : X → Γ

is linear, bounded, and surjective, the corollary 3.25 implies that π−1 : Γ → X is
continuous.
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3.6 Hilbert spaces

In the Euclidean space Rn, the inner product

〈x, y〉 =
n∑
i=1

xiyi

is useful in many ways:

(i). Define the Euclidian norm;

(ii) Determine the perpendicular spaces and projections. Moreover, given a set
{v1, v2, . . . , vn} of mutually orthogonal vectors with ‖vi‖ = 1, for every x ∈ Rn,
it holds

x =
n∑
i=1

αivi with αi = 〈x, vi〉 for all i ∈ 1, n.

(iii) (Riesz representation formula) For any linear operator ϕ : Rn → R, there
exists a unique v ∈ Rn such that

ϕ(x) = 〈v, x〉 for all x ∈ Rn;

(iv) Symmetric operators A : Rn → Rn, i.e.,

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Rn;

(v) Positive operator A : Rn → Rn, i.e.,

〈Ax, x〉 ≥ 0 for all x ∈ Rn.

Goal: We would like to extend these properties to infinite-dimensional normed
vector spaces.

3.6.1 Spaces with inner product.

Definition 3.28 Let H be a vector space over R. An inner product on H is a
symmetric bilinear map 〈·, ·〉 : H ×H → R such that the following holds

(i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if any only if x = 0;

(ii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ H;

(iii) For all x, y, z ∈ H and α, β ∈ R, it holds

〈αx+ βy, z〉 = α · 〈x, z〉+ β · 〈y, z〉.
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Examples:

(a). The `2 space

`2 =

{
x = {xn}n≥1

∣∣ ∞∑
n=1

x2
n < +∞

}
.

with

〈x, y〉 =
∞∑
n=1

xnyn for all x, y ∈ `2.

(b). Given a < b, recalling that

C([a, b]) = {f : [a, b]→ R | f is continuous} ,

we define an inner product on C([a, b])

〈f, g〉 =

∫ b

a

f(x)g(x)dx for all f, g ∈ C([a, b]).

Now let us denote by

‖x‖ =
√
〈x, x〉 for all x ∈ H.

It is clear that

‖tx‖ = |t| · ‖x‖, ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

Moreover, we also have

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 2〈x, x〉+ 2〈y, y〉 = 2 ·

(
‖x‖2 + ‖y‖2

)
.

To verify that (H, ‖ · ‖) is a normed space, we need to prove the basic triangle
inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ H.

Theorem 3.29 (Basic inequalities) Given the vector space H and its inner prod-
uct 〈·, ·〉. The followings hold

(i) Cauchy-Schwarz’s inequality

|〈x, y〉| ≤ ‖x‖ · ‖y‖.

(ii) Minkowski’s inequality
‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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Proof. Given x, y ∈ X, it holds

〈x+ λy, x+ λy〉 ≥ 0 for all λ ∈ R.

Equivalently,
‖y‖2 · λ2 + 2 · 〈x, y〉 · λ+ ‖x‖2 for all λ ∈ R

and this implies that
〈x, y〉2 − ‖x‖2 · ‖y‖2 ≤ 0.

The proof of (i) is complete.

(ii). Using the Cauchy-Schwarz’s inequality, we estimate

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = [‖x‖+ ‖y‖]2

and it yields (ii).

Definition 3.30 The vector space H with inner product 〈·, ·〉 is called a Hilbert
space if it is complete.

We are going to study deeper into the structure of Hilbert space. Given S ⊆ H, the
following set

span(S) =

{
n∑
i=1

cixi | ci ∈ R, xi ∈ S, n ≥ 1

}
is a subspace of H. We say that S is total if

span(S) = H.

For any x, y ∈ H, we say that x and y are orthogonal, denote by x ⊥ y, if

〈x, y〉 = 0.

The following set

S⊥ := {y ∈ H | y ⊥ x for all x ∈ S}

is called the orthogonal space of S.

Theorem 3.31 (Perpendicular projection) Let H be a Hilbert space and V be
a closed vector subspace of H. The following holds

(i) V ⊥ is a complement of V in H, i.e.,

H = V ⊕ V ⊥.
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(ii) If x = y + z for y ∈ V and z ∈ V ⊥ then y is a unique point in V such that

‖x− y‖ = dV (x) = min{‖x− w‖ | w ∈ V },

and z is a unique point in V ⊥ such that

‖x− z‖ = dV ⊥(x) = min{‖x− w‖ | w ∈ V }.

Define
PV (x) = y and PV ⊥ := z.

(iii) The maps PV (·) : H → V and PV ⊥ : X → V ⊥ are linear bounded operators
with norms ≤ 1.

Answer. The proof is divided into several steps:

1. Let x ∈ X. Then there exists a unique y ∈ V such that

‖x− y‖ = dV (x) = inf
v∈V
‖x− y‖.

Existence. By the definition, there exists a sequence {yn}n≥1 in V such that

lim
n→∞

‖x− yn‖ = dV (x).

We show that {yn}n≥1 is a Cauchy sequence. Indeed, by the convexity of V , we
estimate

‖ym − yn‖2 = 2‖x− yn‖2 + 2‖x− yn‖2 − 4
∥∥∥x− yn + ym

2

∥∥∥2

≥ 2‖x− yn‖2 + 2‖x− ym‖2 − 4d2
V (x)

Since the right hand side tends to 0 as n,m→∞, one has that {yn}n≥1 is a Cauchy
sequence. By the closeness of V , the sequence {yn}n≥1 converges to y ∈ V .

Uniqueness. Assume that there are ȳ1, ȳ2 ∈ V such that

‖x− ȳ1‖ = ‖x− ȳ2‖ = dV (x).

This implies that

‖ȳ1 − ȳ2‖2 = 2‖x− ȳ1‖2 + 2‖x− ȳ1‖2 − 4
∥∥∥x− ȳ1 + ȳ2

2

∥∥∥2

≤ 2dV (x) + 2dV (s)− 4dV (x) = 0

and it yields ȳ1 = ȳ2.
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Lemma 3.32 For K closed and convex set of H and x ∈ X, there exists a unique
y such that

‖x− y‖ = dV (x).

2. Let PV : H → V be such that

‖x− PV (x)‖ = dV (x) for all x ∈ H.

For any x ∈ H, we set
PV ⊥(x) := x− PV (x).

We show that
PV ⊥(x) ∈ V ⊥.

Indeed, for any v ∈ V , let’s consider the smooth function fv : R→ R such that

fv(t) = ‖x− (PV (x) + tv)‖2

It is clear that fv(0) = dV (x) and fv(t) ≥ d2
V (x). This implies that

d

dt
fv(t) = 0

and it yields
〈x− PV (x), v〉 = 0.

Therefore, the map P⊥V : H → V ⊥ satisfies

x = PV (x) + PV ⊥(x) for all x ∈ H.

One can easily show that V ∩ V ′ = 0 and it yields

H = V ⊕ V ⊥.

To complete (i) and (ii), we show that

‖x− PV ⊥(x)‖ = dV ⊥(x) for all x ∈ H. (3.5)

By the definition of PV ⊥ , we have that

〈x− PV ⊥(x), w〉 = 〈PV (x), w〉 = 0 for all w ∈ V ⊥.

This implies that

‖x− PV ⊥(x)‖2 = ‖x− z‖2 − ‖z − PV ⊥(x)‖2 ≤ ‖x− z‖2 for all z ∈ V ⊥

and it yields (3.5).
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4. We show that the map PV : H → V is linear. Indeed, if yi = PV (xi) for
i = 1, 2 then for any given αi ∈ R, it holds

α1y1 + α2y2 ∈ V.

Since αi(xi − yi) ∈ V ⊥ for all i = 1, 2, it holds that

(α1x1 + α2x2)− (α1y1 + α2y2) ∈ V ⊥

and it yields

PV (αx1 + α2x2) = α1y1 + α2y2 = α1PV (x1) + α2PV (x2).

Thus, PV : H → V and PV ⊥ : H → V ⊥ are linear. Finally,

‖PV (x)‖2 + ‖PV ⊥(x)‖2 = ‖x‖2

one has that
‖PV (x)‖, ‖PV ⊥(x)‖ ≤ ‖x‖.

Therefore, PV and PV ⊥ are bounded with norm ≤ 1.

Corollary 3.33 If V is a closed subspace of the Hilbert space H then(
V ⊥
)⊥

= V.

Proof. For a given x ∈ V , by the definition of V ⊥ it holds

x ⊥ v for all v ∈ V ⊥.

This implies that x ∈
(
V ⊥
)⊥

. Thus,

V ⊆
(
V ⊥
)⊥
.

To complete the proof, we show that

x ∈ V for all x ∈
(
V ⊥
)⊥
.

For a given x ∈
(
V ⊥
)⊥

, it holds

x ⊥ v for all v ∈ V ⊥.

By the projection theorem, we have

PV ⊥(x) = x− PV (x) ∈ V ⊥.

Thus, ∥∥PV ⊥(x)
∥∥2

= 〈x, PV ⊥(x)〉 − 〈PV (x), PV ⊥(x)〉 = 0

and this implies that

PV ⊥(x) = 0 =⇒ x ∈ V.
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Definition 3.34 (Orthonormal sets) We say that E ⊂ H is orthonormal if

〈v, w〉 = 0 and ‖v‖ = ‖w‖ = 1 for all v 6= w ∈ E.

