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1 Why study measure theory?

1. Passing limit under integral sign: There are many reasons to pass limits
under integrals. Some examples:

(a)

Differentiation under the integral sign: under what conditions can we

write , )
0 0
ﬁ_y/a f($>y>dx_/a a_yf(xvy)dx

Both integrals and derivatives are defined in terms of limits, so this is
really a question of whether we can interchange limits.

Given a open set @ C R? and a function ¢ : 9Q — R, consider the
minimization problem

inf J(f) := / IV f|? dx
f Q
subject to
f = g on 99, f: Q=R
Basic question: Is there a function f* such that J(f*) =inf J?

The direct method is to consider a sequence of functions f,, so that

lim J(f,) = il}fJ.

n—oo

Show that the sequence f,, has a limit f* and that lim J(f,) = J(f*).
One important step is understanding how we can pass a limit under an
integral.

Generalized solutions to differential equations: Consider the problem of
describing the electrical potential induced by a point charge. Heuristically
(and scaling out physical constants), we are trying to solve

Af=do

where f is the electrical potential and dy is a Dirac mass at zero. However,
how do we rigorously define the Dirac mass at zero? One can think of
this as a limit of masses charged on a vanishing set, namely

dp = lim C’r_dXB(O,T).
n—oo
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How do we accurately capture this “limiting process” when solving the
partial differential equation? This often involves an integral formulation,
and limits have to be passed under an integral. In other words, we often
want to use approximating sequences of functions, and be able to pass
limits under integrals (or into differential equations) rigorously.

2. Probability

(a) How does one define Brownian motion? We need a rigorous way to define
a probability measure over trajectories with the appropriate properties,
and measure theory lets us do that.

(b) How does one rigorously prove limit theorems? Approximating sequences,
passing derivatives and limits under integrals.

(¢) How do we define conditional probabilities? How do we unify discrete
and continuous probability? How do we give an axiomatic formulation of
probability? Measure theory. ..

3. Generalized Calculus and geometry

(a) How do we define the size of a set? Volume/area/path length? Fractals?
Need a rigorous notion of size. For example, what is the area in R of
the rational numbers? What is the right notion of area of the Sierpinski
triangle, or Koch snowflake? This depends delicately on how we define
our notions of length. For example in R?, we could define

Area; (F) = inf {Z area(R,) : R, is an open rectangle, £ C U Rn}
i=1

n=1
)

Areay(F) = inf {Z area(R,,) : R, is an open rectangle, £ C U Rn} :

i=1 n=1
Suppose that £ = Q%N (0,1)2. One can show that

Areai(E) = 1 # 0 = Areay(FE).

(b) How do we define generalized derivatives? For example, consider the
function x(g,c). What is the derivative of this function, and how should
we think about it? For the function f(z) = |z| how should we think
about Vf and Af? Measure theory gives us a rigorous way to think
about these objects.

This course will mostly be focused on the Lebesgue integration: namely defining a
measure and integration on R?. Here is its outline:

e Review of Riemann integration (to highlight some shortcomings)
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e Measures: abstract properties for measuring size of sets.

e Construction of measures: outer measures, Lebesgue measure, Carathéodory
extension

e Measurable functions (analog of continuous functions)
e Lebesgue integration
e L” spaces (deeper properties)

e Product measures

A tour of Calculus topics for measure theory

2 A review on Riemann Integration

2.1 Riemann integrable functions

Given a bounded interval [a,b], let f : [a,b] — R be a bounded function. Consider
a partition P = {xg, x1,...,z,} of [a,b], i.e.,

a =290 < 11 < ...x,—1<x, = b
For any i € 1, n, denote by
m; = inf  f(x) and M; = sup f(x).

xe[x’iflvxi} $E[$i,1,xi]

Definition 2.1 (Darboux sums) For any P partition of [a,b], the lower and up-
per Darboux sums for f with respect to P are defined by

L(f,P) = Zmi (@ — xi1), [Lower Darboux sum]|
i=1

U(f,P) = Z M; - (z; — x;q). [Upper Darboux sum]
i=1

Let Pl be a collection of all partitions of the interval [a,b]. From the above
definition, L(f,-) and U(f,-) satisfies the following properties.

