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1 Introduction

Functional analysis is an abstract branch of mathematics analysis. It is a necessary
background is any area of analysis (e.g., real and complex analysis, convex analysis,
measure theory, numerical analysis, ... ), and important in various fields of mathe-
matics and its applications (e.g, PDEs, calculus of variations, approximation theory,
optimal control, game theory, ...).

Functional analysis is the study of

e infinite dimensional vector space over R and C.

e linear maps between them.
A key idea is to regard functions
f:R" =R
as points in an abstract space. All information of f is considered in one single num-
ber || f|-norm of f (size of f).

Basic spaces

e Metric spaces
e Normed vector spaces
e Banach spaces

e Hilbert spaces

Major and foundational results

e Contraction mapping theorem

Uniform boundedness principle

e Open-mapping theorem

Closed-graph theorem

Baire category theorem

Arzela-Ascoli theorem

Hahn-Banach theorem



2 Metric spaces

Given a set X, we wish to introduce a distance d(-,-) between 2 points in X. This
distance will allows us to define limits, convergent sequences, series and continuous
maps.

Definition 2.1 A metric on X is a nonnegative function d : X x X — [0, 400)
satisfying the following properties:

(i). d(z,y) = 0 = r =y (Identity of indiscernibles)
). dxy) = dlg.x)  (Symmetry)

(iii). d(z,y) < d(x,z)+d(z,y) (Triangle inequality)

These conditions express intuitive notions about the concept of distance. Here,
we will call that

e d(x,y) is a distance from z to y.

e (X,d) is a metric space (equipped with metric d).

Examples of metric spaces.

(1). Real line X =R

d(z,y) = |z —vy for all z,y € R (Euclidean metric in R).

(2). n dimensional space (X = R")

(Euclidean metric in R") .

Notice that the metric is not unique. In this case, one can construct several
different metrics in R", e.g.,

d = i = Yi
ey) = max v — il
and .
dy(x,y) = Z |z; — i (Taxicab metric) .
i=1

Question: is d(x,y) = |z — y|* a metric in R? NO.



(3). Discrete metric on X

1 if Ty,

0 if rT=1y.

d(z,y) =

(4). On the space of continuous function from [a,b] to R
C([a,b],R) = {f:]a,b] = R | f is continuous} .
For any f,g € C([a,b],R), denote by
d(f,g) = mnax [f(t) = g(t)].

Then (C([a,b],R),d) is a metric space.
Question: Is
b
af9) = [0-gOld  forall fige Clla bR

a metric on (C([a,b],R),d)? YES.

(5). Space of sequences: For any p > 1, denote by

X = = {I:(xhx%'”)’ Z|xi|p<oo}
i=1

and
) 1/P
dp(a:,y) = (Z |x; — yilp) x,y €.
i=1

In the case p = 2, we call that 2 is a Hilbert sequence space.

In the case p = oo, we have the space of bounded sequences
0 = {z={z;}i>1 | |zs| <C, foralli>1}.
The function

doo(z,y) =  sup |z; — yil for all z,y € £
i€{1,2,...}

is a metric on ¢°°.

Question: Is (¢, d,) a metric space?

In order to answer the above question, let us introduce the following classical in-
equalities.



2.1 Classical inequalities

1. Convex function: The function f : [a,b] — R is convex, i.e.,

t-flz)+ (1 —1t)- fly) > fltz+ (1 —1t)y) for all t € ]0,1].
It is clear that the epigraph of f
Epi(f) = {(z,8) |z €la,b], = f(x)}

is convex. Moreover, if f is a C? function and f" is non-negative then f is conved.

An application: (Young’s inequality) Given a constant p > 1, let ¢ be its con-

1 1
jugate, i.e., — 4+ — = 1. Then
P q

uf vl
u-v < — 4 — for all u,v > 0. (2.1)
b q

Proof. Since u,v > 0, one can write

u = er and v = u = e«
for some a,b € R. Since e is convex, we have

1 1 Lyl
_.e“+_.eb > @pa+qb

p q
and it yields (2.1)). O

2. Hoélder inequality for sums: Let p,q > 0 be conjugate. For any x = {x;};>1 €
0 and y = {y; }i>1 in 09, it holds

() ') 1/p 00 1/‘1
S o < (z |x@-|p> -(z \ym) | (2.2
=1 =1 =1

Proof. 1. For any i =1,2,..., set

T
w; = and v; =

00 1/p
(z w)
j=1

(e} (e}

S lul = ) |l = 1. (2.3)

i=1 i=1

we have that



Moreover, (2.2)) is equivalent to

o0

i=1
2. From the above inequality, one has
Jwil” | vil?
- + -
p
Recalling (2.3)), we obtain that

i lu; - vy < i [ul” + il _ 1
1 7 — - .
=1 =1

p q

lu; - vy < foralli e {1,2,...}.

The proof is complete. O

In the case p = ¢ = 2, (2.2)) implies the Cauchy-Schwarz inequality

o0 0 1/2 o 1/2
> ol < (S 1a) (S ) 24)

i=1

3. Minkowski inequality for sums: Given p > 1, for every x,y € (P, it holds

00 1/p o 1/p o 1/p
(z |xi+yi|p) . (z m-vo) N (z |yz-|p) (2.5
=1 =1 =1

Proof. If p =1 then (2.5)) follows from the triangle inequality in R. Otherwise, let
q be such that — + —. The inequality (2.5)) is equivalent to
p q

00 fe's) 1/p o0 1/(] (e’ 1/P 0o l/q
S ol < (z |xz~|p> -(z |xi+yi|p) +( w) -(z |xi+yi|p) |
=1

i=1 i=1 i=1 =1

Using the Holder inequality, we get

o0 1/p 0 1/q 0
(Z |$i|p) : (Z |z + yil”) > Z i - |2 + wil P,

=1 =1 =1
and
o 1/p o 1/q o
(z myp) . (Z ymyi\p) o Sl .
=1 =1

i=1
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Thus,

0o 1/p 00 1/q o 1/p 00 1/q
(z W) -(z mw) +(z |yz-v’) -(z |xi+yz-|p)
=1 =1 =1 =1

0o 1+p/q ) p
> (Z !xi+yi|> = (Z\xieriI) ;
i=1 i=1
and this yields ({2.5)). O

Recalling that

P = {xz(ml,x2,...) ’ i|xi|p<oo}
i=1

and

o0 1/p
dp(z,y) = (Z |z — y¢|p> z,yell.

i=1
We will show that

Lemma 2.2 (?,d) is a metric space for allp > 1.
Proof. We first show that d, is finite. By Minkowski inequality, we estimate

00 1/p 00 1/p 00 1/p
dy(z,y) = (Z j; — yilp) < (Z |:vi|p> + (Z Iyz-|p> < 400
i=1 i=1 i=1
for all x,y € (7.
It is obvious that d is nonnegative and
dy(z,y) = dy(y,x) if and only if z=ye®,

dy(z,y) = d,(y,x) for every x,y €.
Thus, we only need to check that d satisfies the triangle inequality, i.e.,
dp(z,y) < dy(x,2)+dy(z,y) for all z,y,z € (7.

Equivalently,
(e R N (A K S (EE T e
i=1 i=1 i=1
The Minkowski inequality yields the above inequality. O

To complete this subsection, let us prove an increasing property of ¢P.
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Lemma 2.3 (Embedding) For any 1 < p; < ps < 00, the following relation holds

0oc o

Proof. Given any z € (**, we need to show that € /2. Equivalently,
o0 1/p 0 1/p2
(Z |xi|p1> < 0 — (Z |xi|p2> < 0.
i=1 i=1

This follows from Jensen’s sum inequality

o0 1/p1 0 1/p2
(Z |xi|p1> > (Z |xi|p2> forall 1 <p; < ps < 0. (2.6)
i=1 i=1

To complete the proof, we will prove that Jensen’s sum inequality. Set

v = |P and p = P2 > 1.

b1
The inequality (2.6)) can read as

T (fj m-wp)

i=1

Thus, it suffices to show that

1
= (Zmyp) for all n € N. (2.7)
=1 =1

For n = 2, it holds
|o1] + |ve] > (Joi|P + |1)2]p)% (homogeneous function of degree 1).

v
Indeed, set 0 < t := —2, we can rewrite the above inequality as
U1

1+t > 1+, (2.8)
Consider the function f(t) := (14 ¢)? — 1 — t*. We compute
fO0) =0 and  f(t) = p-(1+t) =p-t"7 >0 forallt>0.

Thus, f(t) > 0 for all t > 0 and it yields (2.8].



Assume that (2.7)) holds for n = k > 2, we need to show that it holds for n = k + 1.
Indeed,

k+1 k 1/p ket 1 1/p
Sl > o] + (z w) > (z w) |
=1 =1 =1

By induction, one obtains ({2.7)). O

More concepts.

e (Metric subspaces). Given a metric space (X, p), let Y be a nonempty subset
of X. Then the restriction of p to Y x Y defines a metric on Y and we call
(Y, pv) is a metric subspace of (X, p).

e (Metric products). Given two metrics (X3, p1) and (Xs, p2), define

X = X1 X X2 = {(%1,562) | T € Xl,SL’Q c XQ}

and 7 : X x X — [0, 00) such that

(21, 22), (00, 2)) = /030, 0) + 32, 1)

for all (z1,z2), (y1,92) € X.
The following relation of equivalence between metrics on a given set X is useful.
Definition 2.4 (Equivalence) Two metrics p; and py on X are equivalent if any
only if there exist A1, Ay > 0 such that
A cpi(zr,za) < opa(xy,me) < Ao pr(xy, o) for all (z1,29) € X x X .

Definition 2.5 (Isometry) A mapping f : (X, p) — (Y,0) is said to be isometry
if any only if

o(f(x1), f(x2)) = p(x1,x2) for all (x1,22) € X x X.

In addition, if f(X) =Y then (X,p) and (Y,0) are isometric.

2.2 Open sets, closed sets and neighborhood

Given a metric space (X, d), let us first introduce fundamental subsets of X associ-
ated to the distance d.



Definition 2.6 Given a point a € X and r > 0, we denote by

B(a,r) = {yEX | d(a,y) <r}

B(a,r) = {yEX ‘ d(a,y) Sr}

(open ball) |

(closed ball),

and

S(a,r) = B(a,7)\B(a,r) = {yEX ‘ d(a,y) :7“}

(sphere) .
It is clear that

B(a,r) € B(a,r) € B(a,r) foral0<r<mr.

Examples 1. Let X = R? = {(z1,22) | 71,72 € R}.

(a) If d(z,y) = \/|z1 — y1]? + |z2 — yo|? for all z,y € R? then

B(0,1) =

{(z1,29) € R?*: 2% + 22 < 1}

S(0,1) = {(z1,29) € R?*: 2} + 23 =1}.

V(o)

(b) If d(z,y) = |x1 — y1| + |22 — 2| for all z,y € R? then

B(0,1) =

{(x1,22) € R? ¢ |z1| + |2o| < 1}

5(0,1) = {(1’1,$2)€R22 ‘1‘1|+|l‘2|:1}



-\
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Example 2. Let (X, d) be is discrete metric space
1 if x#y,
d(z,y) =
0 if T=y.

For any a € X, we have

B(a,1) = {a}, B0,1) = X, S(a1) = X\{a}

and
B(a,1/2) = {a}, B(a,3/2) = X, S(x,1/2) = 0.

Definition 2.7 (Open and closed sets) Let M be a subset of X. We say that
e M is a open set in (X,d) if and only if for every x € M
B(z,r,) € M for somer, >0.
e M is a closed set in (X,d) if and only if

M® = X\M = {zeX |x¢ M} is open.
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It is clear that @ and X are open and closed. By the definition, it is sufficient to
show that X is open.
B(a,1) € X foralla € X

and X is open.
Claim 1. Given a € X and r > 0, the ball B(a,r) is open.
Proof. Let b € B(a,r), we have

rp = r—d(a,b) > 0.

We will show that
B(b,m,) C Bla,r) (2.9)

and this implies that B(a,r) is open.

For any y € B(b, 1), by the triangle inequality, it holds
d(a,y) < d(a,b)+d(b,y) < d(a,b)+r, = r

and it yields y € B(a,r). Thus, (2.9) holds. O

Main properties: Given (X,d) a metric space, the followings holds

11



(i) If {Us} is a collection of open sets in (X, d) then U = U U, is open.

(i) If U and V are open then U NV is also open.

Proof. (i). For any x € U, there exists g such that x € U,,. Since U,, is open,
there exists r, > 0 such that

B(z,ry) C Uy, C U.
By the definition of open set, one has that the set U is open.
(ii). For any x € U NV, we need to find r, > 0 such that
B(z,r,) Cc UnV. (2.10)
Since U and V are open, there exists r,75 > 0 such that
B(z,r) ¢ U and  B(z,r2) C V.

Set 7, = min{ry,r2} > 0, we obtain ([2.10). O

Definition 2.8 (Topological space) Given X, let T be a collection of subsets of
X such that

(1) @ and X are in T;
(2) If Uy € X fora € I, then J,er Ua €T
(8) IfUV €T thenUNV €T.
Then, (X,T) is a topological space.
The following holds:
Proposition 2.8.1 A metric space (X, d) is a topological space, i.e., the collection

of open sets for the metric d is a topology for X.

2.3 Continuous maps on metric space

Given two metric spaces (X, p) and (Y, o), consider a map

[ Xp) — (Y,0)
reX — f(x)ey.

Question What does it means for f to be continuous at v € X ¢

12



Recall that a function f : R — R is continuous at a point x € X if any only
if for every € > 0, there exists § > 0 such that

=yl <o = @)= fyl < e (2.11)
Set d(x,y) = | — y|. The condition for continuity (2.11)) can be written as

dz,y) <6 = d(f(x), f(y) < e.
This leads to the following definition.

Definition 2.9 The map f : (X, p) — (Y, 0) is continuous at x if and only if for
every € > 0, there exists § > 0 such that

plzy) <6 = o(f(x),fy) < e.

The above condition can be rewritten as

f(y) € B(f(x),e) for all y € B(z,9).

Equivalently,
f(B(z,0)) < B(f(z,¢€)).

We say that the function f is continuous on A C X if and only if f is continuous
at all x € A.

Theorem 2.10 A map f: (X, p) — Y (,0) is continuous of X if and only if
U = f V) is open in X for all V open in'Y .

W oy

9
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Proof. (=) Assume that f is continuous on X, we need to show that
V CY open — f7(V) open.

For any given z € f~}(V), we need to find § > 0 such that B(z,d) C f~(V).
Equivalently,
f(B(z,8)) C V. (2.12)

Since f(z) € V, there exists € > 0 such that B(f(z),e) C V. By the continuity
property of f, there exists ¢ > 0 such that

f(B(z,0)) < B(f(2)¢)
and it yields .
(<=) Assume that
V CY open — f1(V) open,
we show that f is continuous.

Fix z € X, for every € > 0, find 6 > 0 such that

f(B(x,0)) < B(f(x),¢).

Equivalently,
B(x,0) C fH(B(f(z,¢))). (2.13)

)
Since B(f(x),€) is open in Y, the set f~}(B(f(z,¢))) is open in X. Observe that
z € f~YB(f(x,€))), there exists § > 0 such that (2.13)) holds. O

Some concepts. We say that

e M is a neighborhood of x if there exists € > 0 such that
B(z,e) € M.
e 1 is an interior of M if M is a neighborhood of x. The set
Int(M) := M° = {x € M | z is an interior of M} .
is the interior of M

Claim. M?° is the largest open set contained in M .

Proof. Homework problem. O
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Denote by o
M = X\(X\M)° is the closure of M,

and
OM = M\M? is the boundary of M

It holds
M° C M C M.

Moreover, the following holds
Claim. M is the smallest closed set which contains M .

Proof. Homework problem. O
As a consequence of the above claims, one has that

o [f M is an open set in (X,d) then M° = M;

o If M is a closed set in (X,d) then M = M.
Let’s now introduce concept of dense sets and separable property of a metric space.

Definition 2.11 (Dense set and separable metric space) The subset M C X
is dense in (X, d) if o
M = X.

The metric space (X,d) is called “separable” if X has a countable dense subset.

Notice that if M is dense in (X, d) then every nonempty open subset of X contains at
least one point of M. Indeed, assume by a contradiction, there exists an nonempty
open set U of X such that

UNnM = o.