A natural question is that for any given a set

S = {v1, v2, . . . , vn, . . . } ⊂ H,

can one construct an orthonormal set

E = {e1, e2, . . . , en, . . . }

such that span(S) = span(E)?

Gram-Schmdit orthogonalization. The set E is constructed by induction. In-
deed, we first set

e1 =
v1

‖v1‖
so that ‖e1‖ = 1, V1 := span(e1) = span(v).

Assume that e1, e2, . . . , en have been constructed such that

‖ei‖ = 1, 〈ei, ej〉 for all i 6= j ∈ {1, 2, . . . , n},

and
Vn := span{e1, e2, . . . , en} = span{v1, v2, . . . , vn}.

The unit vector en+1 is defined by

en+1 =
vn+1 − PV (vn+1)

‖vn+1 − PV (vn+1)‖
.

It is clear that
‖en+1‖ = 1 and en+1 ⊥ Vn.

This implies that {e1, e2, . . . , en+1} is orthonormal and

span{e1, e2, . . . , en+1} = span{v1, v2, . . . , vn+1}.

Remark. The general formula of en is

en =

vn −
n−1∑
k=1

〈vn, ek〉 · ek∥∥∥∥∥vn −
n−1∑
k=1

〈vn, ek〉 · ek

∥∥∥∥∥
for all n ≥ 1.
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Let E = {e1, e2, . . . , en} be orthonormal. Then for any x ∈ span E, it holds

x =
n∑
i=1

〈x, ei〉 · ei.

Can we extend this to the infinite sum?

Theorem 3.35 Let S = {e1, e2, . . . , en, . . . } be a orthonormal set in a Hilbert space
H. Assume that S is complete, i.e.,

H = span{e1, e2, . . . , en, . . . }.

Then, for every x ∈ H, it holds

x =
∞∑
n=1

αn · en with αn = 〈x, en〉,

and

‖x‖2 =
∞∑
n=1

α2
n. [Parseval′sidentity]

Proof. 1. For every n ≥ 1, we define a closed vector subspace of H

Vn = span {e1, e2, . . . , en}.

By the projection theorem, for any given x ∈ H, it holds

PVn(x) =
n∑
i=1

αi · ei with αi = 〈x, ei〉 for all i ∈ {1, 2, . . . , n},

and

‖PVn(x)‖ =
n∑
i=1

α2
i ≤ ‖x‖2.

In particular, the sequence (PVn(x)) is a Cauchy sequence and thus converges to
s̄ ∈ H.

2. To complete the proof, we will show that s̄ = x. For every k ≥ 1, one has

〈x− s̄, ek〉 = lim
n→∞

〈
x− PVn(x), ek

〉
= 0

and this implies that

x− s̄ ⊥ S =⇒ x− s̄ ⊥ span(S) = H.

Thus, x− s̄ = 0 and this complete the proof.

65



Fourier series. Given ` > 0, denote by

L2(−`, `) =

{
f : (−`, `)→ R

∣∣∣ ∫ `

−`
|f(x)|2 dx

}
.

The following holds:

Lemma 3.36 The trigonometric set

F =

{
1

2
√
`
,

1√
`
· sin

(mπx
`

)
,

1√
`

cos
(mπx

`

) ∣∣∣ m = 1, 2, ....

}
is a orthonormal complete in L2(−`, `).

From the above Theorem, it holds that for any function f ∈ L2(−`, `), its Fourier
series is

f ' a0

2
+
∞∑
m=1

(
am · cos

mπx

`
+ bm · sin

mπx

`

)
where am and bm are Fourier coefficients and computed by

an =
1

`
·
∫ `

−`
f(x) · cos

mπx

`
dx

and

bn =
1

`
·
∫ `

−`
f(x) · sin mπx

`
dx

for all m = 0, 1, 2, ... .

3.6.2 Linear functionals on Hilbert spaces

Given a Hilbert space H, the dual space of H is denoted by

H∗ = {f : H → R | f is linear continuous operator}.

For any x ∈ H, let fx : H → R be such that

fx(y) = 〈x, y〉 for all y ∈ H.

It is easy to see that fx is linear and bounded with

‖fx‖∞ = ‖x‖.

In particular, this implies that fx is in H∗.

Question: Is this true that H∗ = {fx : x ∈ H}?
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Theorem 3.37 (Riesz representation) Let H be a Hilbert space and let T : H →
R be a linear bounded operator. Then there exists a unique vT ∈ H such that

T (x) = 〈vT , x〉 for all x ∈ H.

Proof. Since T is linear and continuous, it holds that

V := ker(T ) = {x : T (x) = 0}

is a closed subspace of H. By the projection theorem, it holds

H = V ⊕ V ⊥.

If V = H then T (x) = 0 for every x ∈ H. In this case, one have that vT = 0.
Otherwise, there exists x0 ∈ H such that T (x0) 6= 0. For every x ∈ H, we can write

x =
T (x)

T (x0)
· x0 + xV with xV =

(
x− T (x)

T (x0)
· x0

)
.

By the linear property of T , we have

T (xV ) = T

(
x− T (x)

T (x0)
· x0

)
= 0.

This implies that

xV ∈ Ker(T ) and H = Ker(T ) + span{x0}.

Since Ker(T ) ∩ span{x0} = {0}, we then have

H = Ker(T )⊕ span(x0) = V ⊕ span(x0).

Hence, V ⊥ is one dimensional vector space and

V ⊥ = span{v0} for some 0 6= v0 ∈ H.

Let us now consider the vector

0 6= vT =
T (v0)

‖v0‖2
· v0 ∈ V ⊥

such that
T (vT ) = 〈vT , vT 〉 and V ⊥ = span{vT}.

We are going to show that

T (x) = 〈vT , x〉 for all x ∈ H.

For any x ∈ H, we can write
x = vx + α · vT

for vx ∈ V and α ∈ R. By the linear property of T , it holds

T (x) = T (vx + α · vT ) = T (vx) + α · T (vT ) = αT (vT ) = α〈vT , vT 〉 = 〈x, vT 〉.

The uniqueness of vT is almost straight forward.
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Corollary 3.38 For every Hilbert space H, it holds

H∗ ' H.

Proof. Consider the map Λ : H → H∗ such that

Λ(x) = fx for all x ∈ H.

One has that Λ is linear and bounded with ‖Λ(x)‖ = ‖x‖. In particular, Λ is
injective. On the other hand, from the above theorem, it holds

Λ(H) = H∗.

Thus, Λ is bijective and ‖Λ(x)‖ = ‖x‖.

From the above corollary, one has the following definition

Definition 3.39 (Weak convergence) A sequence {xn}n≥1 ⊂ H weakly converges
to x ∈ H, denote by xn ⇀ x, if

lim
n→∞
〈xn, v〉 = 〈x, v〉 for all v ∈ H.

Example 1. Let H be a Hilbert space such that

H = span{e1, e2, . . . , en, . . . }

where {e1, e2, . . . , en, . . . } is an orthonormal set, i.e.,

‖ei‖ = 1 and 〈ei, ej〉 = 0 for all i 6= j.

Then, the sequence {en}n≥1 does not converge in H but converges weakly to 0.

Proof. It is clear that

‖en − em‖ = 1 for all n 6= m.

Thus, {en}n≥1 does not converge in H. However, for every v ∈ H, it holds that

v =
∞∑
n=1

αi · ei.

Therefore
lim
n→∞

〈en, v〉 = lim
n→∞

αn = 0,

and {en}n≥1 converges weakly to 0.

Basic properties: The followings hold
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(i). If xn → x then xn ⇀ x.

(ii). If xn ⇀ x then xn converges to x.

lim inf
n→∞

‖xn‖ ≥ ‖x‖.

(iii). If xn ⇀ x and limn→∞ ‖xn‖ = ‖x‖ then

Proof. (ii). Assume that xn ⇀ x, we have that

lim
n→∞

〈xn, x〉 = 〈x, x〉 = ‖x‖2.

Since |〈xn, x〉| ≤ ‖xn‖ · ‖x‖, it holds

lim inf
n→∞

‖xn‖ · ‖x‖ ≥ ‖x‖2

and it yields (ii).

(iii). Assume that xn ⇀ x and limn→∞ ‖xn‖ = ‖x‖. We have

lim
n→∞

‖xn − x‖2 = lim
n→∞
〈xn − x, xn − x〉 = lim

n→∞

[
‖xn‖2 + ‖x‖2 − 2〈xn, x〉

]
= ‖x‖2 + ‖x‖2 − 2〈x, x〉 = 0

and it yields (iii).

Theorem 3.40 Let H be a Hilbert space and let {xn}n≥1 be a sequence in the Hilbert
space H. Then the followings hold:

(i) If xn converges weakly to x then (xn)n≥1 is bounded.

(ii) If (xn)n≥1 is bounded then there exists a subsequence {xnk
}k≥1 which converges

weakly to x ∈ H.

Proof. 1. Let us first prove (i). For every n ≥ 1, we define a linear bounded
operator ϕn : H → R such that

ϕn(v) = 〈xn, v〉 for all v ∈ H.