Basic properties

(i) For any P € Py, it holds

with My := supy, ) f(x) and my = inf(, ) f(x).
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(ii) L(f,-) is increasing and U(f,-) is decreasing w.r.t to P € Py, i.e.,
L(f,P) < L(f,P) and  U(f,P) < U(f,P) for all P C P'.

(iii) For any P, P" € Pja4), it holds
L(f,P) < U(f,P").

Definition 2.2 Suppose that f : [a,b] — R is bounded. Then

e The lower Riemann integral of f over [a,b] is

b
(R)/ fdx = sup L(f,P).

PEPq )

e The upper Riemann integral of f over [a,b] is

b
(R)/ fdz = _inf U(f,P).

PEPq)

From (i) and (ii), it is clear that

b b
mys-(b—a) < (R)/ fdz < (R)/ fdzx < My-(b—a). (2.1)

Definition 2.3 (Riemann integration (Bernhard Riemann 1826-1866)) The
bounded function f is said Riemann integrable if

(R) Z fdr = (R) / e

In this case, the Riemann integration of f over [a,b] is denoted by

(R) /bfdx = (R)/bfdcc = (R)dex.
From , one has N
mys-(b—a) < (R)/bfd:c < My-(b—a)
provided that f is Riemann integrable.
How to check that f is Riemann integrable?

It is clear that



e If f is a constant function on [a,b], i.e. f(x) = C for all x € [a,b], then f is
Riemann integrable and

b
(R)/ fdx = C-(b—a).

e Given a partition P = {xg, z1,...,x,} of [a,b], if
flz) = ¢ for all x € (24, x41),71 € 0,n — 1,

then f is Riemann integrable and
b n—1
(R)/ fdx = Zci (@i — ).
a i=0

In general, from (i)-(iii), we have

0 < (R)/ fd:c—(R)/ fdr < inf [U(f,P)—L(f.P)].  (2.2)

PEP[a’b]

Theorem 2.4 (Darboux’s integrability condition) Let f : [a,b] — R be bounded.
Then f is Riemann integrable if and only if for every e > 0 there exists P. € Py
such that

U(f,P.)— L(f,P.) < e. (2.3)

Proof. 1. Assume that (2.3)) holds for all € > 0. This implies that

piaf ULP)=L(f,P) = 0.

(R)Zfd:v = (R) Lb fdx

and it yields the Riemann integrability of f over [a, b].

From ([2.2)), we have

2. Assume that f is Riemann integrable, we have

o =: (R)/bfdx = sup L(f,P) = _inf U(f,P).

PEP, 4 PEPla,p)

For any ¢ > 0, there exists P*, PV € Py, such that
Ly _ & Ly, &
U(f,Ps)—§ <a < L(LP)+5

5



Set P.:= P*U PY. By the monotonicity of L(f,-) and U(f,-), we have
U(f,P.) = L(/,P) < U(f,PY) ~L(f.PY) < =
Thus, holds. O
As a consequence of Theorem one obtains the following results.
Corollary 2.5 If f : [a,b] — R is continuous then f is Riemann integrable.

Proof. Since f is continuous and [a,b] is a compact set, it is bounded by some
constant M and uniformly continuous. Thus, for a given € > 0, there exists § > 0
such that

J@) = Il < G=  forallle—yl <6
Let P. = {zo,21,...,2,} be in Py with n sufficiently large such that
b— .
|y — x| = © 2§ forallie 1,n.
We then have
M;,—m; = sup f(z)— inf f(z) < <
xe[xi_l,xi} IE[Iiflyxi] b —a
Thus,
U(f, P:) = L(f, P) = Z(Mz —my) - (1 — x51)
i=1
< bia-(b—a) = €.
The Darboux’s integrability condition implies that f is integrable. O

Corollary 2.6 If f : [a,b] — R is monotone then f is Riemann integrable.

Proof. Without loss of generality, assume that f is increasing. In this case, f is
bounded and

fla) < flz) < f(b) = €lab].
If f(b) = f(a) then f is constant in [a,b] and thus it is Riemann integrable. Other-

wise, given any € > 0, let P. = {xg,1,...,2,} be in Pj,4 be such that
€ _
T — T < ——— for all i € 1,n.
L) - f)
We compute
n 8 n
U(f, P:)— L(f, P:) = Z(Mz —mg) (T —xi1) < o Z(Mz —m;)

f) = fla) =



f(b) = fla) = f(b) = f(a)
€
= m'(f(b)—f(a)) = g
and the Darboux’s integrability condition implies that f is integrable. O

Let us collect some basic properties of Riemann integrable functions.