By the definition of open set, there exists a small ball B(x,e) C U and it yields that
B(z,e) ¢ X\M.

Thus, z is in (X\M)° and it yields a contradiction.

Some examples.

e Qisdensein R.

e R" with Eucliean distance is separable.
e Is (¢7,d,) separable for all p > 17

Proposition 2.11.1 A metric space is separable if any only if there exists a count-
able collection {O,,},>1 of open subsets of X such that any open subset of X is the
union of a subcollection of {Oy}n>1.

15



Proof. 1. Assume that X is separable, i.e.,

X = {z1,29,...,Tp,... }.

Consider the a countable collection of open balls { B(z,, 1/m)}, .~ in X. Let U C
X be an open set. For any x € U, there exists m € N such that B(z,2/m,) C U.
On the other hand, since z € {x1,z3,...,2,,...}, one can find a point z,, €
{z1,29,...,2y,... } such that x € B(z,,,1/m,). Hence,

r € B(ryg,1/m,) C U,

and this implies that U is the union of a subcollection of { B(x,,1/m)}

n,m>1"
2. Assume that there exists a countable collection {O,},>1 of open subsets of X

such that any open subset of X is the union of a subcollection of {O,,},,>1. For every
n > 1, we pick x, € O,,. The set {x1,22,...,2,,...} is dense in X. O

2.4 Convergence, Cauchy sequence, and completeness

Given a metric space (X, d) and a sequence {z,},>1 in X

Definition 2.12 The sequence {x,}n>1 converges to x € X if

lim d(x,,x) = 0,

n—o0

i.e., for every € > 0, there exists N. > 0 such that
z, € B(z,,¢) for alln > N..

In this case, we say that x is a limit of {x,}n>1 and denote by x = lim, o .

Example. Given X = (—1,1] and d(z,y) = |z — y| for all z,y € X, let {z,}n>1
be such that x,, = —1 + —. One has that {z,},>1 converges to 1 in R but does not
0 >

converge in X since —1 ¢ X.

Properties of convergence sequences. Let {x,},>1 be a sequence in (X, d) which
converges to x. Then the following holds:

(a) The limit of {x,}n>1 is unique.
(b) {xn}n>1 is a bounded sequence, i.e., there exists a € X and M > 0 such that

zr, € B(a, M) foralln>1.
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(¢) If {yn}n>1 converges toy in (X,d) then

lim d(z,,y,) = d(z,y).

n—oo

Proof. (1). Assume that {z,},>1 also converges to y. We need to show that x = y.
By the triangle inequality, we estimate

0 < d(z,y) < d(x,x,)+d(zn,y) forallm > 1.
Taking n — oo, we obtain that

0 < d(z,y) < limsupld(z,z,)+ d(z,,y)] = 0

n—0o0

and it yields d(z,y) = 0.
(2). For € =1, there exists N; € N such that

x, € B(x,1) for all n > Ny .

Ny
Choosing M := 1+ Z d(z,1), we have

i=1
xr, € B(x, M) foralln > 1.

(3.) Observe that

0 < |d(£€n, yn) o d(SC, y)’ < d(il}n, CIZ) + d(yna y) :
Taking n — oo, we obtain that

0 < limsup |d(zp,yn) —d(z,y)| < limsup [d(z,,z) + d(y,,y)| = 0

n—o0 n—oo

and it yields
lim  d(@n,y,) = d(z,y).

n—0o0

The proof is complete. U

Proposition 2.12.1 Let E C X. Then the following statements are equivalent
(i). v € E;
(i) B(x,r)NE # @& for all v > 0;

(i1i) There exists a sequence {z,},>1 C E such that lim x, = x.
- n— 00

17



Proof. [(i) = (ii)] Recalling that

E = X\(X\E)°.

If v € E then z ¢ (X\E)°. By the definition, we have

B(z,r)NE # @ for all r > 0

[(i1) = (di1)] For every n > 1, one has
B(z,1/n)NE # @.
Pick any z,, € B(z,1/n) N E for all n > 1, the sequence {z,},>1 converges to z .

[(4i)) == (i)] Assume that there exists a sequence {x,},>1 C E such that
lim z, = . We need to show that z € E = X\(X\E)°. Assume by a contra-

n—oo

diction, there exists > 0 such that B(z,r) C X\E. This implies that
B(z,r)NE = @

and it yields a contradiction. O

Definition 2.13 (Cauchy sequence) A sequence {x,}n>1 is Cauchy if for every
e > 0, there exists N. > 0 such that

d(xp, xm) < € for all n,m > N, .

The following lemma state a connection between Cauchy sequence and convergent
sequence.

18



Lemma 2.14 A convergent sequence is a Cauchy sequence.

Proof. Let {z,}, > be a convergent sequence in (X, d). Assume that

lm z, = x€ X.
n—oo

This implies that for every ¢ > 0 there exists N such that
d(zp,z) < € for all n > N. .
Using triangle inequality, we estimate
d(Tp, ) < d(zp,x) +d(z,2,) < 26" forall n,m > Na
Choosing € = 2¢’, one have that
d(xp, xm) < € for all n,m > N,

and it implies that {x,},>1 is a Cauchy sequence. O

Is a Cauchy sequence convergent?

In R, d(z,y) = |z — yl|, every Cauchy sequence converges to a limit in R. How-
ever, it does not hold in general.

Example. Consider X = (0,1) and d(z,y) = |r — y|. One can see that the
sequence {1/n},> is a Cauchy sequence but it does not converges since 0 ¢ X. In
this case, the metric space (X, d) is incomplete.

Definition 2.15 The metric space (X,d) is complete if every Cauchy sequence is
convergent. Otherwise, it is incomplete.

Some examples.

(a) The metric space

is complete.

(b) The metric space

X = Rn7 d(x,y) = \/|[L‘1_y1|2++|xn_yn|2

is complete.
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(¢) Recalling that

P = {x ={zp}n>1: Z |z, P < oo}

n=1

and

—-

dy(z,y) = (Z |z, — yn|p> for all x,y € (P,
n=1

one has that (¢7,d,) is complete.

(d) Let £* be the set of bounded sequence in R. Denote by

doo(z,y) = sup |z, — yn| x,y € L.

n>1
Then (£*°,d,) is complete.
(e) Given two constant —oo < a < b < 0o, denote by
C([a,b]) := {f:]a,b] = R is continuous}
and

df.g) = max |f()—g(®] forall f.g€ Clla).

The metric space (C([a,b]),d) is complete.

(f) However, if we consider C([a, b]) with the metric

a(fg) = / () — ()] dt,

the (C([a, b)), dy) is incomplete.

Let us give an example to show that the metric space (C([a,b]),d;) is incomplete.
Without loss of generality, we assume that a = —1,b = 1. Consider the sequence of
function {f,}n> € C([—1,1]) such that

1
1 if —1<z<—=,
—1 1n
fu(x) = —nx if —<ar<-—,
1TL n
—1 if —<zx<l1
n

20



A direct computation yields

di(fu, fm) = M for all m,n > 1.

mn

and it yields {f,}n>1 is a Cauchy sequence in C'([—1,1]).
However, f,, converges pointwise to

1 if —1<2<0,

flx) =

-1 if 0<x<1

which is discontinuous. Hence, (C'([—1,1]),d;) is incomplete.
To conclude this subsection, let’s show that

Proposition 2.15.1 The metric space (C([a,b]),d) is complete.

Proof. Let {f,},>1 be a Cauchy sequence in C([a,b]), i.e. for every € > 0, there

exists N, > 0 such that

d(fn, frm) = max |fu(t) — f(t)] < e for all m,n > N..

tela,b]

We need to find f € C([a,b]) such that f, converges to f in (C([a,b]),d), i.e.,

Tim d(f,, /) = 0.
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From (3.1)), for every ¢ € [a, b], it holds
|fut) — fin(®)] < € for all m,n > N..
Thus, the sequence {f,(t)},>1 is Cauchy in R for every t € [a, b]. Denote by
f(t) = nll_}IIOlo fn(t) for all ¢ € [a,b].

To complete the proof, we will show that
(i) f is continuous in [a, b];

(i) limpee d(fum, f) =0.

1. To proof (i), we estimate
1f(&) = F() < (@) = fa®] + [fa) = fals) + |fuls) = F(s)]
< ) = SO+ [fn(8) = Fa(O)] + [falt) = fuls)]
+ [fn(5) = ()| + [ fm(s) = f(s)]
< 2d(foms fu) + 1 n(8) = Fu(&)] + [ () = FO] + [fm(s) = f(s)]-

For € > 0, choose N, > 0 such that

d(fim, fn) <

for all n,m > N, ,

=] M

we have
|f(t—f(s)] < %JrIfn(t)—fn(8)|+|fm(t)—f(t)|+|fm(8)—f(8)|-

Taking m — oo, we obtain that

£

O = O £ 5+ 1falt) = fal9) + T (1) = SO+ fnls) = £(5)]

3

= A0~ A
Since f,, is continuous, there exists € > 0 such that
) — Fu(s)] < g for all s € (t — £, +¢)
and this implies that

lft)— f(s)] < ¢ forall s € (t —e,t+e).
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Hence, f is continuous on [a, b].

2. We now show that
lim d(f,,f) = 0.
n—oo

We estimate

[fu(t) = SO < [fult) = fn (O] + [fm(t) = F(1)]
< d(fn; fm) + () = F@D)] -

For € > 0, choose N, > 0 such that
A(fon, [n) < € for all n,m > N,

we have
|fu(®) = FO] < e+ [fm() = F)].

Taking m — oo, we obtain that
|fa(t) — f(O)] < e+ lim |fn(t) — f(t)] = ¢ for all n > N..
m—o0

Thus,
d(fn f) = sup [fult) = f(H)] < e n=N,

tela.b]

and this implies that f,, converges to f in (C([a,b]),d). Therefore, the metric space
(C([a,b]),d) is complete. O

2.5 Compact sets

Definition 2.16 Given a metric space (X, d), the subset K C X is compact if and
only if for any open cover of K

K C U O, O, open,

a€el
there exists aq, s, ...,ay € L such that
N
K C U O, .
i=1

Examples. Consider X = R and d(z,y) = |x — y|. Then
e the set [0, 1) is not compact, and

e the set [0, 1] is compact .

23



Definition 2.17 The set K C X is called totally bounded if for every e > 0 there
exist a finite number of points ay,as, ..., any € X such that

N
K < |J Blaie).
=1

L(x d8)

It is clear that if the set K is totally bounded then it is bounded. Indeed,

N
- Z:LJI (a;,€) C B(ay,r1) with 6+ieg1’%3<N} (a1, a;)
However, in general

K is bounded + K is totally bounded .

Example. Consider the metric space
X = {z1,29,...,2p,... }

and
1 if x#y,

0 if T=1.

d(z,y) =

The set K = B(0,3/2) is bounded. However, there does not exists a finite number
of points aq, as,...,ay € X such that

N N

X =K C |JB(a;,1/2) = | J{a} = {a1,02,...,an}.

i=1 =1
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In this case, K is bounded but not totally bounded.

It is clear that if K is compact then K is totally bounded. Indeed, for every € > 0,

it holds
K ¢ |J B(=9).
zeK
Since K is compact, there exists a finite number of points {zy,...,zxy} C K such
that

N
K < |J B(xi9)
i=1

and K is totally bounded.

Theorem 2.18 Given a metric space (X,d) and a subset K C X. The following
statements are equivalent:

(i) K compact;
(i) K is totally bounded and K is complete;

(iii) K is sequentially compact, i.e., for every sequence {x,}n>1 C K, there exists
a subsequence {xp, }n,>1 C {Tn}n>1 which converges to x € K .

Proof. [(ii) = (i)] Assume that K is not compact. Then there exists a collection
of open subsets {O)} ea such that

K C UOA,

AEA
but
N
K ¢ [JOy forall NeN{\, k..., Ay} CA.
i=1
Since K is totally bounded, one can construct a sequence of nonempty closed sets
{F;}i>1 satisfying the following properties:
(i) Fiy1 € F; C K and lim;_,, diam(F;) = 0;
(ii) F; can not be covered by a finite number of open sets of {O)}ea.
Cantor intersection theorem implies that

ﬁF,:{JI}EKC UO)\

AEA

Thus, there exists A\g € A and r¢ > 0 such that

B(z,r9) C O,,.
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On the other hand, since lim; ., diam(F;) = 0, there exists ny € N such that
F., € B(z,rg) C O,
and it yields a contradiction.

To complete this part, let’s construct the sequence of close set {F;};>1. Since K
is totally bounded, it holds

U (a;,1/2) for all a; € X .

There exists i1 € {1,...,n;} such that the set B(a;,,1/2)N K is non-empty and can
not be covered by a finite number of open sets of {Oy},ca. In particular, the closed
set

F1 = B(all,l/Q)HK 7é %]

is totally bounded with diam(F}) < 1 and can not be covered by a finite number of
open sets of {Oy}rea.

Similarly, one can find a ball B(a;,,1/4) such that B(a,;,,1/4) N F} is non-empty
and can not be covered by a finite number of open sets of {Oy},ca. In particular,
the closed set

F2 = B(aw,l/él)ﬁFl 7£ %)

is totally bounded with diam(F») < 1/2 and can not be covered by a finite number
of open sets of {0} ea. Continuing in this way we can construct a sequence of sets
{F1};>1 which satisfies (i) and (ii).

[(i1d) = (ii)] It is easy to show that K is complete. Now, assume that K is
not totally bounded. Then there exists 6 > 0 such that K can not be covered by
a finite number of ball with radius §. In this case, we will construct a sequence
{2y }n>1 which does not admit any convergent subsequence. Take any z; € K, we
pick
ry € K\B(z1,9), xg € K\[B(z1,0) U B(z2,9)],
and
Tpy1 € K\[B(z1,0) U B(x2,0) - U B(z,,0)].

With this construction, we have that the sequence {z,},>1 C K satisfies
d(zp, zm) > 0 foralln#m.

Thus, the sequence {z,},>1 does not admit any convergent subsequence.
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[(i) = (4i7)] Assume that K is compact. Given any sequence {z,},>1 C K, we
need to construct a subsequence {x,, }n,>1 € {2, }n>1 which converges to x € K .
Consider the closed set

Fp = {op, xg1,. .. },

we first claim that

(F # 2.
k=1

Let O = X\Fy be open sets in X. Assume by a contradiction that m F, =2,
k=1
then De Morgan’s identities

D Oy = G[X\Fk] — X\ - X.

(£
k=1

o
In particular, K C U O, and thus K is covered by finite number of open sets in

k=1
{Ok}k21, i.e.,

N
K C UO’“Z’ = X\ for some k; > 1.
i=1

This yields a contradiction.
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Now, take a point T € ﬂ Fy, we will construct a subsequence {z,, }x>1 C {Zn}n>1

k=1
such that limy_,o, 2, = z. For every ¢ > 1, it holds

B(i’, 1/6) ﬂ{l‘g,l’prb .. } 7é a.

By induction, for any k£ > 1, we pick a point z,, ., € B (i, k%l) ({@nys Togs1s--- -
It is clear that {z,, }x>1 is a subsequence of {z,},>1 and

1
0 < limsup d(x,,,z) < limsup— = 0.
k—1 k—o0

Thus, the subsequence {z,, }x>1 C {2, }n>1 converges to Z. O

As a consequence, we have the following corollary

Corollary 2.19 Given a set K C R", the followings are equivalent:
(i) K is compact;

(i1) K is closed and bounded;

(11i) K is sequentially compact.

Notice that the equivalence of (i) and (ii) is known as the Heine-Borel theorem and
that of (i) and (iii) the Bolzano-Weierstrass theorem.

Corollary 2.20 A compact metric space (X,d) is separable.

Proof. Since X is compact, X is totally bounded. Thus, for every natural number
n, we have

My,
X = | JB(xa:1/n).
i=1

We can see that the set S = U {Tn1,-..,Tnm,} is countable and dense in X. [

n>1

Let us give some applications of theorem [2.18

Proposition 2.20.1 Given two metric spaces (X, d) and (Y,0), let f : X — Y be
a continuous map. Then, f(A) is compact in (Y, o) for all A compact in (X,d).
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Proof. From theorem [2.18 we only need to show that the set f(A) is sequentially
compact in (Y, o), i.e., for every sequence {f(z,)}n>1 C f(A), find a subset sequence
{@n, }r>1 of {z,}n>1 such that {f(z,,)}rk>1 converges § € f(A) in (Y, o). Since A is
compact, there exists {x,, }x>1 C {@n}n>1 such that {z,, }r>1 converges to 7 € A.
By the continuity of f, it holds that

lim  f(zn,) = f(z) € f(A).

k—o0

The proof is complete. O

Proposition 2.20.2 Assume that (X, d) is a compact metric space. Then any con-
tinuous map f: X =Y is uniformly continuous, i.e., for every € > 0, there exists
0 > 0 such that

o(f(x), fly) < € for all d(x,y) < 9.