Since (xn)n≥1 converges weakly to x then the sequence of linear bounded operators
(ϕn)n≥1 converges point-wise to the linear bounded operator ϕ : H → R defined by

ϕ(v) = 〈x, v〉 for all v ∈ H.

As a consequence of the uniform boundedness principle, we have that the sequence
of linear bounded operators (ϕn)n≥1 is bounded and thus

sup
n≥1
‖xn‖ = sup

n≥1
‖ϕn‖∞ ≤ M
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for some constant M > 0.

2. Consider a closed and separable vector subspace X = span{x1, x2, . . . , xn, . . . }
of H. For every n ≥ 1, let ϕn : X → R be a bounded linear operator such that

ϕn(v) = 〈xn, v〉 for all v ∈ X.

Since {xn}n≥1 is bounded, one has that

‖ϕn‖∞ = sup
‖v‖=1,v∈X

|〈xn, v〉| = ‖xn‖ ≤ M for all n ≥ 1

for some M > 0. Using the Banach-Alaoglu’s theorem, there exist a subsequence
(ϕnk≥1)k≥1 and ϕ ∈ X∗ such that

lim
k→∞

ϕnk
(v) = ϕ(v) for all v ∈ X.

By the Riesz representation theorem, there exists a unique x ∈ X such that

ϕ(v) = 〈x, v〉 for all v ∈ X

3. Finally, we show that (xnk
)k≥1 converges weakly to x, i.e.,

lim
k→∞
〈xnk

, y〉 = 〈x, y〉 for all y ∈ H.

For any given y ∈ H, we have that

y = PX(y) + PX⊥(y) ∈ X ⊕X⊥.

Thus,

lim
k→∞
〈xnk

, y〉 = lim
k→∞
〈xnk

, PX(y)〉+ 〈xnk
, PX⊥(y)〉

= lim
k→∞
〈xnk

, PX(y)〉 = 〈x, PX(y)〉 = 〈x, PX(y) + PX⊥(y)〉

= 〈x, y〉

and this complete the proof.

We now show that a compact operator maps weakly convergent sequences into
strongly convergent ones.

Definition 3.41 Given two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), the map f :
X → Y is compact if and only if

f(K) is compact for every bounded set K.

The following holds:
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Lemma 3.42 Assume that (Y, ‖ · ‖Y ) is complete. Let {Tn : X → Y }n≥1 be a
sequence of linear bounded and compact operators such that

lim
n→∞

‖Tn − T‖∞ = 0.

Then T is compact.

Proof. It is clear that T is linear and bounded. Thus, the map T is compact if the
set T (B(0, 1)) is compact. Since Y is complete and T (B(0, 1)) is closed in (Y, ‖·‖Y ),
it is sufficiently to prove that

T (B(0, 1)) is totally bounded.

Given ε > 0, there exists Nε > 0 such that

‖Tn − T‖∞ <
ε

2
for all n ≥ Nε

and it yields

T (B(0, 1)) ⊂ Tn(B(0, 1)) +B(0, ε/2) for all n ≥ Nε.

On the other hand, since Tn is compact, the set Tn(B(0, 1)) is compact . Thus

Tn(B(0, 1)) ⊂
Mn⋃
i=1

BY (yni , ε/2).

This implies that

T (B(0, 1)) ⊂
Mn⋃
i=1

BY (yni , ε/2) +B(0, ε/2) =
Mn⋃
i=1

BY (yni ) for all n ≥ Nε

and it complete the proof.

Proposition 3.42.1 Given a Hilbert space H, let Λ : H → H be a linear bounded
and compact operator. If xn is weakly convergent to x then

lim
n→∞

Λ(xn) = Λ(x).

Proof. Consider a subsequence (xn)n∈J1 of (xn)n≥1, we show that there exists
subsequence (xn)n∈J2 with J2 ⊆ J1 such that

lim
J23n→∞

‖Λ(xn)− Λn(x)‖ = 0.

From Theorem 3.40, the sequence (xn)n∈J1 is bounded by M , i.e., ‖xn‖ ≤ M for
all x ∈ J1. Since Λ is a compact operator, it holds that there exists a subsequence
(xn)n∈J2 such that

lim
J23n→∞

Λ(xn) = ȳ for some ȳ ∈ H.
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To complete the proof, we need to show that ȳ = Λ(x). By the Riesz representation
theorem, calling Λ∗ the adjoint operator of Λ, i.e.,

〈Λ∗(x), y〉 = 〈x,Λ(y)〉 for all x, y ∈ H.

One has that

lim
n→∞
〈v,Λ(xn)− Λ(x)〉 = lim

n→∞
〈Λ∗(v), xn − x〉 = 0 for all v ∈ H.

Thus, (Λ(xn))n∈I2 weakly converges to Λ(x) and thus Λ(x) = y.

3.7 Positive definite operators

Consider the system of linear equations

Ax = b, A ∈Mn×n, b ∈ Rn.

One condition which guarantees the existence and uniqueness of solutions is that
A be strictly positive definite, i.e., 〈Ax, x〉 > 0 for all x ∈ Rn\{0}. Indeed, in this
case, the matrix A must have full rank and the unique solution is x = A−1b. In this
subsection, we aim to extend this result to an infinite-dimensional Hilbert space H.

Definition 3.43 A linear operator A : H → H is strictly positive definition if there
exists β > 0 such that

〈Au, u〉 ≥ β · ‖u‖2 for all u ∈ H.

It is clear that if A is linear and strictly positive then A is one-to-one and

‖Au‖ ≥ β · ‖u‖ for all u ∈ H.

Therefore, in addition if A is surjective then its inverse A−1 : H → H is linear and
bounded with ∥∥A−1

∥∥
∞ ≤

1

β
.

A natural question is whether a strictly position linear operator is surjective?

Theorem 3.44 Given a Hilbert space, let A : H 7→ H be a bounded linear operator
which is strictly positive definite. Then, A is bijective and its inverse A−1 : H → H
is a linear bounded operator.

Proof. It is known that A is one-to-one and

‖Au‖ ≥ β · ‖u‖ for all u ∈ H. (3.6)
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1. We claim that Range(A) is a closed vector subspace. Indeed, given a sequence
(vn)n≥1 ∈ Range(A) which converges to v ∈ H, we show that v ∈ Range(A). By
assumption, we have

vn = Aun and lim
n→∞

A(un) = v.

In particular, (vn)n≥1 is a Cauchy sequence and (3.6) implies that (un)n≥1 is also a
Cauchy sequence. Thus, (un)n≥1 converges to u ∈ H and the continuity of A yields
v = A(u) ∈ Range(A).

2. By Theorem 3.31, we can write

H = Range(A)⊕ [Range(A)]⊥.

If [Range(A)]⊥ 6= ∅ then there exists a unique vector w ∈ [Range(A)]⊥ and thus

β · ‖w2‖ ≤ 〈Aw,w〉 = 0

and this yields a contradiction. Hence, [Range(A)]⊥ = ∅ and Range(A) = H which
means that A is surjective.

Theorem 3.45 (Lax-Milgram) Given a Hilbert space, let B : H × H → R be a
continuous bilinear functionals, i.e.,

B(a1u1 + a2u2, b1v1 + b2v2) =
∑

i,j∈{1,2}

aibjB(ui, vj)

and
B(u, v) ≤ C · ‖u‖ · ‖v‖ for all u, v ∈ H

for some constant C > 0. In addition, assume that B is strictly positive definite,
i.e., there exists β > 0 such that

B[u, u] ≥ β · ‖u‖2 for all u ∈ H

Then, for every f ∈ H, there exists a unique uf ∈ H such that

B[uf , v] = 〈f, v〉 for all v ∈ H.

Moreover,

‖uf‖ ≤
‖f‖
β

for all f ∈ H.

Proof. Fixed u ∈ H, the map v 7→ B(u, v) is linear bounded operator on H. Thus,
by Riesz representation theorem, there exists a unique vector A(u) ∈ H such that

B(u, v) = 〈A(u), v〉 for all v ∈ H.
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It is clear that A(u) a linear bounded operator with ‖A‖∞ ≤ C since

‖A(u)‖ =
〈A(u), A(u)〉
‖A(u)‖

=
B[u,Au]

‖A(u)‖
≤ C · ‖u‖ for all u 6= 0.

Moreover,
〈A(u), u〉 = B(u, u) ≥ β · ‖u‖2 for all u ∈ H

proving that A is strictly positive definition. Applying the previous Theorem, we
obtain that A is bijective and its inverse is a linear bounded operator with ‖A‖∞ ≤
1

β
. Thus, for every f ∈ H, the unique vector uf = A−1(f) satisfies

B[uf , v] = 〈A(A−1(f)), v〉 = 〈f, v〉 for all v ∈ H

and the proof is complete.

4 Duality and weak convergence in Banach space

4.1 Dual spaces

Let (X, ‖ · ‖) be a normed space. The dual space of X is defined by

X∗ :=
{
f ∈ X] : f is continuous

}
with X] = {f : X → R : f is linear}. It is clear that both X] and X∗ are vector
spaces.

Lemma 4.1 Assume that dim(X) = n <∞. Then X] = X∗ and

dim(X∗) = dim(X]) = n.