Basic properties: Give two Riemann integrable functions f and g on [a,b], the
following holds

(i) | is integrable over [c,d] C [a,b]. Moreover,
w [ s@a = @ [ @@ [ .
(ii) For any a, B € R, it holds
(R)/abaf+5g de — a-(R)/abf d:v+ﬁ-(R)/abg da.

Theorem 2.7 (Fundamental theorem in calculus) Let f : [a,b] — R be bounded
and Riemann integrable. Suppose that F : [a,b] — R is continuous and
F'(z) = f(x) for all z € (a,b).
Then, .
FO) - Fl@) = () [ 1) do.
Proof. Since f is Riemann integrable, we need to show that
L(f,P) < F(b)— F(a) < U(f,P) for all P € Pigy. (2.4)

Assume that P = {xg,x1,...,2,}. Using the mean value theorem, we compute

F(b) — F(a) = ZF(@) — F(zi_1)

= ZF/@) (=) = Zf(&) (g — xiq)

i=1
for some &; € (x;_1,2;). For all i € 1,n, it holds

m;:= inf f(z) < f(&) < sup f(z):= M,.

[2—1,24] [i—1,2]



Thus,
Zmi (z; — 3i-1) < F(b) — F(a)

and it yields (2.4)). O

IA

Ng
£
=
=B
)

Problem 1: Suppose that f:[0,1] — R is Riemann integrable. Prove that

) [ s@ds = I (%Zf(g))

Problem 2: Suppose that f : [a,b] — R is Riemann integrable. Prove that |f]| is
Riemann integrable and

'(R) / fde < () / @)l

2.2 Non-Riemann integrable functions

In this subsection, we prove some examples to show that the Riemann integration
does not handle

- Functions with infinite discontinuities;
- Unbounded functions;
- Limits.
Example 2.1 (Dirichlet functions) Let f :[0,1] — R be such that

1 if reQnNlo,1]
flz) =
0 it  zel0,1\Q.

It is clear that f is bounded in [0,1] but discontinuous at every x € [0,1]. Since Q
is dense in [0, 1], one can show that

L(f,P) =0 and U(f,P) =1 for all P € Pyq.
This implies that

(R)/Llfdx =0 # 1= (R)Zfdx

and f is not Riemann integrable.



Remark 2.8 If f : [a,b] — R is bounded and continuous at all but a finite points
then f is Riemann integrable.

Problem 3: Is there a bounded and non-Riemann integrable function with countably
infinite discontinuities?

Example 2.2 Consider the function f :[0,1] — R such that

f(0) =0 and flz) = 7z for all x € (0,1].

It is clear that
U(f,P) = 4+ for all P € Py

and thus L
I

R/fdx = +o0.
0

However,

[\

L(f,P) < lim /lf(x)dx = lim lidx =

 a—0+ a—0+ [, €T

and this implies that
1
R/ fdx < 2.
0

Thus, Riemann integration does not work with unbounded functions.

Example 2.3 Assume that

@m[071] = {Q1aQ27---an-~~}-

For any n € Z*, consider the function f, : [0,1] — R such that

1 if ze{n. ... q)
fn(x) =

Since f, is bounded and discontinuous at finite points, it is Riemann integrable.
Moreover, one can see that

(R)/Olfnda; ~ 0.

On the other hand, f, converges point-wise to the function f defined in the example
1 which is non-Riemann integrable. Thus, Riemann integration does not work well
with pointwise limits.



Problem 4: Suppose that f, : [0,1] — R are bounded, Riemann integrable func-
tions, and that f,, converges uniformly to a function f. Then show that f is Riemann
integrable, and that the integral of f,, converges to the integral of f.

We need to construct a theory which can remedy the problems illustrated in the
last few examples. More precisely, the notion of the length of an interval to a larger
collection of subsets of R. This will lead us to measures.

3 Measures

3.1 o-algebras and measurable sets
3.1.1 Sets
Let X be a non-empty set. Denote by
P(X) = 2¥ = {A: AC X}
For any given A € P(X), the complement of A is
A = X\NA = {zeX:x¢ A}
It is clear that
A\B = AnB® forall A, B e P(X).