Proof. The map f is continuous on X, i.e., for every ¢ > 0 and x € X there exists
r, > 0 such that

o(f(x), fly) < for all y € B(z,r,).
By the triangle inequality, we get

o(f(y), f(z)) < ¢ for all y, z € B(z, 7).
Set O, := B(x,7,), we have that X = J,.y O,

£
2

Lebesgue covering lemma. Assume that the metric space (X,d) is compact and

X = U Q.. Then there exists a constant 6 > 0 such that for every x € X, it holds
reX

B(z,8) C O, for some z € X .
Thus, for any =,y € X such that d(x,y) < 0, there exists z € X such that
z,y € B(z,0) C O, for some z € X .
In particular, this implies that

o(f(y) f(x)) < ¢
and this complete the proof. O

Following the same idea in Proposition [2.15.1] one can show that
Proposition 2.20.3 Assume that (X, d) is a compact metric space. Then the met-
ric space (C(X),ds) with
C(X) = {f: X = R is continuous}

and

do(f,9) = maxd(f(x),g(x))  forall f,g € C(X)

zeX
18 complete.
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2.6 Basic theorems

In this subsection, we will introduce some basic theorems.

Theorem 2.21 (Completion) For a metric space (X,d), there exists a complete
metric space (X, d) such that there exist a dense set W C X and a bijective isometry
T: X —>W,ie.,

TX) =W and d(z,y) = d(T(x),T(y)) forallx,y e X.

1. The Banach contraction principle. Given two metric space (X, d) and (Y, o),
we say that the map f: X — Y is contractive if and only if there exists 0 < ¢ < 1
such that

o(f(x), fly) < c-d(z,y) for all x,y € X .

The following holds:

Theorem 2.22 (Banach contraction principle) Let (X,d) be a complete met-
ric space and the map T : X — X is contractive. Then T has a unique fixed points
Z, 1.e.,

Proof. Since T' is contractive, we have
d(T(z), T(y)) < c-d(x,y) forall z,y € X

for some 0 < ¢ < 1. This implies that 7" has at most one fixed point. It remains to
show that T" has a fixed points.

1. Take any a € X, the sequence {z, },>¢ is constructed by
To = a, Tpr1 = T(zp) for alln > 0.
Observe that
d(xpi1, ) = d(T(2), T(xp-1)) < c-d(xy,Tm1) foralln>1.
By induction, we get
d(xpi1,2,) < " -d(a,T(a)) for alln > 0.

2. We show that {x,},>0 is Cauchy in (X, d). For any 0 <n < m € N, it holds

d(xp, xm) < - d(z, vr11) < d(a,T(a)) - - e
k=n k=n
= dte.7(@)- L= < o, 1))



Since 0 < ¢ < 1, it holds that lim, , d(a,T(a)) - = = 0. Thus, {z,}n>0 is a
Cauchy sequence.

3. Since (X,d) is complete, the Cauchy sequence {z,},>o converges to = € X.
Notice that T is continuous on X and it implies

z = lim 2, = lim T(xz,) = T(2).
n—oo n—oo
Thus, z is a unique fixed point of 7. O

Give given an open set O € R?, let g : O — R be a continuous function. Consider
the ordinary differential equation

2(t) = f(t.a(t)  forallt € (a,b),
(2.16)

ZL’(t()) = Xy.

Then, z(-) is a Carathéodory solution of (2.16) if and only if z(-) is absolutely

continuous and

z(t) = xo —I—/t f(s,x(s))ds for all t € (a,b).

Theorem 2.23 (The Picard Local Existence Theorem) Assume that
’f(tax2) - f<t7x1)| < M- ‘LE’Q o $1| fOT all (t,l’g), (taxl) €.

Then, for every (to,xo) € O, there exists an open interval I containing to on which
the ODE has a unique Carathéodory solution.

Idea of the proof. There exists a small interval I and a closed subset X; C C(I)
such that the operator T': X; — X

Tlyl(t) = o +/t f(s,y(s))ds  foralltel,

is contractive. Thus, T achieves a unique fixed point  which is the unique solution
to the ODE ([2.16]). O

2. The Arzela-Ascoli theorem. Given a metric space (X, d), a collection F of
real-valued functions f : X — R is equicontinuous at x € X if for every € > 0, there
exists 0 > 0 such that

|f(x) = f(y)] < e  forall feF,ye B(x,J).

We say that F is equicontinuous on X if it is equicontinuous at every point x € X.
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Theorem 2.24 (Arzela-Ascoli) Given a compact metric space (X,d), let { fu}n>1
be a uniformly bounded and equicontinuous sequence of real value functions on X,
1.€.,

o There exists M > 0 such that

sup |fu(x)] < M foralln €N;

zeX
o For every x € X and e > 0, there exists 0, > 0 such that

|folz) = fuly)| < ¢ for ally € B(x,0,),n € N.

Then there exists { fun, }ni>1 C {faltn>1 such that {f,, }k>1 converges uniformly to
feC(X,R), ie.,

lim |sup |f, (z)— f(z)]| = 0.

Ng—>00 zeX

Sketch of proof. 1. Since X is a compact metric space, it is separable. Thus, one
can construct a subsequence { f,,, }n,>1 € {fn}n>1 such that f,,, converges point-wise
on all of X to a real function f on X i.e.,

lim f, () = f() forallz € X .

N —r00

2. We claim that f is continuous. Fix any x € X, for every € > 0, there exists
0, > 0 such that

|frn (@) = fr(y)] < € for all n, > 1,y € B(z,6,) .

The triangle inequality implies that

[f(@) = fW)l < |fu(2) = F@)] + [ (@) = F) @) + [ (v) = F ()]
< et [fu(a) = F(@)] + [fun(y) = ()]

for all n, > 1 and y € B(z,d,). Taking ny to oo, we get
|fx) = fly)| < e forallye B(z,d,)

and it yields the continuity of f at x.

3. To complete the proof, we need to show that f,, converges uniformly to f
in C(X). Hint: Equicontinuity of {f,, },,>1, and totally boundedness of X. O

Corollary 2.25 Given a compact metric space (X, d), let F be a subset of C(X).
Then F 1s compact if F s closed, uniformly bounded and equicontinuous.
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To conclude this subsection, we will introduce the Baire category theorem.

Theorem 2.26 (Baire category) Let (X, d) be a complete metric space. The fol-
lowing holds:

(i) For any {O,}n>1 countable collections of open dense subset of X, the set

o= o
n=1
1s dense i X.

(i1) For any {F,}n,>1 countable collections of hollow subset of X, the set

F—QF,L

is hollow. (Notice that B is hollow in X if and only if X\B is dense in X)

Sketch of proof. Using De Morgan’s identity, one can show that (i) and (ii) are
equivalent. Thus, we only need to prove (i). Given zy € X and rg > 0, we need to

show that
A o.
n=1

Since O is dense in X, one has that the open set O N B(xg, o) is nonempty. This
implies that there exist 1 € X and 0 < r; < 1 such that

ﬂB(:po,r) + .

B(xl,rl) Q Ol N B(l’o,?”)

Similarly, since Oy is dense in X, one has that the open set B(zi,7m1) N Oy is
nonempty. This implies that there exist x5 € X and 0 < 5 < 1/2 such that

E([IZ’Q,T’Q) g 02 M B($1,7’1).

By induction method, one obtains a decreasing sequence of closed balls B(z,,r,)
such that

limr, = 0 and B(xp,mn) € O, for all n > 1.

n—oo

In particular, by the Cantor intersection theorem, we get

T = mg(xn,m) C ﬁ O,
n=1

n>1

and this yields

T €

ﬂ O, ﬂB({EO,T).

The proof is complete. O
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Corollary 2.27 Let (X,d) be a complete metric space and {F,},>1 a countable

collection of closed subsets of X. If U F, has nonempty interior, then there exists
n=1
no € N such that F,,, has also nonempty interior.

Proof. Assume by a contradiction that F, does not have empty interior for all
n > 1. This implies that O,, := X\ F,, is open dense subset of X for every n. Using

the Baire category theorem, we have that X'\ (U Fn> = ﬂ O, is dense in X and

n=1 n=1

it yields a contradiction.

Corollary 2.28 Let F be a family of continuous real-valued functions on a complete
metric space (X,d) that is pointwise bounded, i.e., for every x € X there exists
M, > 0 such that

|f(z)] < M, forall f € F.

Then there is a nonempty open subset O of X on which F is uniformly bounded,
1.€.,

sup |f(z)] < M forall feF

z€O
for some M > 0.

Proof. For every n > 1, consider the closed set
E, = {zeX:|f(x)]<n forall feF}

Since F is pointwise bounded, it holds that X = U E,,. By the previous corollary,
n>1
there exists a natural number ng such that E,,, contain an open ball B(zg,ry) and
this yields
sup | f(z)] < ng for all f € F.

x€B(x0,70)

The proof is complete. U

Corollary 2.29 Given a complete metric space (X,d), let (fn)n>1 be a sequence
in C(X) that converges pointwise to the real value function f. Then there exists
a dense subset D of X for which (f,)n>1 is equicontinuous and f is continuous at
each point in D.

Idea of the proof. For every n,m € N, define

1
Epm = {x e X: ‘fj(x) —fk(x)| < — for all j, k > m},
m
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we have that £}, ,, is closed in X and thus

is dense in X.

D = X\[ U 0Bum

n,meN

One shows that (f,)n>1 is equicontinuous and f is continuous at each point in D. [J

3 Banach spaces and linear operators

3.1 Normed spaces

1. Vector spaces. X is a vector space on the field R if the following holds:
(a). Addition +: X x X — X

e Tty = y+ux (commutative)
e (z+y)+z = x+(y+2) (associate)

e There exists 0 and —z such that
r+(—x) =0 and x40 = z.
(b). Multiplication by scalar: - : R x X — X

e a-(f-x) = (af) - x forall o, e R,z € X
e l-z =1 forall z € X

(c). Linear property
a-(r+y) = ar+ay and (a+f)- 2 = a-z+p-z
forall a, 8 € R,z,y € X.

Some examples. Let’s introduce here some basic vector spaces

(a). (2 = {x ={xn}tn>1 ¢ Z 20| < +oo} is a vector space over R.
n=1
(b). C([a,b]) = {f:[a,b] > R : fis continuous} is a vector space over R.

(¢). Co([a,b]) = {f € C([a,b]) : f(a) = f(b) =0} is a vector space over R.

(d). Ce([a,b]) = {f € Co([a,b]) : f has a compact support} is a vector space
over R.

The following theorem holds
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Theorem 3.1 Let X be a non-empty vector space then X has a Hamel basis, i.e.,
there exists a linear independent subset B C X such that

span(B) = {Z)‘i'ei : /\iER,eiGB,n21} = X.
i=1

2. Normed spaces. Given a vector space X, let’s consider a metric distance d on
X which has the following properties:

(P1). Invariant under a translation.
dz+z,y+2) = d(z,y).

(P2). Positively homogeneous.

(P3). Convexity. Every ball B(a,r) is convex.

The invariant under translation implies that
d(z,y) = d(z —y,0).
Thus, the metric d(-,-) can be entirely determined by
r = ||lz| = d(z,0).
Here, ||z is called norm of X.

Definition 3.2 (Normed spaces) Let X be a vector space. A norm on X is a
map x — ||z|| such that

(i). ||z|| > 0 and ||z|| = 0 if any only if v = 0;
(ii). ||a-z|| = |a| - ||z]| for all« € R and x € X;
(#i). Triangle inequality.

[z +yll < Nzl + 1yl forallz,y e X

We call (X, || -|) is a normed space.

It is clear that

Lemma 3.3 (Distance defined by a norm) Let || - | be a norm on X. Then
d(z,y) = ||z —yl for all x,y € X

is a metric distance and d satisfies (P1)-(P3).
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Proof. It is clear that

and
d(xz,y) = d(y,z) for all z,y € X.

Let’s prove the triangle inequality
d(z,y) +d(y,2) = |e—yl+ly—=|
< fle—y+y—zf = llz—z| = d=,2)
for all z,y, 2z € X.

The properties (P1) and (P2) are trivial. Let’s show that B(a,r) is convex, i.e.,
for every x,y € B(a,r), it holds

tr+ (1 —t)y € Bla,r) for all t € (0,1).
Using the triangle inequality, we estimate
[tz + (1 =yl < t-llzll+ (T =1)-[lyll < ta+(1—-t)a = a

and it yields the above inclusion. O

Let’s recall some basic notations and defitnions:

e Open ball.
Bla,r) = {z € X | [lz —a| <r};

e Closed ball.
Bla,r) = {z € X |||z —al <r};

e Sphere.
Sla,r) = {re X ||lz—al=r}

Sequences and series. A sequence {z,},>1 C X is
e bounded if there exits M > 0 such that {x,},>1 C B(0, M).

e Cauchy if for every € > 0, there exists N. > 0 such that

|z — zm|| < € for all n,m > V..

e converges to z € X if for every € > 0, there exists N. > 0 such that

e, —z|]| < € for all n > N..
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Given a sequence {z,},>1, the series

ixn = r1+xT9+ ...

n=1

n
converges to x € X if and only if its partial sum s, = Z x; converges to x.
i=1

Definition 3.4 A series Z:L‘n is absolutely convergent in (X, || - ) if and only if

n=1
Z |xn|| converges in R.
n=1
Continuity. Given two normed spaces (X, || - ||x) and (Y,]| - ||y), the function

f X — Y is continuous at zx if and only if for every € >, there exists 6 > 0 such
that

If(x) = f@Wlly < e forallflz—ylx <4

Equivalent norms. Given a vector space X, two norms ||-||; and ||-||2 are equivalent
if any only if there exists A > 1 such that

1
3l < izl < A flefly

for all z € X.

3.2 Banach space

Definition 3.5 A normed space (X, || - ||) is called Banach if it is complete, i.e.,
every Cauchy sequence {xy,}n>1 converges to x € X.

Example 1. Consider the finite-dimensional space
R" = {z = (x1,29,...,2,) | x; € R}

with Fuclidean norm

lalls = yfat+ a3+ + a2
We have that (R™, || - ||2) is a Banach space.

Example 2. On R"”, consider an alternative norm

3=

el = (2l + lwaf” + - - + [za]?)

for p > 1. Then (R™, || - ||,) is also a Banach space.
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Example 3. Given a closed interval [a, b], recalling that
C([a,b],R) = {f:[a.b] - R: fis continuous}
and

|flle = max |f(z)] for all f € C([a,b],R).

z€[a,b]

Then (C([a,b],R),] - |l«) is @ Banach space.

Proof. Given a Cauchy sequence {f,},>1 C C([a,b],R), we need to show that
{fu}n>1 converges to f € C([a,b],R).

1. It is clear that {f,},>1 is bounded in (C([a,b],R),|| - ), i-e.,

[ falle = mmé] |fulz)] < M foralln >1
re|a.

@ =
for some constant M. Thus, {f,},>1 is uniformly bounded.

2. We claim that {f,},>1 is equicontinuous on [a, b]. Given z € [a, b], for any £ > 0,
we need to find 6 > 0 such that

|ful®) = fuly)] < e forallye B(z,d),n>1. (3.1)
Since {fn}n>1 is Cauchy in C([a,b],R), || - ||oc), one can find 1 < ng € N such that

1fn = Faolloo < g for all n > g,

On the other hand, by the continuity of f;, for every i € {1,2,... ng}, there exists
0; > 0 such that

|fi(y) — fi(z)] <

We show that (3.1)) holds for 0 = minjeq12,. no} 0;- Indeed, for every n > ny and
y € B(z,¢), it holds

|fa(y) = fou(2)] < [ fao(¥) = fao (@) + 2 Ifn = frollo <

Thus, {f,}n>1 is equicontinuous on [a, b]

for all y € B(z,d;),i € {1,2,...,n0}.