Proof. Since dim(X) = n <∞, every linear map f : X → R is continuous and this
implies that X] = X∗. Assume that

X = span {e1, e2, . . . , en}

where {e1, e2, . . . , en} ⊂ X are linearly independent. For every i ∈ {1, 2, . . . , n}, we
consider the linear function fi : X → R such that

fi(ei) = 1 and fi(ej) = 0 for all j 6= i.

The set {f1, f2, . . . , fn} is linearly independent. Thus, we now prove that

X] = span {f1, f2, . . . , fn}.
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For a given f ∈ X], we set βi = f(ei) for all i ∈ {1, 2, . . . , n}. For any x =
n∑
i=1

αi ·ei,

it holds that

f(x) = f

(
n∑
i=1

αi · · · ei

)
=

n∑
i=1

αi · f(ei)

=
n∑
i=1

βi · αi · fi(ei) =
n∑
i=1

βi · fi(αiei) =
n∑
i=1

βi · fi(x).

Thus,

f(x) =
n∑
i=1

βi · fi(x) for all x ∈ X,

it yields dim(X]) = n.

Remark 4.2 If dim(X) = n then the map T : X → X∗ such that

T (x) =
n∑
i=1

αifi for all x =
n∑
i=1

αiei

is linear, bounded, and bijective.

Definition 4.3 (Isomorphism) Given two normed space (X, ‖·‖X) and (Y, ‖·‖Y ),
we say that X is isomorphic with Y, denote by X ' Y , if any only if there exists a
bijective isometric linear operator T : X → Y , i.e.,

‖T (x)‖Y = ‖x‖X for all x ∈ X.

Some basic examples.

Examples 1. Given n ∈ Z+, it holds

[Rn]∗ ' Rn.

Proof. Assume that
Rn = {e1, e2, . . . .en}.

Consider the linear function fi : X → R such that

fi(ei) = 1 and fi(ej) = 0 for all j 6= i.

Let T : Rn → [Rn]∗ be such that

T [x] =
n∑
i=1

αi · fi for all x =
n∑
i=1

αi · ei.
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One easily see that T is bijective and linear operator. It remains to show that T is
isometric. For any given x =

∑n
i=1 αi · ei, we estimate

‖T [x]‖∞ =

∥∥∥∥∥
n∑
i=1

αi · fi

∥∥∥∥∥
∞

= sup
‖z‖=1

∥∥∥∥∥
n∑
i=1

αi · fi(z)

∥∥∥∥∥
(z =

n∑
i=1

βi · ei)

= sup∑n
i=1 β

2
i =1

|αi · βi| ≤ sup∑n
i=1 β

2
i =1

(
n∑
i=1

|αi|2
)1/2

·

(
n∑
i=1

|βi|2
)1/2

≤

(
n∑
i=1

|αi|2
)1/2

= ‖x‖.

On the other hand, by choosing βi =
αi∑n
i=1 α

2
i

we have

‖T [x](z)‖ = |αi · βi| = 1 with z =
n∑
i=1

βi · ei ∈ B(0, 1)

and this implies that

‖T [x]‖∞ = ‖x‖ for all x ∈ Rn.

The proof is complete.

Example 2. Recalling that

`∞ =

{
x = {xn}n≥1

∣∣ sup
n≥1
|xn| <∞

}
, ‖x‖∞ = sup

n≥1
|xn|

and

`1 =

{
x = {xn}n≥1

∣∣ ∞∑
n=1

|xn| <∞

}
, ‖x‖∞ =

∞∑
n=1

|xn|,

we have that
(`1)∗ ' `∞.

Proof. Let fi : `1 → R be such that

fi(ei) = 1 and fi(ej) = 0 for all j 6= i.

One has that fi ∈ (`1)∗ and

fi(x) = βi for x =
∞∑
j=1

βj · ej.
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Consider T : `∞ → (`1)∗ such that

T [z] =
∞∑
i=1

αi · fi for z =
∞∑
i=1

αi · ei ∈ `∞.

For any x =
∞∑
j=1

βj · ej ∈ `1, we estimate

|T [z](x)| =

∣∣∣∣∣
∞∑
i=1

αi · fi(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
i=1

αiβi

∣∣∣∣∣
≤

(
sup
i≥1
|αi|
)
·
∞∑
i=1

|βi| = ‖z‖∞ · ‖x‖1.

On the other hand, for any ε > 0, there exists iε ∈ Z+ such that

‖z‖∞ ≤ αiε + ε.

By choosing x = eiε , we have

|T [z](x)| = |αiε | ≥ ‖z‖∞ − ε

and this implies
‖T [z]‖∞ ≥ |T [z](x)| ≥ ‖z‖∞ − ε.

Therefore,
‖T [z]‖∞ = ‖z‖∞ for all z ∈ `∞.

Example 3. For any p ∈ (1,+∞), let q be its conjugate, i.e., 1/p+ 1/q = 1. Then
the dual space of `p is isomorphic with `q.

4.2 Direct sum

Definition 4.4 Let M and N be vector subspaces of X. We say that the direct sum

M ⊕N = X

if any only if

M ∩N = {0} and M +N = {m+ n | m ∈M,n ∈ N} = X.

In this case, we say that N is the complement of M in X.
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Notice that the complement of M in X is not unique. Indeed, let’s consider X = R3

and M = R2 × {0}. One can see that both

N1 = {0} × R and N2 = span{1, 1, 1}

are the complements of M .

The following lemma holds.

Lemma 4.5 (i) For any f ∈ X] such that

f(x0) 6= 0 for some x0 ∈ X.

Then ker(f) is of co-dimension 1 of X and

X = ker(f)⊕ span{x0}.

(ii) Let V ⊆ X be a subspace of co-dimension 1 of X. Then there exists f ∈ X]

such that
ker(f) = V.

Proof. (i) By the linear property of f , it holds

f

(
x− f(x)

f(x0)
· x0

)
= f(x)− f(x)

f(x0)
· f(x0) = 0 for all x ∈ X.

Thus,

x− f(x)

f(x0)
· x0 ∈ ker(f)

and it yields

x =

(
x− f(x)

f(x0)
· x0

)
+

f(x)

f(x0)
· x0 ∈ ker(f) ∩ span(x0) for all x ∈ X.

On the other hand, it is clear that

ker(f) ∩ span{x0} = {0}.

and it yields (i).

(ii) Since V a subspace of co-dimension 1 of X, there exist 0 6= x0 ∈ X such
that

V ⊕ span(x0) = X.

Let f : X → R be such that f(x0) = 1 and

f(v + λx0) = λ for all v ∈ V, λ ∈ R.

One has that f ∈ X] and ker(f) = V .
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Before going to state the linear extension result, let us first introduce the follow-
ing lemma.

Lemma 4.6 Let Y be a subspace of X . Then there exists a subspace Z of X such
that

Z ⊕ Y = X. (4.1)

Proof. Consider the collection of subspaces of X

F = {W subspace of X such that W ∩ Y = {0}}

and the relation

W1 � W2 if and only if W1 ⊆ W2.

It is clear that F is a partially ordered set. Let us now show that every totally
ordered subset of F has an upper bound. Given a totally ordered subset F1 of F ,
i.e., for any W1,W2 ∈ F1, it holds

W1 � W2 or W2 � W1.

Denote by

W̃ =
⋃

W∈F1

W.

It is clear that W̃ ∩ Y = {0}. Let’s show that W̃ is a subspace of X. Indeed, for

any x, y ∈ W̃ , there exist Wx,Wy ∈ F1 such that

x ∈ Wx and y ∈ Wy.

Without loss of generality, we assume that Wx ⊆ Wy. In this case, we have that
x, y ∈ Wy and thus

α · x+ β · y ∈ Wy ⊆ W̃ for all α, β ∈ R.

Therefore, W̃ is a subspace of X and is an upper bound of F1.

By the Zorn’s lemma, F has a maximal element Z. To complete this step, we
show that (4.1) holds. By the definition, one has that

Z ∩ Y = ∅.

Let’s show that
Z + Y = X.

Assume by a contradiction, there exists x ∈ X such that x /∈ Z + Y . In particular,
x /∈ Z and x /∈ Y . Denote by

Z 6⊆ Z1 := Z + span{x}
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It is clear that
Z1 ∩ Y = {0}.

Indeed, if there exists 0 6= x0 ∈ Z1 ∩ Y then λx + z = x0 ∈ Y for some z ∈ Z and
λ 6= 0. This implies

x =
1

λ
· x0 −

1

λ
· z ∈ Z + Y

and it yields a contradiction. Thus, (4.1) holds.

Corollary 4.7 (Linear extension) Let Y be a subspace of X and let T : Y → R
be a linear function. Then there exists a extension T̃ of T defined on X, i.e.,

T̃ : X → R is linear and T̃ (y) = T (y) for all y ∈ Y.

Proof. Let Z be a subspace of X such that

Z ⊕ Y = X.

A linear extension T̃ : X → R of T is defined by

T̃ (x) = T (xy) for all x = xy + xz ∈ Y + Z

and the proof is complete.

Remark 4.8 If Y ⊕ V = X then for every x ∈ X, there exist unique xY ∈ Y and
xV ∈ V such that

x = xY + xV .

Thus, the projection maps πY : X → Y and πV : X → V , defined by

πY (x) = xY and πV (x) = xV ,

are well-defined and linear.

Question. Are πY and πV bounded? No in general.