De Morgan identity. Let {A,}n>1 be a sequence of sets in P(X). The followings

hold ] .
(U An> = () 4, and (ﬂ An> = |J 4
=1 n=1 =1 =1

Definition 3.1 (Limit of a sequence of sets) Given {A,},>1 a sequence of sets
in P(X), we define

limsup A, := ﬂ U A and liminf A, := U m Ap.
n—o0 n=1k=n nree n=1k=n
If limsup,,_,., A, =liminf, ., A, = A then we set
A = lim A,.
n—oo

Notice that the set

limsup A, = {z € X : z belongs to infinitely many of the A,}.

n—oo
Basic properties:
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(a) liminf, . A, Climsup,,_, . 4,.

(b) If (A,)n>1 is a increasing sequence, i.e. A, C A, 41, then

lim A, = G A,
n=1

n—oo

If (A,)n>1 is a decreasing sequence, i.e. A, D A, .1, then
o
Jam A= [ A
n—=

3.1.2 Algebras and o-Algebra

Definition 3.2 A nonempty subset A of P(X) is called an algebra in X if
(i) @,X € P(X)
(i) If A,B € Athen AlUB e A

(iii) If A € A then A° € A.

For the definition, it is easy to see that

o If A, B € A then
AAB = (A\B)| J(B\A) € A

L4 IfAl,AQ,...,An € A then

both ﬁAi and OAi are in A.
i=1 i=1

Notice that the above statement does not hold for infinite sets in general.

Example 3.1 Assume that X = [0,1). The class A consisting @ and all sets of

form
n

A= Jlab)  with  0<a<b<---<a,<b, <1
=1

is an algebra in [0,1). However, if we consider
A, = [I/n,1) € A, for alln > 1,
then the union of A, N
U A, = (0,1)
n=1

15 not in A.
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Definition 3.3 A collection A C P(X) is an o-algebra if
(i) A is an algebra.

(ii) For any sequence of set (A,)n>1 C A, it holds

G A, € A
n=1

In this case, we say that (X, A) is a measurable space and A € A is a measurable
set.

By the De Morgan identity, one can see that if A C P(X) is an o-algebra then

[ An € A forall (4,),51 C P(X).

n=1

Example 3.2 Given a nonempty set X, then
o {T, X} is the smallest o-algebra on X .
e P(X) is the largest o-algebra on X .

e The collection all subsets E of X such that E is countable or E€ is countable
15 a o-algebra on X.

Lemma 3.4 Let A be an algebra on X. If
U 4 € A
n=1

for all sequence { A, }n>1 of mutually disjoint elements of A then A is a o-algebra.

Proof. For any sequence {B,},>1 in A, we need to show that
U B. € A
n=1

Observing that
Bi|JB: = Bi|J[B:\Bi] and BiN[B\Bi] = 2,

we construct a sequence (A,)n>1 C A by induction

A = B and Apy1 = Bpia\ (U Ai> for all n > 1.

i=1
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One can see that {A,},>1 of mutually disjoint elements of A and

[j An = [OJ Bn7
n=1 n=1
and this yields
U B.e A
n=1

By the Definition we can easily show that
Lemma 3.5 Let K be a subset of P(X). Then

oK) = ﬂ {ACPX):KCAand Ais a o — algebra}
1s the smallest o-algebra on X which contains IC

The above lemma least to the following definition.

Definition 3.6 The set o(K) is called a o-algebra generated by K.

Borel g-algebra. Assume that (X,d) is a metric space. Let K be a collection of
open subsets in X, i.e.,

K = {OC X:0O is open}.

In this case, o(K) is called Borel o-algebra and denote by B(X). Moreover, a set
A € B(X) is called a Borel set.

From the property (iii) in the definition [3.2] one can show that
B(X) = o(H)

where H = {F C X : F is closed} is a collection of closed subset of X.

Example 3.3 Assume that (X,d) = (R,|-|). Denote by
F = {[a,b):a<b}, F = {la,+0):a€eR} and F = {(—o0,a]:a € R},

we have

B(R) = o(F) = o(F1) = o(F).
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Proof. Let’s show that

1. Given a < b, it holds

This implies that
o(F) € B(R).

2. To complete the proof, we meed to show that
B(R) C o(F).
It is sufficient to show that for every open set V' in R, it holds

Ve o(F).