Wl ™

+2-

Wl M
Wl M

3. By the Arzala-Ascoli theorem, there exists a subsequence {f,, }x>1 C {fn}n>1
which converges to f in (C([a,b],R), | - ||o). Since {f,}n>1 is Cauchy, it converges
to fin (C([a, 0], R), [ - [lso)- =

Example 4. Fixed p > 1, recalling that

gp = {x:{xn}nZI

o0
Z |z, |P < —i—oo} :
n=1
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and
1
00 P
zll, = <Z,xn,p> :
n=1

Then (¢7, || - ||,) is a Banach space.

Lemma 3.6 Let (X, || -||) be a Banach space andY C X be a subspace of X. Then
(Y|l - 1) is a Banach space if any only if Y is closed in X.

Proof. Assume that Y is closed in X. For Cauchy sequence {z,},>1 C Y C X, it

converges to z in X. Since Y is closed, one has that x € Y. Thus, {z,},>1 converges
to .z in (Y, - ).

Assume that (Y] - ||) is a Banach space. Let {x,},>1 be a sequence in Y which
converges to « € X. We have that {z,},>1 is a Cauchy sequence in Y. Thus, it
converges to y € X and it yields x = y. O

[ee]

Lemma 3.7 Let (X,|| - ||) be a Banach space. If the series an is absolutely
n=1

convergent then it converges.

Proof. For every n > 1, consider the partial sum

Sp = T1+x9+ -+,

We need to show that {s,},>1 is a Cauchy sequence in X. One has that

m
[$m = sall < D llaxll  foralln <m.
k=n+1

o0
Since the series Z x, is absolutely convergent, it holds

n=1

m
Z ekl < e for all n,m > N,
k=n+1

for some N.. This implies that
|sm — snl| < € for all n,m > N.

and {s,},>1 is a Cauchy sequence in X. Thus, {s,},>1 converges in (X, ||-|) O
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3.3 Finite dimensional normed spaces

We say that X is a finite dimensional vector space if there exists {e1, ez, ..., e,}
such that

X = Span{el,eg,...,eN} = {Z)\Z&,}/\ZER}
i=1

If {e1,e9,..., e} is linearly independent then dim(X) = n.
Lemma 3.8 A finite dimensional normed space (X, || - ||) is complete.

Proof. Assume that dim(X) = n, we have

i=1

for some linearly independent set of vectors {ej,es,...,e,}. Consider a Cauchy
sequence {xy}r>1 in (X, || - ||). For every k& > 1, one write

n
T = Z)\g) e .
i=1
Linear combination lemma. There exists a constant ¢ > 0 such that

|arer + ageg + - + apen|] > - (Jaa]| + |ag| + -+ |an]) .

We estimate

> e 3 A

1=1

|2k — 2] =

3 (0 -0)-e

In particular,

|2k — 2|

\Ag‘hxg@ < for all i € {1,2,...,n}.

C

Thus, the sequence {)\S)}kzl is Cauchy in R and

lim )\S) = X(i).

k—o00

Finally, we show that {zy}r>1 converges to 7 = > . | R - ¢;. Indeed, using the
triangle inequality, we estimate

> (0 -2 g

< Y-
=1

low -2l = Nled]
=1
< max{flea], leall, .. lleall} - D7 [ A7 = X9
i=1
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Since {/\,(f)}kzl converges to A\ for alli € {1,2,...,n}, the right hand side converges
to 0 as k tends to +oo and this complete the proof. O

As a consequence of theorem [2.18] the following holds

Corollary 3.9 (Compactness) Let (X, ||-||) be a finite dimensional normed space.
A subset M C X is compact if and only if M is closed and bounded.

The following theorem state that every norm in a finite dimensional vector space is
equivalent.

Theorem 3.10 Let X be a finite dimensional vector space. All norms in X are
equivalent.

Proof. Let || - ||y and || - || be norms in X. We need to find A > 1 such that
1
A
1. Assume that dim(X) = n. There exists n linear independent set of vectors
{e1,€e9,...,e,} such that

]| < Jlzlla < Az for all x € X. (3.2)

X = span{ej,ea,...,e,}.
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By the linear combination lemma, for any k& = 1,2, there exists \; < 0 such that

n
> Ag Z |l
i=1

..ei

k

2. For any x € X, one can write

xr = E ;- €;

for some «; € R. We estimate

n
Ayl <zl
i=1

and

n n n n
)\2'2 i < lzfl2 = Z Qe < Z il - el < Mz'z (%
i=1 i=1 i=1 =1

where M}, = maX;c(1,2..n} [|€]|x for & =1,2. This implies that

n
< D el el < My el

1 i=1 i=1

n
E ;- €;
=1

2

A2 M,
— -z < |zl < — |71l
2oy < Jolle < 32+l
Set A := max {%, %}, |} holds. O
2 1
Question. [t is known that if (X, - ||) is a finite dimensional normed space

then the closed unit ball
B(0,1) = {zeX ||z <1}
18 compact. Is the reversed side still true?

Theorem 3.11 Let (X,|| - ||) be a normed space. If B(0,1) is compact then X is
finite dimensional.

Proof. 1. Assume that B(0,1) is compact. There exists a set of N vectors
{p1,p2,...,pn} such that

N
= |J Bwi.1/2).
=1

The vector subspace
V' = span {py,pa,... PN}
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is finite dimensional and closed in X.

2. To complete the proof, we will show that
V = X.
Assume by a contradiction, there exists o € X such that zo ¢ V. Denote by
—d — inf _
r v (o) ;gv |20 — |

Since V is a finite dimensional space, one can show that r is positive and there exists
Yo € V such that

lzo —wol = dv(wo) = 7.
Set o
o= 2N« B0,1).
Hfﬁo—yoﬂ

There exists k € {1,2,..., N} such that
1
20 € B(pg,1/2) — |20 — il < 3
Observe that
To = Yo+7r-20 = (Yo+r-p)+7r-(2—pi)
Thus, the vector
yi = Yo+r-pp €V,

satisfies \
r

lzo — w1l = 7-|lz —pill < 5"
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This implies that

r = dy(zg) < g
and it yields a contradiction. O
3.4 Linear bounded operators
Given two normed spaces (X, || - ||x) and (Y,]| - ||y), consider a map

T:D(T)CX — R(T)CY.

Definition 3.12 We say that T is a linear operator if
(i). D(T) is a subspace of X
(ii). For any z,y € D(T) and «, 5 € R, it holds
Ta-z+p-y) = a-T(x)+5-T(y).
Notice that If T is linear then
(a). 0 € D(T') and T'(0) = 0;
(b). R(T) is a subspace of Y;

(c). For any o; € R and z; € X, it holds
i=1 i=1

Some examples.

Example 1. Let X = R” and Y = R. Given a unit vector v € R"™, the map
T, : X — Y, denoted by

T,(x) = (x,v) for all x € R".
is a linear operator.

Riesz representation theorem in R". Let 7' : R" — R be a linear operator.
Show that there exists a unique v € R"™ such that

T(x) = (v,x) = szxz
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for all z € R™.

Example 2. (Integration) The map T : C([a,b]) — R, denoted by

T(f) = / ft)dt  forall fe C([a,b)

is a linear operator.

Example 3. (Differentiation) The map 7' : D(T) € C([a,b]) — R(T) € C([a,b]),
denoted by
T(f) = f  forall f e C([a,b])

is a linear operator.

Example 4. (Projection) Let (R™, || - ||) be an Euclidean space and Y be a vector
subspace of Y. The projection Py : R™ — Y, denoted by

|lx — Py(x)|]| = min {|lz—y| |y€Y} for all x € X,
is a linear operator.
Proof. Assume that
Y = span {ej,es,...,en} and X = span {ej,eq,...,e,}

where ||e;|| =1 and e; L e; for all i # j. For any

n
T = E a; -e; € R,
=1

it holds

Indeed, for any

We compute that

||x—yH2 = Z(/\, o) - e + Z Q; - €
i=1 j=m+1
= > Ni—al+ Yl
=1 j=m+1
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n

2 Z ||

j=m+1
This implies that
m
Pr(z) = Y ai-e; = argmin [z —y|*.
i=1

Thus, Py is a linear operator. O

Null space. The kernel (null space) of T" is denoted by
N(T) = T7H0} = {zeD(T) | T(z)=0}.

Since T is linear, the set N'(T') is a vector space.

Lemma 3.13 Let T : D(T) — R(T) be linear. Then T is invertible if only if
N(T) = 0. Moreover, T~' : R(T) — D(T) is linear.

Proof. 1. Since T is surjective, one only needs to show that 7' is injective, i.e.,

T(x) # T(y) for all « # y.
Equivalently,
T(z) # 0 forallz#0 <«<=N(T) = T°(0) = 0.
2. T~ is linear. Indeed,
T Hoy -y +ag-1p) =

implies that
T(x) = a1 y1 + a2y
Set &y = T~ (y;) and zo = T *(yz), we have
y1 = T(x1) and yo = T(x2).

This implies that
Ty -1+ ag-x0) = T(2)

and it yields
r = Q1 T+ Qg 2.

Equivalently,
T_l(Oél YLt ys) = g T_l(yl) +az- T_l(y2)

and this complete the proof. O
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Definition 3.14 (Bounded linear operators) Let T : D(T) = X — Y be linear
operator. We say that T' is bounded if and only if

[Tloo := sup [[T(x)]| < + o0,
zll<1

Some examples.

Example 1. (Matrices as linear operators) Given n x m matrix A, the map 7T :
R™ — R"™ defined by
T(x) = [A-2"]"

is a linear bounded operator.
Example 2. For any p > 1, recalling that

r o= {x:(xn)nzl : Z |:Un|p<+oo}.

n=1
Given an arbitrary sequence A = (\,)p>1, define T': X — X such that
T(.Tl,.iljg, c. ) = ()\11’1, )\2372, N )
Two cases may occur

(i). If the sequence (A,)n>1 is bounded then 7" is bounded and

[Tloe = sup [|T(x)]| = sup|Axl.
k>1

[lz]|<1

(i) If the sequence (A,)n>1 is unbounded then 7" is unbounded.

Example 3. Consider the normed space
X = C((0,1),R) = {f:(0,1) - R: f is continuous and bounded}
and
Ifl = sup [f(?)]
z€(0,1)
The differential operator A(f) = f’ is linear but not bounded. Indeed, let
fr(z) = sin(kmrz) z € (0,1).

We have
A(f)(z) = fi(z) = km-cos(krz) z € (0,1).
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A direct computation yields
Ifill =1 and  [JA(f)] = k7.

Thus,

sup [JA(f) = + o0
Irl<t

Lemma 3.15 Let T : X — Y be a linear bounded operator. Then
IT@)ly < Tlo-[lzllx  forallze X,

and

T
Tl = swp [T@Iy = sup L@y
lallx=1 sex\foy  llzllx

Theorem 3.16 (Linear operators in finite dimensional spaces) Let (X, ||| x)
and (Y| - |ly) be normed spaces with dim(X) = n. Then a linear operator T :
X — Y s bounded.

Proof. Assume that
X = span {ej, e, ..., e,}

where {eq, e, ..., e,} is linearly independent,

For any x € X, it holds

Since T is linear, we estimate

IT(@)lly =

St - T(e)
=1

n
< M- af|
=1

Y

where M = max;cy, 1 7'(es)]|-

On the other hand, by the linear combination lemma, there exists a constant A such

such that
n
i=1

> /\-Z|ai| for all a; € R.
X =1
This implies that

M
1T(x)|ly < S ]| x for all z € X.

Thus, T is bounded. O
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Theorem 3.17 (Continuity and boundedness) Let T': X — Y be a linear op-
erator. Then T is continuous at O if and only if T is bounded.

Proof. 1. Assume that 7" is bounded. We have
IT@) < |Tlle- 2] forall z € X,
The linearity of 7" implies that
IT(x) =TI = T@ =yl < [Tl llz -yl forallz,yeX.
Thus, T is continuous.
2. Assume that 7T is continuous at 0. There exists o > 0 such that
|T(x)]] <1 for all z € B(0, ).
Since B(0,8) =6 - B(0, 1), we obtain that

1 _
IT(@)| < =  forallz € B(0,1).

=%

Thus,

1
[T]lee = sup [T(z)] < =

x€B(0,1)

and 7' is bounded. O

[«9)

Corollary 3.18 Let T : X — Y be a linear operator. Then the followings hold
o [fT is continuous at xo then T is continuous on X.

o [f T is a bounded operator then the null set N(T) = T-'({0}) is a closed
vector space in X.

Given two normed space (X, || - ||x) and (Y, ] - ||y), denote by
B(X,Y) = {T: X — Y | Tis a bounded linear operator}

and
[Tl = sup ||T(z)].

=<1

It is easy to show that (B(X, Y), |- ||oo) is normed vector space.

Theorem 3.19 (Completeness) Assume that (Y,||-||y) is a Banach space. Then
(B(X,Y),|l - ll) is a Banach space.
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Proof. Let {T,,},>1 be a Cauchy sequence in (B(X,Y),]| - ||). We need to find
T € B(X,Y) such that
llm T, — Tl =

1. For any ¢ > 0, there exists V. > 0 such that

T, — Thlloo = sup ||Tn(z) —Tn(z)|]| < e for all n,m > N..
llzll=1

In particular, for every x € S(0, 1), the sequence {7, (z)},>1 is a Cauchy sequence
in (Y, - |ly)- Since (Y, || - ||y) is complete, it holds
lim T,(z) = y:=T(x).

n—oo

The map T is define on S(0,1). We extend the map T to X by

T0) =0 and  T(x) = ||z| - T(” H) for all x € X\{0}.

It is clear that for all x € X
lim T,(z) = |- lim T, ( ) - ||x||-T(i> = T(x).  (3.3)
n—o0 [z x

2. We claim that T' € B(X,Y).

e T is linear. Indeed, for any x1, x5 € X and ay, as € R, it holds

T(oiry + agzs) = lim T,(aqzy + agxs) = lim [ag - T (1) + ag - T(x9)]

n—oQ n—oo

= op- lim T(z1)+ az - 7}1_)1210 T(xe) = ay-T(x1) + ag - T(z2).

n—0o0

e Tisbounded. Indeed, since {T},},>1 is a Cauchy sequence in (B(X,Y),]|"|l«),
it is bounded, i.e. there exists M > 0 such that

ITullee < M foralln>1
Thus, for any x € X, it holds
IT@)] = lm [T < M-l
and it yields || T < M.
3. To complete the proof, we show that T}, converges to T in (B(X,Y),]| - [l«), i.e.

llm T, — Tl =
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For every ¢ > 0, find N. > 0 such that

sup || T(z) —T(z)|| < ¢ for all n > N..

[Jz]|=1
Since {T},},>1 is Cauchy in (B(X,Y),| - ||«), there exists N. > 0 such that
|10 — Thllee < € for all n,m > ..
Thus, for every x € S(0,1), it holds
[Tn(z) = T()| < NTul2) = T (@) + 1T () = T(2)]]
< T = Tonlloo + 1T () = T(2)]
< e+ ||Tn(x) = T(x)| for all n,m > N..
Taking m to +oo, we get
|Tn(z) = T(x)| < ¢ for all z € S(0,1),n > N,

and it yields
1T — Tl < € for all n > N..

O

Corollary 3.20 Given (X, ||-||) a normed space, the normed space (B(X,R), || |/c)
1s Banach.

3.5 Fundamental theorems

1. The uniform boundedness principle. Let (X,| - |[x) and (V.| - [|y) be
normed spaces with (X, || - ||x) complete. Denote by

B(X,Y) = {T:X — Y | T is alinear bounded operator} .

the set of all linear bounded operators.

Theorem 3.21 (Banach-Steinhaus) Let F C B(X,Y) be any subset of bounded
linear operators. Assume that for any x € X, there exists M, > 0 such that

sup [T(x)ly < M.
TeF

Then F is uniformly bounded in B(X,Y'), i.e., there exists a constant M > 0 such
that

sup ||T|ee < M.

TeF
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Proof. The proof is divided into several steps:

1. Observe that

T(xo)lly + K
sup  [[T'(@)ly < K — 1T < 17" (zo)lly '
xGB(mO,r) r
Hence, if there exists ng, 7o > 0 and xg € X such that
I1T(x)lly < no for all x € B(xg, 1), T € F, (3.4)
then . . y
sup [|[T|ee < M := sup 17 (zo)[ly + Ko < z0o +7’L0.
Ter TeF To ro

For any n € N, consider the set
Sy = {ze X ||T(x)|ly >n forsomeT € F}.