Lemma 4.9 Assume that Y is closed and V is a finite dimensional vector space.
Then the maps πY and πV are bounded.

Proof. Since πY (x) + πV (x) = x, the map πV is bounded if πY is bounded. Thus,
it is sufficient to show that πY is bounded. Assume by a contradiction, there exists
{xn}n≥1 ⊂ X such that

‖xn‖ = 1 and lim
n→∞

‖πY (xn)‖ = +∞.
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Denote by

yn =
πY (xn)

‖πY (xn)‖
∈ Y and vn =

πV (xn)

‖πY (xn)‖
∈ V,

we have that

‖yn‖ = 1, lim
n→∞

yn + vn = 0 and lim
n→∞

‖vn‖ = 1.

Since V is a finite dimensional vector space, there exists a subsequence {vnk
}k≥1 ⊆

{vn}n≥1 such that vnk
→ v̄ ∈ V . This implies that

lim
nk→∞

ynk
= − v̄ ∈ Y and ‖v̄‖ = 1.

Thus,
0 6= v̄ ∈ Y ∩ V

and it yields a contradiction.

4.2.1 Hahn-Banach extension theorem

Definition 4.10 Let (X, ‖ ·‖) be a normed space. The function p : X → R is called
sub-linear functional if for all t > 0, x, y ∈ X, it holds

p(tx) = tp(x) and p(x+ y) ≤ p(x) + p(y). (4.2)

If p is sub-linear functional then

p(0) = 0, −p(x) ≤ p(−x)

and p is convex, i.e.,

p(θx+ (1− θ)y) ≤ θp(x) + (1− θ)p(y) for all θ ∈ [0, 1].

Some examples:

(a) ‖ · ‖ norm is a sublinear function.

(b) Let K be a bounded, open, convex set with 0 ∈ K. The function

p(x) = inf{λ ≥ 0 | x ∈ λK}

is sublinear functional.
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Theorem 4.11 (Hahn-Banach extension theorem) Let X be a normed space
and let p : X → R be a sublinear function. Given a subspace V ⊆ X, let f : V → R
be linear such that

f(x) ≤ p(x) for all x ∈ V. (4.3)

Then there exists a linear extension of F : X → R such that

F (x) = f(x) for all x ∈ V

and
−p(−x) ≤ F (x) ≤ p(x) for all x ∈ X.

Proof. 1. Notice that if F (x) ≤ p(x) then

F (x) = − F (−x) ≥ − p(−x).

Thus, if X = V then

f(x) = F (x) ≥ − p(−x) for all x ∈ X.

2. Otherwise, there exists x0 ∈ X\V . Denote by

V0 = {x+ tx0 | x ∈ V, t ∈ R},

we want to extend f to V0 linearly. In this case, it holds

f(x+ tx0) = f(x) + tf(x0) for all x ∈ V, t ∈ R.

Thus, one needs to find the value β = f(x0) such that

f(x) + tβ ≤ p(x+ tx0) for all x ∈ V, t ∈ R. (4.4)

For t > 0, (4.4) holds if

β ≤ 1

t
· inf
x∈V

[p(x+ tx0)− f(x)] = inf
x∈V

[
p
(x
t

+ x0

)
− f

(x
t

)]
= inf

y∈V
[p(y + x0)− f(y)]

For t < 0, (4.4) holds if

β ≥ −1

t
· sup
x∈V

[f(x)− p(x+ tx0)] = sup
x∈V

[
f

(
−x
t

)
− p

(
−x
t
− x0

)]
= sup

z∈V
f(z)− p(z − x0).

Observe from (4.3) that

p(y + x0)− f(y) ≤ f(z)− p(z − x0) for all y, z ∈ V,
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we can choose
β = sup

z∈V
f(z)− p(z − x0).

3. To extend f to X, let’s introduce the collection

F = {(W,Φ) | V ⊆ W subspace,Φ : W → R linear

such that Φ(x) ≤ p(x) for all x ∈ W}.

and the relation

(W1,Φ1) � (W2,Φ2) if and only if W1 ⊆ W2,Φ1(x) = Φ2(x) for all x ∈ W1.

It is clear that (F ,�) is partially ordered. Moreover, every totally bounded ordered
subset of F has an upper bound. By Zorn’s lemma, F has a maximal element
(Vmax, F ). To complete the proof, we show that

Vmax = X.

Assume by a contradiction, there exists 0 6= x0 ∈ X\Vmax. From the step 2, the linear
function F can be extended to a strictly larger space and it yields a contradiction.

Applications

1. A natural application to the case

p(x) = ‖x‖ for all x ∈ X.

The following holds:

Theorem 4.12 (Extension theorem for bounded linear operator) Let V ⊆
X be a subspace and let f : V → R be a bounded linear operator. Then there exists
F : X → R bounded linear operator with ‖F‖∞ = ‖f‖∞ such that

F (x) = f(x) for all x ∈ V.

Proof. Consider p : X → R such that

p(x) = ‖f‖∞ · ‖x‖ for all x ∈ X.

We have that p is sublinear functional and

f(x) ≤ p(x) for all x ∈ V.

Using the Hahn Banach theorem, there exists F : X → R linear such that

f(x) = F (x) for all x ∈ V
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and
−p(−x) ≤ F (x) ≤ p(x) for all x ∈ X.

This implies that

−‖f‖∞ · ‖x‖ ≤ F (x) ≤ ‖f‖∞ · ‖x‖ for all x ∈ X

and it yields
‖F‖∞ ≤ ‖f‖∞.

Since F (x) = f(x) for all x ∈ V , one then has that ‖F‖∞ = ‖f‖∞.

Corollary 4.13 Let X be a normed space. For any x 6= y ∈ X, there exists Φ :
X → R continuous and linear such that

Φ(x) 6= Φ(y).

Proof. Consider the 2-dimensional vector space

V = span{x, y} = {sx+ ty | s, t ∈ R}.

Consider the linear function f : V → R such that

f(sx+ ty) = s · ‖x‖+ t · ‖y‖ for all s, t ∈ R.

One has that f is bounded and

f(x) = ‖x‖ 6= − ‖y‖ = f(y).

By the extension theorem, there exists linear and continuous map Φ : X → R such
that Φ(z) = f(z) for all z ∈ V , and it yields

Φ(x) 6= Φ(y)

and this complete the proof.

2. Separation of convex sets. Given two disjoint convex nonempty sets A,B ⊂
X, our goal to find a bounded linear operator φ : X → R such that

φ(A) ∩ φ(B) = ∅.

We prove the following theorem.

Theorem 4.14 Let (X, ‖ · ‖) be a normed space. For any two disjoint convex
nonempty sets A,B ⊂ X, the followings hold:

(i) If A is open then there exist φ ∈ X∗ and a constant c ∈ R such that

φ(a) < c ≤ φ(b) for all a ∈ A, b ∈ B.
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(ii) If A is compact and B is closed, then there exist φ ∈ X∗ and c1, c2 ∈ R such
that

φ(a) ≤ c1 < c2 ≤ φ(b) for all a ∈ A, b ∈ B.

Proof. (i). Assume that A is open. The proof of (i) is divided in to several step:

1. Pick any two points a0, b0, we consider the following set

Ω = A0 −B0 with A0 = A− a0, B0 = B − b0.

It is clear that Ω is open and convex and

0 ∈ Ω but b0 − a0 := x0 /∈ Ω.

2. Consider the functional

p(x) = inf{λ ≥ 0 : x ∈ λΩ}.

Since Ω contains a small ball B(0, ρ) and x0 /∈ Ω, it holds

p(x0) ≥ 1 and p(x) ≤ 1

ρ
· ‖x‖ for all x ∈ X.

Moreover, by the convexity of Ω, the function ρ satisfies

p(tx) = t · p(x), p(x+ y) ≤ p(x) + p(y) for all t ≥ 0, x, y ∈ X.

3. Let f : V := span{x0} → R be linear such that

f(tx0) = t for all t ∈ R.

One has
f(x0) = 1 and f(tx0) = t ≤ p(tx0).

By the Hahb-Banach extension theorem, there exists a linear functional φ : X → R
such that

−p(−x) ≤ φ(x) ≤ p(x) for all x ∈ X.
In particular, this implies that φ is bounded and

‖φ‖∞ ≤
1

ρ
.

4. For any a ∈ A and b ∈ B, we have

φ(a)− φ(b) + 1 = φ(a− b+ x0) ≤ p(a− b+ x0) < 1

since a− b+ x0 ∈ Ω and Ω open. Thus,

φ(a) < φ(b) for all a ∈ A, b ∈ B.
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In particular, the constant c := supa∈A φ(a) <∞ and

φ(a) < c ≤ φ(b).

(ii). Assume that A is compact and B is closed. We have

d(A,B) = inf{|a− b| : a ∈ A, b ∈ b} .
= ρ > 0.

and the open set
Aρ = {x ∈ X : d(x,A) < ρ}

had an empty intersection with B. Thus, there exists φ ∈ X∗ and c2 > 0 such that

φ(a) < c2 ≤ φ(b) for all a ∈ A, b ∈ B.

Finally, since A is compact, we set c1 := maxa∈A φ(a) and get

φ(a) ≤ c1 < c2 ≤ φ(b) for all a ∈ A, b ∈ B.

The proof is complete.