Since V' is open, there exists open disjoint intervals (a,,b,) for n = 1, K (K can be
o0) such that

Finally, observing that

(any by) = fj [an+%,bn) € o(F) foralln>1,

m=1

we have V' € o(F). The proof in complete. O

Problem 5: Show that o(F) = B(R).
Problem 6: Given a function f: R — R, is {f7'(A) : A € B(R)} a o-algebra? For
f(x) = 2? describe o(f) = o({f71(A) : A € B(R)}).

3.2 Measures

Given a measurable space (X, A), let ©: A — [0,400] be such that u(@) = 0. We
say that

e 1 is additive if
H <U Ai) = Z#(Ai)
i=1 i=1
for all {A;, A, ..., A,} of mutually disjoint elements of A.
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e 1 is o-additive if
i (U An) = ) u(An)
n=1 n=1
for all (A,)n>1 of mutually disjoint elements of A.

e 4 is o-subadditive if

i (U An) < Zu(An) for all A, € A
n=1 n=1

Definition 3.7 (Measure) The map p : A — [0,400] is called a measure if
w(2) =0 and p is o-additive. Moreover,

o if 1(X) < 400 then p is a finite measure;
o if u(X) =1 then pu is a probability measure;
o if X = U A, with p(A,) < +oo for every n > 1 then p is a o-measure (In

n=1
some sources, this is sometimes described as o-finiteness).

Remark 3.8 The collection (X, A, 1) is a triple that defines a measure space.
This allows one to precisely define:

(i) what is the set that the objects live in (i.e. X );
(i) what are the objects that we know how to measure (i.e. A);
(#i) what measure do we assign to each object.

This is a flexible abstract concept that allows us to address many different types of
problems: from Lebesqgue integration, to geometric measure theory, to probability and
stochastic processes.

Definition 3.9 Let (X, A, 1) be a measure space. For any E € A, denote by
Ag = {ANE:Ac A} and  pug(A) = w(ANE)

In this case, (E, Ajg, pig) is a restricted measure space on E of (X, A, ).
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Example 3.4 (a). Dirichlet measure

1 if reA
0:(A) = for all A € P(X).
0 if ré¢ A

for a given x € X. In this case, 0, is concentrated at x.

(b). Counting measure

Card(A) if A has a finite elements

+00 if A has a infinite elements

for every A € P(X).

(c). Let Q = {wi,ws,...,w,} be a finite set. Given a numbers 0 < p; < ---

such that Zpi =1, we define

i=1

Then, (2, P(Q2),P) is a probability measure space.

Basics properties. Let (X, A, 1) be a measure space. Then

e (Finite additivity) For finite disjoint set (A4;)!, C A, it holds

M(UAZ) = Z/J“(AZ)

e (Monotonicity) For every A C B in A, it holds
W(A) < u(B)
e (Ezcision) If AC B in A and u(A) < +o0, then

W(B\A) = u(B)— p(A).

<p

n

e (Countable monotonicity) Let (A,,),> be a sequence of measurable sets. Then

=
I/~
(-
=
~_
A
8
=
s
N



Proof. (Countable monotonicity) Construct a new sequence of disjoint sets
n—1
By == A, By, = A\B, ... B, = A\|JB:.
i=1

It is clear that (B,),>1 is mutually disjoint and

[OJ B, = [OJ A, and B,

=1 n=1

N

A,

3

Thus,

u(G An) = N(an) = i w(B,) < i 1(Ay) -

n=1 n=1 n=1

Proposition 3.9.1 (The continuity of i) For every sequence (Ay,)n>1 of A

o If (A,)n>1 is increasing then

,u(lim An> = lim wp(A,).

n—o0 n—oo

o If (Ay)n>1 is decreasing and p(Ay) < +oo then

u(lim An> = lim wu(A,).

n—o0 n—o0

Proof. Assume that (A,,),>1 is increasing. We have

n—oo

lim A, = G A,.
n=1

Denote by

n—1
Bl = Alu B2 - AQ\Bh 7Bn = AN\UB’L

i=1
It is clear that (B),),>1 is mutually disjoint and
A, = UB" for all n > 1.

i=1
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Thus,

u(Q&) = u([j Bn) = i 1(Bn)

n=1
= w2 b = i M(UBi) = )
and yields the first statement. O

Problem 7: Prove the second statement of the above proposition. Is this still true
if one remove the assumption p(A;) < +00?