If there exists ny € N such that S, is not dense in X then there exists zo € X and
ro > 0 such that

B(Ig,?”o) mSnO = g
and this yields (3.4)).
2. Assume that S, is dense for every n € N. Observe that the set

S, = {zeT(Y\B(0,n)) forsomeT € F}

= |J 77'("\B(0,n))

TeF

is open. Using Baire Category theorem, the set

S = ﬂ S,, is dense in X.

n=1

In particular, S is non-empty. Let £ € S = ﬂ S,. We have that for every n > 1,

n=1
there exists T, € F such that ||T,,(z)||y > n. This implies that

sup [T(z)]ly = sup [|[Tn(Z)]y = +o00
TeF n>1
and it yields a contradiction. O

53



Corollary 3.22 (Continuity of the point-wise limit) Let A, C B(X,Y) be such
that
lim A,(x) = A(z) forallz € X.

n—oo

Then A is a bounded linear operator and

[Allee < sup |[Aplee < oo
neN

2. The open mapping theorem. Given (X, | - | x) and (Y, - ||y) two normed
spaces.

Definition 3.23 We say that the function f : X — 'Y s open if and only if
f(U) is open in Y for every open U in X.
It is easy to show that f is open if and only if for every x € X and r > 0, it holds
f(Bx(z,7)) 2 By(f(x),0)
for some 6 > 0.

Theorem 3.24 (Open mapping theorem) Assume that (X, || -||x) and (Y,]-||)
are Banach spaces. Let A : X — 'Y be linear, bounded, and surjective (A(X) =Y ).
Then the map A is open

Proof. By the linear property of A,
A(Bx(z,r)) = A(z)+7r-A(Bx(0,1)),
we need to show that there exists o > 0 such that
By (0,0) € A(Bx(0,1)).

1. Let’s first show that
By(0,61) € A(Bx(0,1))

for some ; > 0. Observe that
1 1
By (0,01) = 5 By (yo, 61) + 5 By (=0, o)
for every yo € Y. Thus, if we can show that
By (y0,00) € A(Bx(0,1))
then by the symmetry of A(Bx(0,1)), we have

By (=y0,%) € A(Bx(0,1))
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and the convexity of A(Bx(0,1)) yields

1 1 e —
By (0,01) = 5 By (y0,01) + R By (—yo0,00) € A(Bx(0,1)).

Therefore, one only needs to show that A(Bx(0,1)) has a nonempty interior.

2. Assume by a contradiction that A(Bx(0,1)) has empty interior. It is clear
that
ABx(0,m) = n-A(Bx(0,1))

has also empty interior for every n > 1. Thus, the set
F, = Y\A(Bx(0,n))

is open and dense in Y. By Barie category theory, the set

F:Flen

is dense in X. In particular, F' is nonempty. On the other hand, since A(X) =Y,
we have

F:ijn:Y\

U A(B(O,n))] = Y\A(X) =2
n=1
and it yields a contradiction.

3. We already showed that A(Bx(0,1)) contains an open ball By (0,d;) for some
01 > 0. To conclude the proof, let’s show that

By (0,61/2) © A(Bx(0,1)).
Given any y € B(0,6;/2), we want to find a sequence s,, € B(0,1) such that

lim A(s,) = ¢.

n—oo

How to construct {s,},>; The idea is to find

n
Sp — E ZT;
=1

such that
o ||| <27 foralli>1,

o |7 — A(sn)]| <2716, for all n > 1.
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In this case, one can see that {s,},>1 is a Cauchy sequence and thus converges to
s € B(0,1). Thus,

7 = lim A(s,) = A(3) € A(Bx(0,1)).

n—oo

4. To complete the proof, let us construct {x, },>1. By the linear property of A, we
have that -
By (0,27"01) € A(Bx(0,27")) for all n > 1.

For n = 1, we have B
y € By(0,6,/2) € A(Bx(0,27h).

Pick 7; € B(0,27') such that
71 =7 — A1) € By(0,27%5)).
For n = 2, we have
71 € By(0,27%5) C A(Bx(0,27%5))).
Pick 75 € Bx(0,272) such that
Uo =11 — Mx) € By(0,276))

and this yields
17— A1) = A(m)|| = lysll < 272 -4
Assume that we can construct {xy,zs,...,z,} such that

o1 = g—A(an) € By(0,27V5))  and o <27 forallieT,n.

i=1

We have B
Jns1 = € By(0,27"Y5) € A(Bx(0,2- D)),

and there exists z,,1 € Bx(0,2-(+1)) such that

n+1

D1 = §— Y Alx:) € By(0,275)).

i=1

The proof is complete. O

Corollary 3.25 If X,Y are Banach and A : X — Y is continuous, linear, and
bijective. Then A=':Y — X is a linear bounded operator.
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2. The closed graph theorem. Given (X, || - ||x) and (Y, || - ||y) Banach spaces,
the product space
XxY = {(z,y) |zeX,yeY}

with
@)l = [l + [yl
is also a Banach space.

Definition 3.26 Let A : Dom(A) C X — Y be a linear operator. We say that A is
closed is the graph of A

Graph(A) = {(z,T(x)) | x € Dom(T)}
is closed in X X Y.

From the definition, one can see that A is closed if any only if for every {z, }n,>1 C
Dom(A), if

lim z, = x and lim T(x,) = y
n—oo n—oo

then
x € Dom(A) and T(x) = y.

It is clear that if A is continuous then A is closed.

Theorem 3.27 Let (X, | - ||x) and (Y, | - ||y) be Banach spaces. If T : X — Y s
a closed linear operator with Dom(T') = X then T is bounded.

Proof. Since T is a closed linear operator, the graph of T'
I' := Graph(T) = {(z,T(z)) : z € X}

is a closed vector subspace in X x Y. Since X x Y is a Banach space, (I',] - ) is
also a Banach space. Consider the following projections

my: ' —= X and my:I'—=Y
defined by
wx(z,T(z)) = = and my(x,T(x)) = T(x) for all z € X.
One can see that both mx and 7y are linear bounded operators. Moreover,
T(x) = my oy () for all z € X.

Thus, T is continuous if the linear map

e D= X
is continuous. Since (I', || - ||) and (X, || - ||x) are Banach spaces and

x X — T
is linear, bounded, and surjective, the corollary implies that 7= : I' — X is
continuous. O
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3.6 Hilbert spaces

In the Euclidean space R", the inner product

(z,y) = Z ZilYi
i=1

is useful in many ways:
(i). Define the Euclidian norm;

(ii) Determine the perpendicular spaces and projections. Moreover, given a set

{v1,v9,...,v,} of mutually orthogonal vectors with ||v;|| = 1, for every x € R",
it holds

r = Z%’Ui with a; = (z,v;) for all i € 1,n.
i=1
(iii) (Riesz representation formula) For any linear operator ¢ : R" — R, there

exists a unique v € R™ such that

o(x) = (v,x) for all z € R™;

iv) Symmetric operators A : R" — R", i.e.,
y

(Az,y) = (z,Ay) for all z,y € R™;

(v) Positive operator A : R" — R" i.e.,

(Az,z) > 0  forall z € R™

Goal: We would like to extend these properties to infinite-dimensional normed
vector spaces.

3.6.1 Spaces with inner product.

Definition 3.28 Let H be a vector space over R. An inner product on H is a
symmetric bilinear map (-,-) : H x H — R such that the following holds

(i) (x,z) >0 and (x,z) =0 if any only if x = 0;

(i) (z,y) = (y,x) for all z,y € H;
(iii) For all z,y,z € H and o, B € R, it holds

<Oéflf—|—5y,2> = OJ(ZE,Z>—|—6<y,Z>
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Examples:

(a). The ¢ space

2 — {;z: = {zn}n>1 | in < +oo} :
n=1

with -
(x,y) = Zmnyn for all x,y € (2.
n=1

(b). Given a < b, recalling that
C(la,b]) = {f:]a,b] = R | f is continuous},
we define an inner product on C([a,b])

(f.9) = / f(@)g(@)dz  for all f,g € C([a,b]).

Now let us denote by

||| = /(z,z) for all z € H.
It is clear that
tz]] = |t| - ||z]], lz|| > 0 and |lz|| = 0 if and only if = = 0.
Moreover, we also have
le+yllP+llz—yl” = (@+yz+y)+@—y,z—y)
= 2z, 2) +2(y,y) = 2- (=[] + ylI*) -
To verify that (H,| - ||) is a normed space, we need to prove the basic triangle
inequality

le+yll < [lell + 1yl forallz,yc H.

Theorem 3.29 (Basic inequalities) Given the vector space H and its inner prod-
uct (-,-). The followings hold

(i) Cauchy-Schwarz’s inequality
[z o) <zl - flyll-

(i) Minkowski’s inequality
[z +yll < llzll + 11yl
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Proof. Given z,y € X, it holds
(x+ My, z+ Ay) > 0 for all A € R.

Equivalently,
yll>- A2 +2- (z,9) - A+ ||z|*> forall \eR

and this implies that
(@, y)* = |l lyll* < 0.

The proof of (i) is complete.

(ii). Using the Cauchy-Schwarz’s inequality, we estimate

lz+yl> = @+y,z+y) = [|z]*+2(x,y) + |y|°
< P+ 2llz)llyl + vll? = [zl + [ly]l]?

and it yields (ii). O

Definition 3.30 The wvector space H with inner product (-,-) is called a Hilbert
space if it is complete.

We are going to study deeper into the structure of Hilbert space. Given S C H, the
following set

span(S) = {chxl | ci e R,z € S;n > 1}
i=1
is a subspace of H. We say that S s total if

span(S) = H.
For any x,y € H, we say that x and y are orthogonal, denote by x L y, if
(z,y) = 0.
The following set
St ={yeH|yLlxr forallzcS}
is called the orthogonal space of S.

Theorem 3.31 (Perpendicular projection) Let H be a Hilbert space and V' be
a closed vector subspace of H. The following holds

(i) V*+ is a complement of V in H, i.e.,

H=VaV:
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(i) Ift =y +z fory €V and z € V* then y is a unique point in V such that
e =yl = dv(z) = min{[jz —w| [ weV},
and z is a unique point in VL such that
|z =z = dyi(z) = min{flz —w| |weV}

Define
Py(z) = vy and Py o= z.

(iii) The maps Py(-) : H — V and Py1 : X — V* are linear bounded operators
with norms < 1.

Answer. The proof is divided into several steps:
1. Let x € X. Then there exists a unique y € V such that
e —yll = dy(x) = inf [z .
Existence. By the definition, there exists a sequence {y, },>1 in V such that
T -yl = dv(a).

We show that {y,},>1 is a Cauchy sequence. Indeed, by the convexity of V, we
estimate

Yn + Ym ||?
lvm = vl = 20w = yall? + 2z = g = 4|0 = 220

2]z = yull* + 2]z — yul* — 4y (2)

v

Since the right hand side tends to 0 as n,m — oo, one has that {y, }»>1 is a Cauchy
sequence. By the closeness of V', the sequence {y,},>1 converges toy € V.

Uniqueness. Assume that there are g, 7> € V such that

e =il = llz =l = dv(z).
This implies that
o _ _ U1 + Yo ||?
5=l = 2o =gl + 2o — gl — 4||o - 22
S 2dv($)—|—2dv(5)—4dv($) =0

and it yields ;1 = 7.
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Lemma 3.32 For K closed and convex set of H and x € X, there exists a unique
y such that

|z —yl| = dv(z).
2. Let Py : H — V be such that
|lx — Py(x)] = dv(z) for all z € H.

For any x € H, we set
Pyi(z) == z— Py(x).

We show that
Pvl (:U) - VJ_.

Indeed, for any v € V, let’s consider the smooth function f, : R — R such that
fut) = [lz = (Pv(z) + to)|?
It is clear that f,(0) = dy(x) and f,(t) > d%(z). This implies that

d

SR =0

and it yields
(r — Py(x),v) = 0.

Therefore, the map Py : H — V1 satisfies
r = Py(xz)+ Pyi(x) for all x € H.
One can easily show that V NV’ =0 and it yields
H=VaV.
To complete (i) and (ii), we show that
|z — Prill = dyi() for all z € H. (3.5)
By the definition of Py, we have that
(x — Pyi(z),w) = (Py(x),w)y = 0 for all w € V=
This implies that
|z = Prt(@)|? = flo =2l = le = Pro(@)|* < Jlo—2* forallze V"

and it yields (3.5)).
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4. We show that the map Py : H — V is linear. Indeed, if y; = Py(x;) for
t = 1,2 then for any given «; € R, it holds

a1y + azys € V.
Since a;(x; — y;) € V* for all i = 1,2, it holds that
(121 + aoy) — (aqyy + agys) € V*
and it yields
Py(ary + agxs) = aayr + apyp = Py (r1) + aPy(z2).
Thus, Py : H — V and Py. : H — V* are linear. Finally,
1Py (@)II* + 1 Pys (@) = |l]?

one has that
[Py (@)[], [ Pyo(@)]] < |z

Therefore, P, and P,1 are bounded with norm < 1. O

Corollary 3.33 IfV is a closed subspace of the Hilbert space H then
v =V
Proof. For a given z € V, by the definition of V* it holds
zlv forallveV:h
This implies that z € (VL)L. Thus,
vVc (vh.
To complete the proof, we show that
reV  forallze (VY.
For a given = € (VL)L, it holds
xlw for all v € V*.
By the projection theorem, we have
Pyi(x) = v— Py(x) € V.

Thus,
2
[Pvi(@)|]” = (x, Pyi(z)) — (Pv(z), Pre(z)) = 0
and this implies that

Pyi(z) =0 = reV
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Definition 3.34 (Orthonormal sets) We say that E C H is orthonormal if
(v,w)y = 0 and |lvl| = |lw|]| =1 forallv#weE.
A natural question is that for any given a set
S = {v,v,...,Us,...} C H,
can one construct an orthonormal set
E = {e,es,....€n,...}
such that span(S) = span(£)?

Gram-Schmdit orthogonalization. The set E is constructed by induction. In-
deed, we first set

e = HU—I” so that llex]] = 1, Vi := span(e;) = span(v).
U1
Assume that ey, es, ..., e, have been constructed such that

leil| = 1, (€i,€5) forall i #j € {1,2,...,n},

and
Vn = Spa’n{eh €2,..., en} - Span{vl’ U2y - 7,Un}'

The unit vector e, is defined by

Un41 — PV(UnH)

e = .
n+1 [Vns1 = Py (vny)||
It is clear that
llentill = 1 and eny1 L V.
This implies that {ej,es,...,€,41} is orthonormal and
span{ey, ea, ..., enr1} = span{vy,va, ..., Vpi1}

Remark. The general formula of e, is

n—1
Up — Z(vna ek) * €k
k=1

e, = = for allm > 1.

n—1
an - Z(Un, €k> €k

k=1
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Let E ={ey,eq,...,e,} be orthonormal. Then for any = € span E, it holds

n

r = Z<ZE,€¢>'€¢-

i=1
Can we extend this to the infinite sum?

Theorem 3.35 Let S = {ej,es,...,en,...} be a orthonormal set in a Hilbert space
H. Assume that S is complete, i.e.,

H = span{ej, e, ... en,...}.

Then, for every x € H, it holds

r = Z Oy - €, with a, = (z,e,),
n=1
and -
|z]|? = Z a?. [Parseval’sidentity]
n=1

Proof. 1. For every n > 1, we define a closed vector subspace of H

V. = span {ej,ea, ..., €,}.

By the projection theorem, for any given x € H, it holds
Py (z) = ZO"' - e with a; = (x,e) for all i € {1,2,...,n},
i=1

and

n
1Py, (@)l = ) af < Jalf.
i=1

In particular, the sequence (Py,(z)) is a Cauchy sequence and thus converges to
5€ H.

2. To complete the proof, we will show that s = z. For every k£ > 1, one has
(x — 8, ex) = nh_)rglo (x — Py, (2),ex) = 0
and this implies that
r—s L S — r—3§ L span(S) = H.

Thus, x — § = 0 and this complete the proof. O
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Fourier series. Given ¢ > 0, denote by

L2(—0,0) = {f:(—f,é)—ﬂ&’ /Z|f(:v)|2 dx}.