4.3 Weak convergence in Banach space

Given (X, ‖ · ‖) a Banach space, its dual space is

X∗ = {ϕ : X → R | ϕ is bounded linear operator}

with
‖ϕ‖∞ = sup

‖x‖=1

|ϕ(x)|.

One has that (X∗, ‖ · ‖∞) is also a Banach space.

Definition 4.15 (Weak convergence) A sequence {xn}n≥1 converges weakly to
x, denote by xn ⇀ x, if

lim
n→∞

ϕ(xn) = ϕ(x) for all ϕ ∈ X∗.

From the definition, it is clear that if xn converges to x then xn converges weakly
to x.

Lemma 4.16 (uniqueness of weak limit) If xn ⇀ x and xn ⇀ y then x = y.

Answer. Assume that x 6= y. Then there exists φ : X → R bounded linear operator
such that φ(x) 6= φ(y). Since xn ⇀ and xn ⇀ y, one has

φ(x) = lim
n→∞

φ(xn) = φ(y)

and it yields a contradiction.
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Weak star convergence. Consider the dual of X∗

(X∗)∗ : {ϕ∗ : X∗ → R | ϕ∗ is bounded linear operator}.

We first show that

Lemma 4.17 For any given normed space (X, ‖ · ‖), it holds

X ' (X∗)∗

Proof. Consider T : X → X∗ such that

T [x](ϕ) = ϕ(x) for all x ∈ X.

The followings hold:

• T [x] is linear;

• For every ϕ ∈ X∗, one has

|T [x](ϕ)| = |ϕ(x)| ≤ ‖x‖ · ‖ϕ‖∞

and this implies

‖T [x]‖∞ = sup
‖ϕ‖∞≤1

|T [x](ϕ)| ≤ ‖x‖ for all x ∈ X.

On the other hand, consider the linear function φ : V = span{x} → R such
that

φ(tx) = t · ‖x‖ for all t ∈ R.

Using the Hahn Banach, there exists an extension Φ ∈ X∗ such that

‖Φ‖∞ = 1 and Φ(x) = ‖x‖.

Thus,
‖T [x]‖∞ ≥ ‖T [x](Φ)‖ = Φ(x) = ‖x‖.

and this yields ‖T [x]‖∞ = ‖x‖.

The proof is complete.
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Definition 4.18 We say that {ϕn}n≥1 ⊆ X∗ weak-star converges to ϕ ∈ X∗, denote

by ϕn
∗
⇀ ϕ, if

lim
n→∞

ϕn(x) = ϕ(x) for all x ∈ X.

We have the following theorem.

Theorem 4.19 (Banach Alaoglu) Let X be a separable Banach space. Then, for
every {ϕn}n≥1 ⊆ X∗ such that

‖ϕn‖∞ ≤ M < +∞ for all n ≥ 1,

there exists {ϕnk
}k≥1 ⊂ {ϕn}n≥1 such that ϕnk

∗
⇀ ϕ ∈ X∗.

Sketch of the proof. 1. Since X is separable, i.e.,

X = closure {x1, x2, · · · , xn, . . . },

One can show that that ϕnk

∗
⇀ ϕ if and only if

lim
k→∞

ϕnk
(xi) = ϕ(xi) for all i ≥ 1.

2. Relying on this observation, we only need to construct the subsequence (ϕnk
)k≥1

of (ϕn)n≥1 as follows:

• {ϕn(x1)}n≥1 is bounded in R, there exists I1 ⊂ N such that

lim
I13→∞

ϕn(x1) =: ϕ(x1).

• By induction for every k ≥ 1, there exists Ik+1 ⊂ Ik such that

lim
Ik+13→∞

ϕn(xk+1) =: ϕ(xk+1).

Choose {nk}k≥1 such that

nk ∈ Ik for all k ≥ 1,

we then have
lim
k→∞

ϕnk
(xi) = ϕ(xi) for all i ≥ 1.

Notice that the function ϕ is defined on S = {x1, x2, . . . , xn, . . . }. For every xi, xj ∈
S, one has

|ϕ(xi)− ϕ(xj)| = lim
k→∞
|ϕnk

(xi)− ϕnk
(xj)| ≤ M · |xi − xj|.
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In particular, the function ϕ is Lipschitz on S with a Lipschitz constant M . Since
S is dense in X, one can extend ϕ to X by

ϕ(x) = lim
n→∞

ϕ(zn)

for some {zn}n≥1 ⊂ S converging to x.

3. To complete the proof, we need to prove the following problem:

HW problem: Given a Banach space X , let ϕ ∈ X∗ and {ϕn}n≥1 ⊂ X∗ be
such that

‖ϕn‖∞ = sup
‖x‖≤1

‖ϕn(x)‖ ≤ M

for some constant M > 0. Assume that there exists a dense S = {x1, x2, ..., xk, ...}
in X such that for every yk ∈ S it holds

lim
n→∞

ϕn(xk) = ϕ(xk) .

Show that ϕn is weakly star convergent to ϕ in X∗ and ‖ϕ‖∞ ≤M .

4.4 Adjoint operators

Let X be a Banach space. Its dual is the space X∗ of all bounded linear functional
x∗ : X → R such that

‖x∗‖ = sup
‖x‖≤1

|x∗(x)| < +∞.

For a convenience, we will use the notation

x∗(x) = 〈x∗, x〉 for all x ∈ X, x∗ ∈ X∗.

Notice that
sup
‖x∗‖=1

〈x∗, x〉 = ‖x‖ for all x ∈ X.

By using the uniform boundedness principle, we show that

Lemma 4.20 Any sequence xn ∈ X which weakly converges to x ∈ X is bounded.

Proof. For every xn, let ϕn ∈ (X∗)∗ be such that

ϕn(y∗) = 〈y∗, xn〉 for all y∗ ∈ X∗.

As n→∞, we have the point-wise convergence

lim
n→∞

ϕn(y∗) = lim
n→∞
〈y∗, xn〉 = 〈y∗, x〉 for all y∗ ∈ X∗.
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In particular, this implies that

sup
n≥1
|ϕn(y∗)| < +∞ for all y∗ ∈ X∗.

By the uniform boundedness principle, we conclude that sequence (ϕn)n≥1 is uni-
formly bounded and thus

sup
n≥1
‖xn‖ = sup

n≥1
‖ϕn‖∞ ≤ M

for some constant M ≥ 0.

Given a Banach space Y , let Λ : X → Y be a bounded linear operator. For every
y∗ ∈ Y ∗, the composed map x∗ : X → R defined as

x∗(x) = y∗(Λ(x)) for all x ∈ X

is bounded linear functional, i.e., x∗ := y∗ ◦ Λ ∈ X∗.

Definition 4.21 The map Λ∗ : Y ∗ → X∗ such that Λ∗y∗ = y∗ ◦ Λ is called the
adjoint of Λ.

From the above definition, one can see that

〈Λ∗y∗, x〉 = 〈y∗,Λx〉 for all x ∈ X, y∗ ∈ Y ∗.

Given subset V ⊆ X and W ⊆ X∗, their orthogonal sets are defined as

V ⊥ = {x∗ ∈ X∗ : 〈x∗, v〉 = 0 for all v ∈ V }

and
W⊥ = {x ∈ X : 〈w∗, x〉 = 0 for all w∗ ∈ W}.

Lemma 4.22 Given a bounded linear operator Λ : X → Y , let Λ∗ be its adjoint
operator. Then

‖Λ‖∞ = ‖Λ∗‖∞, Ker(Λ) = [Range(Λ∗)]⊥ and Ker(Λ∗) = [Range(Λ)]⊥.

Proof. By the definition of ‖ · ‖ and the orthogonal sets, we have

‖Λ‖∞ = sup
‖x‖≤1

‖Λ(x)‖ = sup {〈y∗,Λ(x)〉 : ‖x‖ ≤ 1, ‖y∗‖∞ ≤ 1}

= sup {〈Λ∗y∗, x〉 : ‖x‖ ≤ 1, ‖y∗‖∞ ≤ 1}
= sup

‖y∗‖∞≤1

‖Λ∗y∗‖∞ = ‖Λ∗‖∞.
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and

Ker(Λ) = {x ∈ X : Λ(x) = 0}
= {x ∈ X : 〈y∗,Λ(x)〉 = 0 for all y∗ ∈ Y ∗}
= {x ∈ X : 〈Λ∗y∗, x〉 = 0 for all y∗ ∈ Y ∗}
=

{
x ∈ X : x ∈ [Range(Λ∗)]⊥

}
= [Range(Λ∗)]⊥.

The last equality is quite similar.

Theorem 4.23 Let X and Y be Banach spaces. The bounded linear operator Λ :
X → Y is compact if and only if its adjoint Λ∗ : Y ∗ → X∗ is compact.

Proof. Assume that Λ is compact. For a given a bounded sequences (y∗n)n≥1, we
need to show that there exists a subsequence (y∗nk

)k≥1 ⊆ (y∗n)n≥1 such that Λ∗(y∗nk
)

converges in X∗ as nk →∞. By assumption, the set

E := Λ(B1) with B1 = {x ∈ X : ‖x‖ ≤ 1}

is a compact set in Y . For every n ≥ 1, we define the function fn : E → R as

fn(z) = y∗n(z) for all z ∈ E,

Since (y∗n)n≥1 is a bounded sequence in Y ∗, there exists M > 0 such that

|fn(z)− fn(z′)| = |y∗n(z)− y∗n(z′)| ≤ M · ‖z − z′‖ for all z, z′ ∈ E

and
sup
z∈E
|fn(z)| ≤ M · sup

z∈E
‖z‖ ≤ M · ‖Λ‖∞.

Thus, the sequence of functions (fn)n≥1 is equicontinuous and uniformly bounded.
By Arzelà-Ascoli theorem, there exists a subsequence (fnk

)k≥1 which converges to a
function f uniformly on the compact set E. In particular, the subsequence (fnk

)k≥1

is a Cauchy sequence in C(E,R), i.e., for every ε > 0, there exists Nε > 0 such that

sup
z∈E
|fnk

(z)− fnj
(z)| ≤ ε for all nk, nj ≥ Nε.

Thus, by the definition of Λ∗, we estimate

‖Λ∗(y∗k)− Λ∗(y∗j )‖∞ = sup
‖x‖≤1

∣∣〈Λ∗(y∗k)− Λ∗(y∗j ), x〉
∣∣

= sup
‖x‖≤1

∣∣〈y∗k − y∗j ,Λx〉∣∣
= sup

‖x‖≤1

|fnk
(Λ(x))− fnj

(Λ(x))| ≤ ε for all nk, nj ≥ Nε

and this shows that the subsequence Λ∗(yk) is Cauchy in X∗, hence it converges to
x∗ ∈ X∗. Therefore, Λ∗ is a compact operator.

The converse implication can be proved by the same argument.
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Theorem 4.24 Let K : [a, b] × [a, b] → R be a continuous map. Then the integral
operators

Λ[f ](x) =

∫ b

a

K(x, y)f(y)dy

is a compact linear operator from C([a, b]) into it self.

Proof. It is clear that Λ is a linear bounded operator from C([a, b]) to C([a, b]). To
achieve the compactness of Λ, consider a bounded sequence of continuous functions
fn ∈ C([a, b]), we need to show that (Λ[fn])n≥1 admits an uniformly convergent
subsequence.

1. Observe that K is uniformly continuous and bounded in [a, b] × [a, b], i.e.,
max

(x,y)∈[a,b]×[a,b]
K(x, y) ≤ κ and for every ε > 0, there exists δε>0 such that

|K(x, y)− |K(x′, y′)| ≤ ε for all |x− x′|+ |y − y′| ≤ δε.

We have that∣∣Λ[fn](x)
∣∣ ≤ ∫ b

a

|K(x, y)| · |fn(y)|dy ≤ κ · (b− a) · sup
n≥
‖fn‖∞

and this yields∥∥Λ[fn]
∥∥
∞ ≤ κ · (b− a) · sup

n≥
‖fn‖∞ for all n ≥ 1.

Thus, Λ[fn] is uniformly bounded.

2. Let ε > 0 be given, we have that∣∣Λ[fn](x)− Λ[fn](x′)
∣∣ ≤ (b− a) · sup

n≥
‖fn‖∞ · ε

for all |x − x′| ≤ δε. Thus, Λ[fn] is equicontinuous. Therefore, one can apply the
Ascoli’s theorem to complete the proof.

5 Compact operators on a Hilbert Space

It is well-known that for any given linear operator A : Rn → Rn, the followings hold:

(i) The subspace Ker(A) and [Range(A)]⊥ have the same dimension. In particu-
lar, this implies that A is one-to-one if A is onto.

(ii). If A is symmetric then its eigenvalues are reals and Rn admits an orthonormal
basis consisting of eigenvectors of A.
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We aim to extend these results to an infinite-dimensional Hilbert space H.

Theorem 5.1 (Fredholm) Let K : H → H be a compact linear operator. Then
the followings hold:

(i) Ker(I −K) is a finite-dimensional subspace;

(ii) Range(I −K) = Ker(I −K∗)⊥ is closed;

(iii) Ker(I −K) = {0} if and only if Range(I−K) = H;

(iv) dim(Ker(I −K)) = dim(Ker(I −K∗)).

Proof.

1. Assume that Ker(I −K) is an infinite-dimensional subspace. By Gram-Schmdit
process, one can construct an orthonormal sequence (en)n≥1 in Ker(I −K). In this
case, we have

en = K(en) for all n ≥ 1

and
‖K(en)−K(em)‖ = ‖en − em‖ =

√
2 for all n 6= m.

Thus, K is not a compact operator.

2. Toward the proof of (ii), we observe that there exists a constant β > 0 such that

‖u−Ku‖ ≥ β · ‖u‖ for all u ∈ (Ker(I)−K)⊥

Indeed, assume by a contradiction, there exists a sequence un ∈ Ker(I −K)⊥ such
that

‖un‖ = 1 and ‖un −K(un)‖ ≤ 1

n
.

By extracting a subsequence and relabelling, we can assume that un ⇀ u. Since K
is compact, we then have that

lim
n→∞

K(un) = K(u) =⇒ lim
n→∞

un = K(u).

By the uniqueness of weak convergence, we get

lim
n→∞

un = u = K(u), ‖u‖ = 1,

and this yields a contradiction since u ∈ Ker(I −K) ∩Ker(I −K)⊥.

Consider a sequence (vn)n≥1 ⊆ Range(I −K) which converges to v. To show that
Range(I−K) is closed, we will find u such that u−K(u) = v. Since vn ∈ Range(I−
K), it holds

vn = un −K(un) for all n ≥ 1.
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Set V := Ker(I −K) a closed vector subspace of H. For every n, we have

zn := un − πV (un) ∈
[
Ker(I −K)

]⊥
, vn = zn −K(zn).

From the above estimate, we have

‖vm − vn‖ ≥ β · ‖zm − zn‖ for all m,n ≥ 1

and this implies that (zn)n≥1 is a Cauchy sequence. Set u := limn→∞ zn, we get

u−K(u) = lim
z→∞

(zn −K(zn)) = lim
n→∞

vn = v.

Since both Range(I −K) and Ker(I −K∗)⊥ are closed, (ii) holds if any only if

[Range(I −K)]⊥ = Ker(I −K∗).

We have

Ker(I −K∗) = {x ∈ H : (I −K∗)(x) = 0}
= {x ∈ H : 〈y, (I −K∗)(x)〉 for all y ∈ H = 0}
= {x ∈ H : 〈(I −K)(y), x〉 for all y ∈ H = 0} = [Range(I −K)]⊥.

3. Assume that Ker(I −K) = 0. If Range(I−K) 6= H then we consider

Hn = (I −K)n(H) for all n ≥ 1.

By induction and the injective properties of I − K, we have that Hn is a closed
subspace of H and

H ⊃ H1 ⊃ H2 ⊃ · · ·
Thus, for each n ≥ 1, we can choose a unit vector en ∈ Hn ∩H⊥n+1. In this case, for
every m < n, we have

K(em)−K(en) = em + zm with zm = (I −K)(en − em)− en ∈ Hm+1

and this implies that

‖K(em)−K(en)‖ ≥ ‖em‖ = 1.

In particular, K is not a compact operator and this yields a contradiction.

4. Assume that Range(I −K) = H then by Lemma 4.22 have have

Ker(I −K∗) = [Range(I −K)]⊥ = H⊥ = {0}.

Since K∗ is compact, by the previous step we have that Range(I − K∗) = H. By
by Lemma 4.22, we get

Ker(I −K) = [Range(I −K∗)]⊥ = H⊥ = {0}
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and this complete the proof of (iii).

5. To obtain (iv), we first show that

dim(Ker(I −K)) ≥ dim
(
Range(I −K)⊥

)
.

Indeed, assume by a contradiction that

dim(Ker(I −K)) < dim
(
Range(I −K)⊥

)
. (5.1)

Then there exists a linear map A : Ker(I−K)→ Range(I−K)⊥ which is one-to-one
but not onto. We extend A to a linear map A : H → Range(I −K)⊥ such that

A(u) = 0 for all u ∈ [Ker(I −K)]⊥.

Observe that A is compact so is K + A. We show that I − (K + A) is one-to-one.
Indeed, for any u ∈ H, we write

u = u1 + u2, u1 ∈ Ker(I −K), u2 = [Ker(I −K)]⊥.

Then

[I − (K + A)](u) = (I −K)(u2)− A(u1) ∈ Range(I −K)⊕ Range(I −K)⊥.

From this observation, u ∈ Ker(I − (K + A)) if only if

(I −K)(u2) = A(u1) = 0

and this yields u1 = u2 = 0. From (iii), it holds

Range(I − (K + A)) = H.

Since A is not onto, there exists v ∈ Range(I −K)⊥ but v /∈ Range(A). Thus, the
equation

u−K(u)− A(u) = v

has no solution and this yield a contradiction.

6. Recalling that Range(I −K∗)⊥ = Ker(I −K), we then get

dim(Ker(I −K∗)) ≥ Range(I −K∗)⊥ = dim(Ker(I −K)).

Interchanging the roles K and K∗, we obtain the opposite inequality.

Remark 5.2 Consider the linear equation

u−K(u) = f (5.2)

with K linear compact operator. Then
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(i) If Ker(I − K) = {0} then for any f ∈ H, the linear equation has a unique
solution.