The following holds:

Lemma 3.36 The trigonometric set

1 1 . /mmnx 1 mmnx
F = {2_\/?%.51 ( ),\/zcos< ) ‘mzl,Z,....}

is a orthonormal complete in L*(—(, ().

From the above Theorem, it holds that for any function f € L2(—/,¢), its Fourier
series is

~ §O+Z<am cos —l—bm-sinm;x)

where a,, and b,, are Fourier coefficients and computed by

¢
a, = / f(z) - cos mre
tJ
by = /éf() in g
=7, z) - sin —;

3.6.2 Linear functionals on Hilbert spaces

| =

dx

and

| =

X

forallm=20,1,2,....

Given a Hilbert space H, the dual space of H is denoted by
H* = {f: H — R | f is linear continuous operator}.

For any x € H, let f, : H — R be such that

f(y) = (2,9) for all y € H.

It is easy to see that f, is linear and bounded with

[felloo = [l]]-

In particular, this implies that f, is in H*.
Question: Is this true that H* = {f, : x € H}?
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Theorem 3.37 (Riesz representation) Let H be a Hilbert space and letT : H —
R be a linear bounded operator. Then there exists a unique vy € H such that

T(x) = (vr,x) for all x € H.
Proof. Since T is linear and continuous, it holds that
Vi=ker(T) = {z:T(x) =0}
is a closed subspace of H. By the projection theorem, it holds
H=VaV-

If V.= H then T(z) = 0 for every x € H. In this case, one have that vy = 0.
Otherwise, there exists xg € H such that T'(zg) # 0. For every x € H, we can write

T(x) N h T(x)
r = ‘xo+ T wi ry = |z — ~xg | -
T(zo) 0 1% 1% T(z0) 0
By the linear property of T', we have

o) = (e- 2D 2} <o

This implies that
zy € Ker(T) and  H = Ker(T) + span{x}.
Since Ker(T') Nspan{zy} = {0}, we then have
H = Ker(T) @ span(zg) = V @ span(x).
Hence, V* is one dimensional vector space and
VvVt = span{vg} for some 0 # vy € H.

Let us now consider the vector

T(UO) n
0 = e v
A= e

such that
T(vr) = (vp,vr) and V+ = span{vr}.

We are going to show that
T(x) = (vr,x) for all x € H.

For any x € H, we can write
T = VUp +Q-vUp

for v, € V and a € R. By the linear property of 7', it holds
T(x) = T(vy+a-vp) = Twe)+a-T(vr) = aT(vr) = alvp,vr) = (x,vr).

The uniqueness of vy is almost straight forward. O
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Corollary 3.38 For every Hilbert space H, it holds
H* ~ H.
Proof. Consider the map A : H — H* such that

Azx) = fo for all z € H.

One has that A is linear and bounded with ||A(x)|| = ||z||. In particular, A is
injective. On the other hand, from the above theorem, it holds

AN(H) = H".
Thus, A is bijective and [|A(z)|| = ||=]|. O

From the above corollary, one has the following definition

Definition 3.39 (Weak convergence) A sequence{z,},>1 C H weakly converges
tox € H, denote by x,, — x, if

lim (z,,v) = (z,v) for allv e H.

n—oo

Example 1. Let H be a Hilbert space such that

H = span{ej,eq, ... en,...}
where {ej,es,...,€,,...} is an orthonormal set, i.e.,
leil] = 1 and (ei,e;) = 0 for all 7 # j.
Then, the sequence {e, },>1 does not converge in H but converges weakly to 0.
Proof. It is clear that
len —em]] = 1 for all n # m.

Thus, {e,},>1 does not converge in H. However, for every v € H, it holds that

00
v = E Qg €;.
n=1

Therefore

lim (e,,v) = lima, = 0,

and {e, },>1 converges weakly to 0.

Basic properties: The followings hold
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(i). If z, — « then z, — .
(ii). If z, — x then x,, converges to z.

liminf ||z,| > |-
n—oo

(iii). If x, — x and lim,,_, ||z,|| = ||z|| then

Proof. (ii). Assume that x,, — z, we have that
lim (z,,z) = (z,z) = |z|*
n—so0

Since [(xn, )| < ||| - ||z], it holds

liminf |z, - [lz| > f]*
n—oo

and it yields (ii).

(iii). Assume that z, — x and lim, ., ||z,|| = ||z]. We have
lim |z, —z|* = lm(z, —z,2,—2) = lm [[|z,]* + [|2]]* — 2(z, z)]
n—o00 n— o0 n—0o0

= ll=l* + ll=l* = 2(z, ) = 0
and it yields (iii). O

Theorem 3.40 Let H be a Hilbert space and let {x, },>1 be a sequence in the Hilbert
space H. Then the followings hold:

(i) If x,, converges weakly to x then (,)n>1 i bounded.

(11) If (1)n>1 is bounded then there exists a subsequence {xy,, }r>1 which converges
weakly to x € H.

Proof. 1. Let us first prove (i). For every n > 1, we define a linear bounded
operator ¢, : H — R such that

on(v) = (zp,0) for allv e H.

Since (x,,)n>1 converges weakly to x then the sequence of linear bounded operators
(¢n)n>1 converges point-wise to the linear bounded operator ¢ : H — R defined by

e(v) = (x,v) for all v € H.

As a consequence of the uniform boundedness principle, we have that the sequence
of linear bounded operators (¢,),>1 is bounded and thus

sup |2,/ = sup lonlle < M
n>1 n>1

69



for some constant M > 0.

2. Consider a closed and separable vector subspace X = span{zi,zs,...,Zy,...}
of H. For every n > 1, let ¢, : X — R be a bounded linear operator such that

on(v) = (zp,0) for all v € X.
Since {x,},>1 is bounded, one has that

lenllo = sup  [(zn,v)] = [lan]| < M foralln >1
[lv||=1,veX

for some M > 0. Using the Banach-Alaoglu’s theorem, there exist a subsequence
(@np>1)p>, and ¢ € X* such that

lim ¢, (v) = ¢(v) for all v € X.

k—oo

By the Riesz representation theorem, there exists a unique z € X such that
e(v) = (z,v) forallv e X
3. Finally, we show that (x,, )r>1 converges weakly to x, i.e.,

lim (z,,,y) = (z,y) for all y € H.

k—00

For any given y € H, we have that

y = Px(y)+Pxi(y) € XX .

Thus,
—00 k—o0
= lim (2, Px(v)) = (2. Px()) = (o Px(y) + Pys(v)
= (z,y)
and this complete the proof. O

We now show that a compact operator maps weakly convergent sequences into
strongly convergent ones.

Definition 3.41 Given two normed spaces (X, || - ||x) and (Y,|| - ||y), the map f :
X =Y s compact if and only if

f(K) is compact for every bounded set K.

The following holds:
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Lemma 3.42 Assume that (Y.|| - |ly) is complete. Let {T,, : X — Y},>1 be a
sequence of linear bounded and compact operators such that

lim ||T, — T = 0
n—oo

Then T is compact.

Proof. It is clear that T is linear and bounded. Thus, the map T is compact if the
set T'(B(0,1)) is compact. Since Y is complete and T'(B(0, 1)) is closed in (Y, || - ||y),
it is sufficiently to prove that

T(B(0,1)) is totally bounded.
Given € > 0, there exists N, > 0 such that

T — T < for all n > N,

€
2
and it yields

T(B(0,1)) c T,(B(0,1)) + B(0,g/2) for all n > N..

On the other hand, since T}, is compact, the set T, (B(0, 1)) is compact . Thus

M,
This implies that

T(B(0,1)) U By (y}',e/2) + B(0,¢/2) U By (y}") for all n > N,

=1

and it complete the proof. O

Proposition 3.42.1 Given a Hilbert space H, let A : H — H be a linear bounded
and compact operator. If x, is weakly convergent to x then

lim A(z,) = A(x).

n—0o0

Proof. Consider a subsequence (x,)nes, Of (z,)n>1, we show that there exists
subsequence (z,)nes, with Jo C J; such that

lim ||A(z,) — Au(z)]] = 0.

Jodn—o0

From Theorem [3.40} the sequence (x,),ecy, is bounded by M, i.e., ||x,|| < M for
all z € J;. Since A is a compact operator, it holds that there exists a subsequence
(Zn)nes, such that

lim A(z,) =9 for some y € H.

Jodn—o0
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To complete the proof, we need to show that = A(x). By the Riesz representation
theorem, calling A* the adjoint operator of A, i.e.,

(A (z),y) = (z,A(y)) forallz,ye H.
One has that

lim (v, A(z,) — A(z)) = lim (A*(v),z, —x) = 0 for all v € H.

n—0o0 n—oo

Thus, (A(z,,))ner, weakly converges to A(z) and thus A(z) = y. O

3.7 Positive definite operators

Consider the system of linear equations
Ax = b, A e M, b e R".

One condition which guarantees the existence and uniqueness of solutions is that
A be strictly positive definite, i.e., (Az,x) > 0 for all x € R"\{0}. Indeed, in this
case, the matrix A must have full rank and the unique solution is # = A~'b. In this
subsection, we aim to extend this result to an infinite-dimensional Hilbert space H.

Definition 3.43 A linear operator A : H — H 1is strictly positive definition if there
exists B > 0 such that

(Au,u) > B+ ||lul? for allu e H.
It is clear that if A is linear and strictly positive then A is one-to-one and
|Aul| > B ||ull for all u € H.

Therefore, in addition if A is surjective then its inverse A=' : H — H is linear and
bounded with

1
A7 = 5
p
A natural question is whether a strictly position linear operator is surjective?

Theorem 3.44 Given a Hilbert space, let A : H — H be a bounded linear operator
which is strictly positive definite. Then, A is bijective and its inverse A~ : H — H
18 a linear bounded operator.

Proof. It is known that A is one-to-one and

|Aul| > B - ||ull for all u € H. (3.6)
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1. We claim that Range(A) is a closed vector subspace. Indeed, given a sequence
(vn)n>1 € Range(A) which converges to v € H, we show that v € Range(A). By
assumption, we have

v, = Au, and lim A(u,) = wv.
n—oo

In particular, (v,),>1 is a Cauchy sequence and ({3.6) implies that (u,),>1 is also a
Cauchy sequence. Thus, (uy,),>1 converges to v € H and the continuity of A yields
v = A(u) € Range(A).

2. By Theorem |3.31] we can write
H = Range(A) @ [Range(A)]*.
If [Range(A)]* # () then there exists a unique vector w € [Range(A)]* and thus
B llw? < (Aw,w) = 0
and this yields a contradiction. Hence, [Range(A)]* = 0 and Range(A) = H which

means that A is surjective. O

Theorem 3.45 (Lax-Milgram) Given a Hilbert space, let B : H x H — R be a
continuous bilinear functionals, i.e.,

B(ayuy + asug, bjvy + bovy) = Z a;b; B(u;, v;)
i,j€{1,2}

and
B(u,v) < C-|ul - ||v] for allu,v e H

for some constant C' > 0. In addition, assume that B is strictly positive definite,
i.e., there exists 5 > 0 such that

Blu,u] > B-|ul? forallu e H
Then, for every f € H, there exists a unique uy € H such that
Blug,v] = (f,v) for allv e H.

Moreover,

lus|l < % forall f € H.

Proof. Fixed u € H, the map v — B(u,v) is linear bounded operator on H. Thus,
by Riesz representation theorem, there exists a unique vector A(u) € H such that

B(u,v) = (A(u),v) for all v € H.
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It is clear that A(u) a linear bounded operator with || Al|,, < C' since

AW AW _ BluAd _
M= T = Jagp = @l foraltezo

Moreover,
(A(u),u) = B(u,u) > B-|ul? forall u € H

proving that A is strictly positive definition. Applying the previous Theorem, we

obtain that A is bijective and its inverse is a linear bounded operator with ||Al|s <

1
3 Thus, for every f € H, the unique vector uy = A~1(f) satisfies

Bluys,v] = (A(A7Y(f)),v) = (f,v) forallve H

and the proof is complete. O

4 Duality and weak convergence in Banach space
4.1 Dual spaces
Let (X, || -|) be a normed space. The dual space of X is defined by

X' = {f eX*:fis continuous}

with X* = {f : X — R : f is linear}. It is clear that both X* and X* are vector
spaces.

Lemma 4.1 Assume that dim(X) =n < co. Then X* = X* and
dim(X*) = dim(X?*) = n.

Proof. Since dim(X) = n < oo, every linear map f : X — R is continuous and this
implies that X* = X*. Assume that

X = span {ej,es,...,e,}

where {eq, ey, ...,e,} C X are linearly independent. For every ¢ € {1,2,...,n}, we
consider the linear function f; : X — R such that

file;) = 1 and file;) =0 for all j # 1.
The set {f1, f2, ..., fu} is linearly independent. Thus, we now prove that

XF = span {fi, for. ... fu}-
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For a given f € X* we set 3; = f(e;) foralli € {1,2,...,n}. For any v = Zai-ei,

it holds that

=1

f) = f(Za) - Za (e
= Yo fle) = 3B flae) = 306 Al
Thus, : h h
) = 3 4 fe)  forallec X,
it yields dim(X*) = n. h O

Remark 4.2 If dim(X) = n then the map T : X — X* such that

n

T(x) = Z a;fi for all x = Xn:aiei
i=1

i=1

18 linear, bounded, and bijective.

Definition 4.3 (Isomorphism) Given two normed space (X, ||| x) and (Y, ||-|lv),
we say that X is isomorphic with Y, denote by X ~Y , if any only if there exists a
bijective isometric linear operator T’ : X —'Y, i.e.,

IT@)ly = llzllx  forallzeX.

Some basic examples.

Examples 1. Given n € Z™, it holds

[R"]* ~ R™.

Proof. Assume that

R™ = {ey,eq,....en}.

Consider the linear function f; : X — R such that

files) =1 and file;) =0 for all j # 1.

Let T : R™ — [R"]* be such that

Tlx] = i@i‘fi for allx:iai~ei.
i=1 i=1
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One easily see that T is bijective and linear operator. It remains to show that T is
isometric. For any given = )" | o - €;, we estimate

1Tl = |D cui-fi]| = ”SIHIP ;- fi(2)
i=1 . 2=} =1
(z= Zﬂi ;)
i=1
" 1/2 " 1/2
= sup |- Bi] < sup |a;|? : ik
Z?:lﬁ?zl E?:lﬁg:l ; ;
" 1/2
< (Zlaiﬁ) = .
i=1
On the other hand, by choosing 3; = na—iQ we have
D i1 O
IT[z)(2)]| = lew-Bi] =1  with 2z = ) Bi-e € B(0,1)

i=1
and this implies that
ITx]]lo = || for all z € R".

The proof is complete. U

Example 2. Recalling that

e = o= oo | swlol <o}, el = suple
n>

n>1

and
oo (o]
o= ot | Sl el = Yla
n=1 n=1

we have that
(01 ~ 1.
Proof. Let f; : ¢! — R be such that
file) = 1 and  fi(e;) = 0  forall j #1i.
One has that f; € (1)* and

filz) = B for T = iﬁj'eﬂ"
j=1
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Consider T : £>° — (£*)* such that

oo

T[z] = Z a; - fi for z = iai~ei € (.
i=1

i=1

[o.¢]
For any x = Z Bj-ej € (', we estimate
j=1

T[)(z)| = Z@z"fz‘(l") i
< (sup\a@) Z 8 = Il 2l

On the other hand, for any ¢ > 0, there exists 7, € Z™* such that

|20 < . +e.

By choosing = = e;_, we have

and this implies
IT[e]llee = |T[2](2)] = 2]l — &

Therefore,
1T e = I2]loo for all z € £°°.

|
Example 3. For any p € (1,+00), let g be its conjugate, i.e., 1/p+1/q = 1. Then
the dual space of ¢ is isomorphic with (9.

4.2 Direct sum
Definition 4.4 Let M and N be vector subspaces of X. We say that the direct sum
MeN = X
if any only iof
MNN={0} and M+ N = {m+n|meMneN} =

In this case, we say that N is the complement of M in X.
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Notice that the complement of M in X is not unique. Indeed, let’s consider X = R3
and M = R? x {0}. One can see that both

N, = {0} xR and N, = span{l,1,1}

are the complements of M.

The following lemma holds.

Lemma 4.5 (i) For any f € X* such that
f(zg) # 0 for some zg € X.
Then ker(f) is of co-dimension 1 of X and
X = ker(f) ® span{xo}.