(ii) If Ker(I − H) 6= {0} then the homogenous linear equation u − K(u) = 0
admits a nontrivial solution. In this case, (5.2) has solutions if any only if
f ∈ Ker(I −K∗)⊥, i.e.,

〈f, u〉 = 0 for all u ∈ Ker(I −K∗).

Definition 5.3 Let Λ : H → H be a bounded linear operator. The resolvent and
the spectrum of Λ are denoted by

ρ(Λ) := {η ∈ R : ηI − Λ is bijective} and σ(Λ) = R\ρ(Λ).

The point spectrum and the essential spectrum of Λ is

σp(Λ) = {η ∈ R : ηI − Λ is not one to one} and σe(Λ) = σ(Λ)\σp(Λ).

For every η ∈ σp(Λ), there exists a nonzero vector w ∈ H such that

Λ(w) = ηw.

In this case, η is called an eigenvalue and w is an associated eigenvector.

Theorem 5.4 (Spectrum of a compact operator) Let H be infinite-dimensional
Hilbert space, and let K : H → H be a compact linear operator. Then

(i) σ(K) = σp(K) ∪ {0}.

(ii) Either σp(K) is finite or else σp(K) = {λn : n ≥ 1} such that limn→∞ λn = 0.

Proof. 1. To prove (i), we first show that 0 ∈ σ(K). Assume by a contradiction
that 0 /∈ σ(K). Then the linear operator K is bijective. By the open mapping
theorem, the linear map K−1 is continuous. Thus, I = K−1 ◦K is compact operator
and this yields a contradiction.

Now, given λ ∈ σ(K)\{0}, we need to show that λ ∈ σp(K). Assume by a contra-
diction that λ /∈ σp(K) then by the Fredholm alternative, one has

Ker(λI −K) = {0} =⇒ Range(λI −K) = H.

Thus, λI −K is bijective and this yields a contradiction.

2. Assume that σp(K) is not finite. Let (λn)n≥1 be a sequence of distinct eigenvalue
in σp(K) such that lim

n→∞
λn = λ. We claim that lim

n→∞
λn = 0. Indeed, let wn be an

associated eigenvector

K(wn) = λn · wn for all n ≥ 1.
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Set Hn := span{w1, · · · , wn}. Since eigenvectors corresponding to distinct eigen-
value are linearly independent, we get that Hn ⊂ Hn+1. Moreover, for every n ≥ 1,
it holds

(K − λnI)(Hn) ⊂ Hn−1.

For each n ≥ 2, we can choose a unit vector en ∈ Hn ∩H⊥n−1. For every m < n, we
have

K(en)−K(em) = [(I −K)(em − en)− λmem] + λnen ∈ Hn−1 +H⊥n−1

and this implies that

‖K(en)−K(em)‖ = |λn| · ‖en‖ ≥ |λ|.

If |λ| > 0 then the operator K is not compact and this yields a contradiction. Thus,
λ = 0 and lim

n→∞
λn = 0.

3. To conclude, we show that for any r > 0, the set σp(K)∩ [r,∞[ is finite. Indeed,
assume by a contradiction, one can fine a sequence of (λn)n≥1 ⊆ σp(K) such that

r ≤ λn ≤ ‖Λ‖∞ and λn 6= λm.

In particular, (λn)n≥1 admits a subsequence which is convergent and thus converges
to 0. This yields a contradiction. Similarly, we can show that the set σp(K)∩] −
∞,−r] is finite. Therefore, the set σp(K) is at most countable.

Lemma 5.5 (Bounds on the spectrum of a symmetric operator) Let Λ :
H → H be a linear bounded operator on the Hilbert space H. Assume that Λ is
selfadjoint, i.e.,

〈Λ(x), y〉 = 〈x,Λ(y)〉 for all x, y ∈ H.

Define
m := inf

‖u‖=1
〈Λ(u), u〉, M := sup

‖u‖=1

〈Λ(u), u〉

Then,
m,M ∈ σ(Λ) ⊆ [m,M ] and ‖Λ‖∞ = max{−m,M}.

Proof. 1. Let us first show that the spectrum σ(Λ) is contained in [m,M ]. For any
η > M , we have that the linear operator ηI − Λ is strictly positive since

〈(ηI − Λ)(u), u〉 ≥ (η −M) · ‖u‖2 for all u ∈ H.

By Lax-Milgram theorem, the linear operator (ηI − Λ) is bijective. In particular,
the set ]M,∞[ is a subset of the resolvent set of Λ. Similarly, for any η < M , the
linear operator Λ− ηI is strictly positive and bijective since

〈(Λ− ηI)(u), u〉 ≥ (m− η) · ‖u‖2 for all u ∈ H.
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Thus, the set ]−∞,m[ is a subset of the resolvent set of Λ and this yields

σ(Λ) = R\ρ(Λ) ⊆ [m,M ].

2. Without lose of generality, we shall assume that |m| ≤ M . Otherwise, one can
replace Λ by −Λ. We will show that

‖Λ‖∞ = sup
‖u‖≤1

‖Λ(u)‖ = M.

It is sufficient to show that ‖Λ‖∞ ≤M . For every u, v ∈ H, we have

4〈Λu, v〉 = 〈Λ(u+ v), u+ v〉 − 〈Λ(u− v), u− v〉
≤ M‖u+ v‖2 −m‖u− v‖2 ≤ M ·

(
‖u+ v‖2 + ‖u− v‖2

)
≤ 2M ·

(
‖u‖2 + ‖v‖2

)
.

Choosing v =
‖u‖
‖Λ(u)‖

· Λ(u), we get

‖Λ(u)‖ ≤ M‖u‖ for all u /∈ Ker(Λ)

and this yields ‖Λ‖∞ ≤M .

3. Finally, we claim that M ∈ σ(Λ). Indeed, let (un)n≥1 be a sequence such that

‖un‖ = 1 and lim
n→∞
〈Λ(un), un〉 = M.

We have

‖(M · I − Λ)(un)‖2 = M2 + ‖Λ(un)‖2 − 2MΛ(un), un〉 ≤ 2M(1− Λ(un), un〉)

and this implies that
lim
n→∞

‖(M · I − Λ)(un)‖ = 0.

Thus, the operator M · I − Λ can not have a bounded inverse and thus it is not
bijective.

Give a symmetric n × n matrix A, one can choose an orthogonal basis of Rn

consisting of eigenvectors of A. The following theorem shows that the results remains
valid for compact symmetric operator.

Theorem 5.6 (Hilbert-Schimit) Given a separable real Hilbert space H, let K :
H → H be a compact and selfadjoint linear operator. Then there exists a countable
orthonormal basis of H consisting of eigenvectors of H.
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Answer. 1. If H is a finite dimensional space then this is a classical result in linear
algebra. Assume that dim(H) = ∞. Let η0 = 0 and {η1, η2, . . . } be the set of all
nonzero eigenvalues of K. Consider the eigenspaces

H0 = Ker(K) and Hn = Ker(K − ηnI)

By the Fredholm theorem, we have that

dim(Hn) < ∞ for all n ≥ 1.

On the other hand, for every u ∈ Hm and v ∈ Hn with n 6= m, it holds

ηm〈u, v〉 = 〈Ku, v〉 = 〈u,Kv〉 = ηn〈u, v〉

and this yields 〈u, v〉 = 0. Thus, the subspace Hm and Hn are orthogonal.

2. We claim that the vector subspace

H̃ =

{
N∑
k=0

αkuk : uk ∈ Hk, αk ∈ R

}
.

is dense in H. Let us first show that

H̃⊥ ⊆ Ker(K) = H0. (5.3)

Notice that K(H̃) ⊂ H̃. For any u ∈ H̃⊥, one has

〈K(u), v〉 = 〈u,K(v)〉 = 0 for all v ∈ H̃

and this shows that K(H̃)⊥ ⊆ H̃⊥. Let K̃ be the restriction of K to the subspace

H̃⊥. Clearly, K̃ is a compact and symmetric operator. Thus, the previous lemma
yields

‖K̃‖∞ = sup
‖u‖=1,u∈H̃⊥

|〈K̃(u), u〉| = M.

If M > 0 then λ = −M or λ = M is in the spectrum of K̃, i.e. there exists a unit
vector w ∈ H̃⊥ such that

K̃(w) = K(w) = λ · w =⇒ w ∈ H̃.

This is contradiction. Thus, ‖K̃‖∞ = 0 and this yields (5.3). In turn,

H̃⊥ ⊆ H0 ∩H⊥0 = {0}.

and thus H̃ is dense in H.

3. For each k ≥ 1, Hn admits an orthonormal basis Bn = {en,1, . . . , an,N(n)}.
Since H is separable, the space H0 admits a countable orthonormal basis B0 =
{e0,1, e0,2 . . . }}. Hence B =

⋃∞
n=0 is an orthonormal basis of H.
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Remark 5.7 Let {w1,w2, . . . } be an orthonormal basis of a real Hilbert space H,
consisting eigenvector of a linear, symmetric operator K. Let λ1, λ2, . . . be the
corresponding eigenvalues. If 1 /∈ σ(K) then for any given f ∈ H, consider the
equation

u−K(u) = f

admits a unique solution u such that

u =
∞∑
k=1

〈f,wk〉
1− λk

·wk.
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