(ii) Let V C X be a subspace of co-dimension 1 of X. Then there exists f € X*
such that
ker(f) = V.

Proof. (i) By the linear property of f, it holds

AN SN C) N Y rall o
f(x o) 0) f(x) " f(zo) = 0 forallzeX.

Thus,
f(x)
f(xo)

~xg € ker(f)

and it yields

= xr — f<x) L f<x> - L er Span(xr or all &
T = ( F(x0) 0)+f(l'0) o € ker(f)Nspan(zg) f Il z e X.

On the other hand, it is clear that

ker(f) Nspan{zo} = {0}.

and it yields (i).

(ii) Since V' a subspace of co-dimension 1 of X, there exist 0 # z7 € X such
that
V @ span(zg) = X.

Let f: X — R be such that f(z¢) =1 and
flo+Azg) = A forallve VA eR.

One has that f € X* and ker(f) =
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Before going to state the linear extension result, let us first introduce the follow-
ing lemma.

Lemma 4.6 Let Y be a subspace of X . Then there exists a subspace Z of X such
that
7Y = X. (4.1)

Proof. Consider the collection of subspaces of X
F = {W subspace of X such that WNY ={0}}
and the relation
W, <X Wy if and only if W, C Wa.

It is clear that F is a partially ordered set. Let us now show that every totally
ordered subset of F has an upper bound. Given a totally ordered subset F; of F,
i.e., for any Wy, Wy € Fi, it holds

Wl j W2 or W2 j Wl'

Denote by
w= |J w
WeF

It is clear that W NY = {0}. Let’s show that Wis a subspace of X. Indeed, for
any z,y € W, there exist W,, W, € F; such that

x € W, and y € W,

Without loss of generality, we assume that W, C W,. In this case, we have that
z,y € W, and thus

owx—l—ﬁ'yGWyQW for all o, 5 € R.
Therefore, Wis a subspace of X and is an upper bound of F;.

By the Zorn’s lemma, F has a maximal element Z. To complete this step, we
show that (4.1)) holds. By the definition, one has that

ZNY = @.

Let’s show that
Z+Y = X.

Assume by a contradiction, there exists € X such that z ¢ Z + Y. In particular,
x ¢ Z and x ¢ Y. Denote by

Z ¢ Zy = Z+span{z}
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It is clear that
ZiNnY = {0}.

Indeed, if there exists 0 # xg € Z; NY then Az + z = 2y € Y for some z € Z and
A # 0. This implies

1 1
and it yields a contradiction. Thus, (4.1]) holds. O

Corollary 4.7 (Linear extension) Let Y be a subspace of X and let T : Y — R
be a linear function. Then there exists a extension T of T defined on X, i.e.,

T:X — Ris linear and T(y) = T(y) forally €Y.
Proof. Let Z be a subspace of X such that
ZeY = X.

A linear extension 7 : X — R of T is defined by

T(z) = T(zy) foralz =2z, +2z. €Y +7

and the proof is complete. O

Remark 4.8 If Y @V = X then for every x € X, there exist unique vy € Y and
xy €V such that

r = xy +xyv.

Thus, the projection maps my : X — Y and my : X — V, defined by
my(x) = xy and mv(z) = wxy,

are well-defined and linear.

Question. Are my and 7y bounded? No in general.

Lemma 4.9 Assume that Y is closed and V' is a finite dimensional vector space.
Then the maps my and m, are bounded.

Proof. Since 7y (z) + my(z) = z, the map 7y is bounded if 7y is bounded. Thus,
it is sufficient to show that 7y is bounded. Assume by a contradiction, there exists
{Zyn}n>1 C X such that

|lzn]] = 1 and le |y (x,)]| = + o0.
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Denote by

[y () [y (220 |
we have that
lyall = 1,  limy,+v, = 0 and  lim [jo,] = 1.
n—oo n—,oo

Since V' is a finite dimensional vector space, there exists a subsequence {v,, }r>1 C
{vn}n>1 such that v, — v € V. This implies that

lim y,, = —0 €Y and o] = 1.
N —r00
Thus,
0#9veYnV
and it yields a contradiction. O

4.2.1 Hahn-Banach extension theorem

Definition 4.10 Let (X, ||-||) be a normed space. The function p: X — R is called
sub-linear functional if for all t > 0, x,y € X, it holds

ptz) = tp(xr) and  plr+y) < p@)+p(y). (4.2)

If p is sub-linear functional then

and p is convex, i.e.,
p0z+(1—-0)y) < Op(x)+(1—-0)p(y) for all 6 € [0,1].

Some examples:

(a) || - || norm is a sublinear function.

(b) Let K be a bounded, open, convex set with 0 € K. The function
p(z) = imf{\>0|z € K}

is sublinear functional.
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Theorem 4.11 (Hahn-Banach extension theorem) Let X be a normed space
and let p: X — R be a sublinear function. Given a subspace VC X, let f:V — R
be linear such that

f(x) < p(x) forallz € V. (4.3)

Then there exists a linear extension of F': X — R such that
F(z) = f(x) forallz eV

and
—p(—z) < F(z) < p(x) forall x € X.

Proof. 1. Notice that if F'(z) < p(z) then

f(z) = F(z) > —p(—x) for all z € X.
2. Otherwise, there exists o € X\V. Denote by
Vo = {x+tag |z eVt eR},
we want to extend f to Vj linearly. In this case, it holds
flx+txg) = f(x)+tf(xo) forall z € Vt € R.
Thus, one needs to find the value 8 = f(x¢) such that

flx)+tp < p(x+txo) for all z € V.t € R. (4.4)

For t > 0, (4.4) holds if

B < %'ilel‘f/[p(f’?‘i‘mo) — f(x)] = inf [P (%”O) —f@ﬂ
= y1161‘f/ [p(y + x0) — f(y)]

For t < 0, (4.4) holds if

B > —1 suplf(z)— plo+tm)] = sup [f (ﬁ)—p(ﬁ—xo)]

t eV zeV
= sup f(z) — p(z — zo).
zeV
Observe from (4.3]) that
ply+m) — fy) < f(2) —plz—m) forally,zeV,
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we can choose

B = sup f(2) = p(z = x).

zeV
3. To extend f to X, let’s introduce the collection

F = {(W,®) | V CW subspace,®: W — R linear
such that ®(z) < p(x) for all z € W}.

and the relation
(Wl, Cbl) = (WQ, q)g) if and only if Wl g WQ, @1(33‘) = @2(1') for all x € Wl-

It is clear that (F, =) is partially ordered. Moreover, every totally bounded ordered
subset of F has an upper bound. By Zorn’s lemma, F has a maximal element
(Vinax, F'). To complete the proof, we show that

Viax = X.

Assume by a contradiction, there exists 0 # z¢ € X\ Vipax. From the step 2, the linear
function F' can be extended to a strictly larger space and it yields a contradiction. [J

Applications

1. A natural application to the case
p(z) = |z for all z € X.

The following holds:

Theorem 4.12 (Extension theorem for bounded linear operator) Let V C
X be a subspace and let f : V — R be a bounded linear operator. Then there exists
F : X — R bounded linear operator with ||F || = || f]|co Such that

F(z) = f(x) forallz e V.
Proof. Consider p : X — R such that
p(@) = [flloe-llzll  forall z € X.
We have that p is sublinear functional and
flz) < p(x) for all x € V.
Using the Hahn Banach theorem, there exists F': X — R linear such that

f(x) = F(x) forall z € V
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and
—p(—z) < F(z) < p(x) for all z € X.

This implies that
N flloe - 2] < F(x) < [[flloc - ||]] forall z € X

and it yields
[Flloe < 11 flloo-
Since F(z) = f(x) for all z € V, one then has that || F||s = || f||cc- O

Corollary 4.13 Let X be a normed space. For any x # y € X, there exists ® :
X — R continuous and linear such that

(z) # D(y).
Proof. Consider the 2-dimensional vector space
V = span{z,y} = {sx+ty|s,t € R}.
Consider the linear function f : V — R such that
f(sx+ty) = s-||z]|+t- |yl for all s,t € R.
One has that f is bounded and
f@) = llzll # —lyll = f(y).

By the extension theorem, there exists linear and continuous map ® : X — R such
that ®(z) = f(2) for all z € V, and it yields

(z) # 2(y)
and this complete the proof. O

2. Separation of convex sets. Given two disjoint convex nonempty sets A, B C
X, our goal to find a bounded linear operator ¢ : X — R such that

P(A)Ng(B) = 0.
We prove the following theorem.

Theorem 4.14 Let (X,| - ||) be a normed space. For any two disjoint convex
nonempty sets A, B C X, the followings hold:

(i) If A is open then there exist ¢ € X* and a constant ¢ € R such that

ola) < ¢ < o(b) for alla € A)b € B.
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(i) If A is compact and B is closed, then there exist ¢ € X* and ¢1,co € R such
that
ola) < g < o < ¢(b) foralla e A,b e B.

Proof. (i). Assume that A is open. The proof of (i) is divided in to several step:
1. Pick any two points ag, by, we consider the following set
QO = Ay— By with Ay = A—ay, By = B —b.
It is clear that €2 is open and convex and
0 € Q but bo —ag :==1x9 ¢ S
2. Consider the functional
p(z) = inf{\>0:z € \Q}.
Since €) contains a small ball B(0, p) and zq ¢ €, it holds

1
plzg) > 1 and  p(x) < — ||z for all x € X.

p
Moreover, by the convexity of €2, the function p satisfies
pltz) = t-p(z),  plz+y) < p(z)+ply) forallt>0zyeX.
3. Let f:V :=span{zg} — R be linear such that
fltxg) =t for all t € R.

One has
flzg) =1 and  f(two) =t < p(txo).

By the Hahb-Banach extension theorem, there exists a linear functional ¢ : X — R
such that
—p(—z) < ¢(z) < p(o) for all z € X.

In particular, this implies that ¢ is bounded and

1
P

4. For any a € A and b € B, we have
¢(a) —¢(b) +1 = ¢la—b+z9) < pla—b+m) < 1
since a — b+ xg € €2 and €2 open. Thus,

o(a) < o(b) foralla e A,b e B.
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In particular, the constant ¢ := sup,c 4 ¢(a) < oo and
¢la) < ¢ < o(b).
(ii). Assume that A is compact and B is closed. We have
d(A,B) = inf{la—bl:a€ Abeb} = p > 0.

and the open set
A, = {ze X dxz A) <p}

had an empty intersection with B. Thus, there exists ¢ € X* and ¢y > 0 such that
dla) < cg < ¢(b) for all a € A,b € B.
Finally, since A is compact, we set ¢; := max,e4 ¢(a) and get
ola) < ¢ < g < ¢(b) foralla € A,b € B.

The proof is complete. U

4.3 Weak convergence in Banach space

Given (X, || -||) a Banach space, its dual space is

X" = {¢: X = R | pis bounded linear operator}

with
lelloo = sup ()]
One has that (X*, | - ||) is also a Banach space.

Definition 4.15 (Weak convergence) A sequence {z,},>1 converges weakly to
x, denote by x, — x, if

lim p(x,) = () forall p € X™.

n—o0

From the definition, it is clear that if x,, converges to x then x,, converges weakly
to x.

Lemma 4.16 (uniqueness of weak limit) Ifz, — = and x,, — y then z = y.

Answer. Assume that  # y. Then there exists ¢ : X — R bounded linear operator
such that ¢(z) # ¢(y). Since z,, — and x,, — y, one has

¢(x) = lim ¢(z,) = o(y)

n—oo

and it yields a contradiction. O
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Weak star convergence. Consider the dual of X*
(X)) 2 {e" : X* = R | ¢" is bounded linear operator}.

We first show that

Lemma 4.17 For any given normed space (X, | - ||), it holds
X~ (X
Proof. Consider 7": X — X* such that
Tz](¢) = ¢(x) for all z € X.
The followings hold:
e T[] is linear;

e For every ¢ € X*, one has

Tlzl(e)l = le(@)] <zl - el
and this implies

|IT[x]lle = sup [T]z](e)| < |z for all x € X.

lello<1

On the other hand, consider the linear function ¢ : V' = span{z} — R such
that
o(tr) = t- ||z for all t € R.

Using the Hahn Banach, there exists an extension ® € X* such that
[Plle = 1 and  ®(z) = ||

Thus,
[T[x][loc = [[T[z](®)] = ®(x) = [l

and this yields || T[x]||s = ||Z]|-

The proof is complete. U
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Definition 4.18 We say that {¢,}n>1 € X* weak-star converges to p € X*, denote
by o = @, if

lim ¢,(x) = ¢(x) for all x € X.

n—oo

We have the following theorem.

Theorem 4.19 (Banach Alaoglu) Let X be a separable Banach space. Then, for
every {pntn>1 € X* such that

lonllee < M < 4+ o0 forallm > 1,
there exists {¢n, he>1 C {Pntn>1 such that ¢,, — ¢ € X*.
Sketch of the proof. 1. Since X is separable, i.e.,
X = closure {xy, 29, -+ ,Zp,...},
One can show that that ¢, — ¢ if and only if

lm ¢, () = ¢(z;) for all « > 1.

k—o00

2. Relying on this observation, we only need to construct the subsequence (@, )i>1
of (pn)n>1 as follows:

e {©n(z1)}n>1 is bounded in R, there exists Z; C N such that

lim @, (x1) =: p(z1).

Z1>—00
e By induction for every k > 1, there exists Z; ;1 C Zj such that

im o (Th1) = @(Trp1).
Iy4+12—00

Choose {ng}r>1 such that
ng € Iy for all £ > 1,

we then have

lim ¢, (z;) = ¢(z;) for all ¢ > 1.
k—o00

Notice that the function ¢ is defined on S = {x, 29, ..., 2y, ... }. For every z;,z; €
S, one has

im |@n, (7;) — ¢n,(25)] < M- |z — 2],

k—o00

[p(z:) — p(z;)| =
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In particular, the function ¢ is Lipschitz on S with a Lipschitz constant M. Since
S is dense in X, one can extend ¢ to X by

p() = lim o(z)

n—oo

for some {z,},>1 C S converging to x.

3. To complete the proof, we need to prove the following problem:

HW problem: Given a Banach space X |, let ¢ € X* and {@n}n>1 C X* be
such that

lonlle = sup len(2)|| < M
lzl|<1

for some constant M > 0. Assume that there exists a dense S = {x1,za, ..., x, ...}
in X such that for every y, € S it holds

lim ¢, (xx) = p(zg).

n—oo

Show that @, is weakly star convergent to ¢ in X* and |||l < M. O

4.4 Adjoint operators

Let X be a Banach space. Its dual is the space X* of all bounded linear functional
x* : X — R such that

|z*]| = sup |z*(z)] < + 0.
[l=||<1

For a convenience, we will use the notation
(z) = (2", x) for all z € X, 2" € X".
Notice that

sup (z*,x) = |zl for all z € X.
=1

By using the uniform boundedness principle, we show that
Lemma 4.20 Any sequence x, € X which weakly converges to x € X is bounded.
Proof. For every x,, let ¢, € (X*)* be such that
on(y”) = (Y, xy,) for all y* € X™.
As n — oo, we have the point-wise convergence

lim ¢,(y*) = lm (y",z,) = (y*, z) for all y* € X™.

n—oo n—oo
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In particular, this implies that

sup |pn(y*)] < +oo  forall y* € X™

n>1

By the uniform boundedness principle, we conclude that sequence (¢;,),>1 is uni-
formly bounded and thus

SupH:UnH = SUPHSOnHoo < M
n>1 n>1
for some constant M > 0. O

Given a Banach space Y, let A : X — Y be a bounded linear operator. For every
y* € Y*, the composed map z* : X — R defined as

(z) = y*"(Ax)) forall v € X

is bounded linear functional, i.e., z* :=y* o A € X*.

Definition 4.21 The map A* : Y* — X* such that A*y* = y* o A is called the
adjoint of A.

From the above definition, one can see that
(N'y*,z) = (y",Az) forall z € X,y* € Y™
Given subset V' C X and W C X*, their orthogonal sets are defined as
Vi = {2" e X*: (a50) =0 forallveV}

and

W+ = {z e X:(w,r)=0 foral w eW}.

Lemma 4.22 Given a bounded linear operator A : X — Y, let A* be its adjoint
operator. Then

Al = [|A*]|os, Ker(A) = [Range(A*)]* and Ker(A*) = [Range(A)]* .
Proof. By the definition of || - || and the orthogonal sets, we have

Ml = sup A(@)] = sup{{y", Alx)) : lz] <1, [ly"[lc <1}

[lz[|<1
= sup{(A"y",2) : [[z]] <1, |yl <1}
= sup HA*y*Hoo = HA*HOO

lly*[loe <1
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and
Ker(A) = {xe€ X :Ax)=0}
= {zeX:(y,Alx))=0 forall y* € Y}
= {zeX:(Ay",z)=0 forally"€Y"}
= {2 € X :z € [Range(A*)]"} = [Range(A*)]™.

The last equality is quite similar. O

Theorem 4.23 Let X and Y be Banach spaces. The bounded linear operator A :
X =Y s compact if and only if its adjoint A* : Y* — X* is compact.

Proof. Assume that A is compact. For a given a bounded sequences (y),>1, we
need to show that there exists a subsequence (y; )r>1 C (y;;)n>1 such that A*(y; )
converges in X* as n,y — oo. By assumption, the set

E :=A(By) with By = {z e X :|z| <1}
is a compact set in Y. For every n > 1, we define the function f, : £ — R as
fn(2) = yi(2) forall z € E,
Since (y)n>1 is a bounded sequence in Y*, there exists M > 0 such that
[fa(2) = ()] = lyn(2) —9n ()] < M-z =2 forall 2,2" € E

and

sup [ fn(2)] < M -sup|lz]] < M- [|Afl.
zeE zeEE

Thus, the sequence of functions (f,),>1 is equicontinuous and uniformly bounded.
By Arzela-Ascoli theorem, there exists a subsequence ( f,,, )x>1 which converges to a
function f uniformly on the compact set E. In particular, the subsequence (f,, )k>1
is a Cauchy sequence in C(E,R), i.e., for every € > 0, there exists N. > 0 such that

SUP | fr, (2) = fu,(2)| < e for all ny,n; > N..
zeFE

Thus, by the definition of A*, we estimate
A" () = M W)llee = sup [(A"(y5) — A*(y)), 7))

[lzlI<1

= sup [(yi — v}, Az)|
[lzlI<1

= sup |fn, (A(2)) — fo,(A(2))] < ¢ for all ny,n; > N,
[lzlI<1

and this shows that the subsequence A*(yx) is Cauchy in X*, hence it converges to
x* € X*. Therefore, A* is a compact operator.

The converse implication can be proved by the same argument. O
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Theorem 4.24 Let K : [a,b] X [a,b] — R be a continuous map. Then the integral
operators

b
MA@ = [ K@)y
is a compact linear operator from C([a,b]) into it self.

Proof. It is clear that A is a linear bounded operator from C(]a,b]) to C([a,b]). To
achieve the compactness of A, consider a bounded sequence of continuous functions
fn € C(la,b]), we need to show that (A[f,]),>1 admits an uniformly convergent
subsequence.

1. Observe that K is uniformly continuous and bounded in [a,b] x [a,b], i.e.,

max  K(z,y) < k and for every € > 0, there exists d.~o such that
(z,y)€la,b] x[a,b]

[K(z,y) = [K(«,y)] < e forall o -2+ ]y —y] <6

We have that

Alfal(@)] < / (K@)l - [fo@)ldy < k- (0= a)-sup | fulleo

and this yields

HA[fn]Hoo < k- (b—a)-sup | fullso for all n > 1.
n>

Thus, A[f,] is uniformly bounded.

2. Let € > 0 be given, we have that

[Alfal(x) = Alfl(2)] < (0—a)- SUp [|fulleo - €

for all |x — 2’| < .. Thus, A[f,] is equicontinuous. Therefore, one can apply the
Ascoli’s theorem to complete the proof. O

5 Compact operators on a Hilbert Space

It is well-known that for any given linear operator A : R” — R", the followings hold:

(i) The subspace Ker(A4) and [Range(A)]* have the same dimension. In particu-
lar, this implies that A is one-to-one if A is onto.

(ii). If A is symmetric then its eigenvalues are reals and R" admits an orthonormal
basis consisting of eigenvectors of A.
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We aim to extend these results to an infinite-dimensional Hilbert space H.

Theorem 5.1 (Fredholm) Let K : H — H be a compact linear operator. Then
the followings hold:

(i) Ker(I — K) is a finite-dimensional subspace;

(ii) Range(I — K) = Ker(I — K*)* is closed;
(111) Ker(I — K) = {0} if and only if Range(I — K) = H;
() dim(Ker(! — K)) = dim(Ker(I — K*)).

Proof.

1. Assume that Ker(/ — K) is an infinite-dimensional subspace. By Gram-Schmdit
process, one can construct an orthonormal sequence (e;,),>; in Ker(/ — K). In this
case, we have

e, = K(ep) for alln > 1

and

1K (en) — K(en)|| = llen —em|| = V2 for all n # m.

Thus, K is not a compact operator.

2. Toward the proof of (ii), we observe that there exists a constant § > 0 such that
|lu— Kul| > B-|ul for all u € (Ker(I) — K)*

Indeed, assume by a contradiction, there exists a sequence u,, € Ker(I — K)* such
that ]
luall =1 and  Jlun = K(u)|| < .
By extracting a subsequence and relabelling, we can assume that u,, — u. Since K
is compact, we then have that
lim K(u,) = K(u) — lim u, = K(u).

n—oo n—oo

By the uniqueness of weak convergence, we get

lim u, = v = K(u), |ul| = 1,
n—oo

and this yields a contradiction since u € Ker(I — K) N Ker(I — K)*.

Consider a sequence (vy,),>1 € Range(l — K) which converges to v. To show that
Range(] — K) is closed, we will find u such that u— K (u) = v. Since v,, € Range(I —
K), it holds

Uy = up — K(up) for all n > 1.
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Set V := Ker(I — K) a closed vector subspace of H. For every n, we have
Zn = Uy — Ty (Uy) € [Ker(I—K)}L, Un = zn — K(z).
From the above estimate, we have
|vm — vl > B |l2m — 2all for all m,n > 1
and this implies that (z,),>1 is a Cauchy sequence. Set u := lim,, o 2,, We get

u—K(u) = lim(z,— K(z,)) = limuv, = v.

Z—00 n—oo
Since both Range(I — K) and Ker(/ — K*)* are closed, (ii) holds if any only if
[Range(l — K)|* = Ker(I — K*).
We have

Ker(I - K*) = {ze€H:(I—-K")(z)=0}
= {reH: (y,(I—-K")(x)) forallye H=0}
= {xcH:((I-K)y),z) forally € H=0} = [Range(I — K)]*.

3. Assume that Ker(I — K) = 0. If Range(I — K) # H then we consider
H, = (I-K)"(H) for all n > 1.

By induction and the injective properties of I — K, we have that H, is a closed
subspace of H and
H > H D Hy D

Thus, for each n > 1, we can choose a unit vector e,, € H, N Hy- . In this case, for
every m < n, we have

K(en) — K(en) = em+ 2m with 2m = (I —K)(en —em) —€n € Hpyia
and this implies that
K (em) = K(ea)l = lleml = 1.
In particular, K is not a compact operator and this yields a contradiction.
4. Assume that Range(/ — K') = H then by Lemma have have
Ker(I — K*) = [Range(l — K)|* = H+ = {0}.

Since K* is compact, by the previous step we have that Range(I — K*) = H. By
by Lemma [4.22] we get

Ker(I — K) = [Range(I — K*)]* = H* = {0}
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and this complete the proof of (iii).
5. To obtain (iv), we first show that
dim(Ker(I — K)) > dim(Range( — K)™).
Indeed, assume by a contradiction that
dim(Ker(I — K)) < dim(Range(I — K)™"). (5.1)

Then there exists a linear map A : Ker(/ — K) — Range(I — K)* which is one-to-one
but not onto. We extend A to a linear map A : H — Range(/ — K)* such that

A(u) = 0 for all u € [Ker(I — K)]*.

Observe that A is compact so is K + A. We show that I — (K + A) is one-to-one.
Indeed, for any u € H, we write

u = uy + ug, u; € Ker(I — K), uy = [Ker(I — K)|*.
Then
[[ — (K +A)(u) = (I —K)(uy)— A(u;) € Range(I — K) @ Range(l — K)*.
From this observation, u € Ker(I — (K + A)) if only if
(I —K)(uz) = A(w) = 0
and this yields u; = up = 0. From (iii), it holds
Range(I — (K + A)) = H.

Since A is not onto, there exists v € Range(/ — K)* but v ¢ Range(A). Thus, the
equation

u—K(u)—Au) = v

has no solution and this yield a contradiction.
6. Recalling that Range(/ — K*)* = Ker(I — K), we then get
dim(Ker(I — K*)) > Range(l — K*)* = dim(Ker(I — K)).

Interchanging the roles K and K*, we obtain the opposite inequality. O

Remark 5.2 Consider the linear equation
u—Ku) = f (5:2)

with K linear compact operator. Then
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(i) If Ker(I — K) = {0} then for any f € H, the linear equation has a unique
solution.

(ii) If Ker(I — H) # {0} then the homogenous linear equation u — K(u) = 0
admits a nontrivial solution. In this case, has solutions if any only if
feKer(I — K*)*, e,

(fyu)y = 0  forallu e Ker(I — K¥).

Definition 5.3 Let A : H — H be a bounded linear operator. The resolvent and
the spectrum of A are denoted by

p(A) = {neR:nl— A is bijective} and a(A) = R\p(A).
The point spectrum and the essential spectrum of A is
0,(A) = {n€R:nl— A is not one to one} and ge(A) = a(A)\o,(A).
For every n € 0,(A), there exists a nonzero vector w € H such that
Aw) = nuw.

In this case, n is called an eigenvalue and w is an associated eigenvector.

Theorem 5.4 (Spectrum of a compact operator) Let H be infinite-dimensional
Hilbert space, and let K : H — H be a compact linear operator. Then

(1) o(K) = op(K) U {0}

(11) FEither o,(K) is finite or else 0,(K) = {\, : n > 1} such that lim,_,o A, = 0.
Proof. 1. To prove (i), we first show that 0 € o(K). Assume by a contradiction
that 0 ¢ o(K). Then the linear operator K is bijective. By the open mapping

theorem, the linear map K~ is continuous. Thus, I = K !0 K is compact operator
and this yields a contradiction.

Now, given A € o(K)\{0}, we need to show that A € 0,(K). Assume by a contra-
diction that A ¢ 0,(K) then by the Fredholm alternative, one has

Ker(AM — K) = {0} == Range(AM — K) = H.
Thus, A\ — K is bijective and this yields a contradiction.

2. Assume that 0,(K) is not finite. Let (\,,)n,>1 be a sequence of distinct eigenvalue
in 0,(K) such that lim A, = A\. We claim that lim A, = 0. Indeed, let w, be an
n—o0

n— o0
associated eigenvector

K(w,) = A\ - wy for all n > 1.
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Set H, := span{ws, -+ ,w,}. Since eigenvectors corresponding to distinct eigen-
value are linearly independent, we get that H,, C H,, ;. Moreover, for every n > 1,
it holds

(K —\.1)(H,) C H,_.

For each n > 2, we can choose a unit vector e, € H, N H- ,. For every m < n, we
have

K(en) — K(em) = [(I — K)(em — €n) — Amem] + Anen € Hy o+ Hr |
and this implies that
1K (en) = K(em)|l = [Aal - lleall = [Al.
If [A| > 0 then the operator K is not compact and this yields a contradiction. Thus,

A=0and lim A, =0.

n—o0

3. To conclude, we show that for any r > 0, the set o,(K) N [r, oo] is finite. Indeed,
assume by a contradiction, one can fine a sequence of (A,),>1 € 0,(K) such that

r < A < Al and A F A

In particular, (A,),>1 admits a subsequence which is convergent and thus converges
to 0. This yields a contradiction. Similarly, we can show that the set o,(K)N] —
oo, —r| is finite. Therefore, the set 0,(K) is at most countable. O

Lemma 5.5 (Bounds on the spectrum of a symmetric operator) Let A :
H — H be a linear bounded operator on the Hilbert space H. Assume that A is
selfadjoint, i.e.,

(A(z),y) = (z,A(y)) forall z,y € H.

Define
m = inf (A(u),u), M = sup (A(u),u)

flull=1 llull=1

Then,
m, M € a(A) C [m, M] and Al = max{—m,M}.

Proof. 1. Let us first show that the spectrum o(A) is contained in [m, M]. For any
n > M, we have that the linear operator nl — A is strictly positive since

(I — A)(u),u) > (n—M)-|ul? for all u € H.

By Lax-Milgram theorem, the linear operator (n/ — A) is bijective. In particular,
the set | M, oo is a subset of the resolvent set of A. Similarly, for any n < M, the
linear operator A — nl is strictly positive and bijective since

(A =nD)(u),u) > (m—mn)-|ul? for all u € H.
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Thus, the set | — oo, m| is a subset of the resolvent set of A and this yields
o(A) = R\p(A) S [m, M].

2. Without lose of generality, we shall assume that |m| < M. Otherwise, one can
replace A by —A. We will show that

[Allo = sup [[A(w)]| = M.

flull<1
It is sufficient to show that ||A]l« < M. For every u,v € H, we have

4Au,v) = (Au+v),u+v) = (Au—v),u—v)
Mlju+vl* = mllu—ol* < M- (Jutv]*+ lu—v]?)
2M - ([lull® + o)) -

Choosing v =

- A(u), we get

IA(w)]] < M|ull for all u ¢ Ker(A)
and this yields [|Al|e < M.
3. Finally, we claim that M € o(A). Indeed, let (u,),>1 be a sequence such that

|un|| = 1 and lim (A(uy,), u,) = M.

n—o0

We have
(M- T = A)(un)|* = M+ [[A(un) || = 2MA(un), up) < 2M (1 — A(up), un))

and this implies that
lim |[(M -1 —A)(u,)|| = 0.
n—oo

Thus, the operator M - I — A can not have a bounded inverse and thus it is not
bijective. 0

Give a symmetric n X n matrix A, one can choose an orthogonal basis of R"
consisting of eigenvectors of A. The following theorem shows that the results remains
valid for compact symmetric operator.

Theorem 5.6 (Hilbert-Schimit) Given a separable real Hilbert space H, let K :
H — H be a compact and selfadjoint linear operator. Then there exists a countable
orthonormal basis of H consisting of eigenvectors of H.
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Answer. 1. If H is a finite dimensional space then this is a classical result in linear
algebra. Assume that dim(H) = oco. Let o = 0 and {n1,72, ...} be the set of all
nonzero eigenvalues of K. Consider the eigenspaces

Hy = Ker(K) and H, = Ker(K —n,l)
By the Fredholm theorem, we have that
dim(H,) < oo for all n > 1.
On the other hand, for every u € H,, and v € H,, with n # m, it holds
M(u,0) = (Ku,v) = (u, Kv) = na(u,v)
and this yields (u,v) = 0. Thus, the subspace H,, and H, are orthogonal.

2. We claim that the vector subspace

N

H = {Zakuk:uk EHk,ozkER}.

k=0

is dense in H. Let us first show that
H* C Ker(K) = H,. (5.3)
Notice that K (H) C H. For any u € H*, one has
(K(u),v) = (u,K(v)) =0 for all v € H

and this shows that K(lf{[')l C H*. Let K be the restriction of K to the subspace
H. Clearly, Kisa compact and symmetric operator. Thus, the previous lemma
yields B B
Kl = sup  [(K(u),u)] = M.
[ull=1,ucHL
If M >0 then A = —M or A = M is in the spectrum of I?, i.e. there exists a unit
vector w € H* such that

Kw) = Kw) = \»w =  w € H.
This is contradiction. Thus, H[? |l = 0 and this yields 1} In turn,
H* C HynHE = {o}.

and thus H is dense in H.

3. For each k > 1, H, admits an orthonormal basis B, = {en1,...,0nNm)}
Since H is separable, the space H, admits a countable orthonormal basis By =
{eo1,€02-..}}. Hence B=J,_, is an orthonormal basis of H. O
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Remark 5.7 Let {wy, ws,...} be an orthonormal basis of a real Hilbert space H,
consisting eigenvector of a linear, symmetric operator K. Let A\, o, ... be the

corresponding eigenvalues. If 1 ¢ o(K) then for any given f € H, consider the
equation

u-K() = f

admits a unique solution u such that

u =

- Wg.

- <f7wk>
21N,

1
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