Corollary 3.10 Let u be a finite measure. Then for any sequence (A,)n>1 C A, it
holds

,u(limiann> < liminf u(A,) < limsuppu(4,) < ,u(limsupAn)

n—oo n—oo n—oo n—oo

Proof. By the definition, we have

n—oo

liminf A, = EOJ B, with B, = ﬁ Ap.
n=1 k=n

Since B, is increasing and B,, C A, it holds

n—oo n—oo

L (lim inf An> = u (U Bn> = lim pu(B,) < liminf u(A,).
n—oo nel
Similarly, one can show that

limsup pu(4,) < u (lim sup An>

n—oo n—o0

and this complete the proof. O

Lemma 3.11 (Borel-Cantelli) For any sequence (Ay)n>1 C A such that

> uAy) < +oo.

n=1
Then it holds
1 (limsup An) = 0.

n—oo
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Proof. By the definition, we have

A=:limsup A, = ﬁ B, with B, = EOJ Ap.

n—oo

Since B, is decreasing and pu(B;) < Z 1(A,) < + oo, it holds
n=1

u(A) = lim p(B,) < lim Z

n—oo
The proof is complete. O

To complete this subsection, let us illustrate a typical use of the Borel-Cantelli
Lemma.

Example 3.5 Give a metric space (X, d), let (X,B(X),u) be a Borel measure on
X. Assume that the sequence of continuous function f, : X — R converges in the
sense of measure p to a continuous function f, i.e.,

lim p(x e X :|fu(x) — f(z)| >¢) = 0.
n—oo
Then, there exists a subsequence f,, and E € B(X) with u(E°) =0 such that

hm fnk( ) = f(x) for all x € E.

Proof. For each k > 1, we select n;, > 1 sufficiently large such that

u(xeX:\fnk(x)—f(x)\>%> < %

with ny_1 < ni. Set A := {:L‘ cX: !fnk(x) — f(x)| > %}, we have

> =1
;u( ka_

The Borel-Cantelli Lemma yields

1 (lim sup Ak) = 0.
k—ro0
Thus, set £ = X\ limsup,_, ., A such that p(E°) = 0, we obtain that

lim f,, (x) = f(x) for all z € £



and this complete the proof. O

Problem 8: Let (X, A, 1) be a measure space. The symmetric difference of A, B C
X is defined by

AAB = [A\B]U[B\A].
Show that If A, B are measurable (i.e., A, B € A) and u(AAB) = 0 then u(A) =
u(B).

3.3 Sets of measure zero and complete measure space

Let (X, A, i) be a measure space. We say that
e F e Ais aset of measure zero (null set) if u(E) = 0.

e The statement (P) holds for almost everywhere in X if there exists a null set
E C X such that (P) holds for all z € E°.

It is clear that countable union of null sets is a null set.

Question. Is this true that if £ is measurable with u(£) = 0 then every sub-
set of ' is measurable and has a zero measure?

NO in general. Indeed, let X = {—1,0,1} and let A = {0, {0},{—1,1}, X} be a
o-algebra on X. Consider the measure p : A — [0, 1] such that

pX) = pf0}) =1 and  p({-1,1}) = p®) = 0.

In this case, {—1,1} is a null set but {—1} and {1} are not measurable. O

Definition 3.12 A measure space (X, A, 1) is complete if every subset of null set
15 measurable.

How to complete a measure space (X, A, u)?

Theorem 3.13 Let (X, A, p) be a measure space. Then there exists a unique small-
est complete measure space (X, A, i) such that

AcA and a(A) = u(A) for all A € A.
Proof. Let’s define
A={AUM:Ac AMCNeA with pu(N)=0}

and

a(MUA) = pu(A).
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We claim that A is a o-algebra. Indeed, it is clear that
@, X e A
For any A € Aand M C N € A with u(N) = 0, we have
(AUM)® = A°NM° = A°N[NU(N\M)] = (A°n N J(A°n (N\M)).
Since AN N¢ € A and (A°N (N\M)) C N, it holds
(AUM)- € A
Countable union property. Assume that

A, € A, M;CN;e A with u(N;) =0 for all 7 > 1.

Since p (U NZ-) = 0, we have

i=1

Q (A UDM;) € (QA) U (QM> c A

Therefore, A is a o-algebra on X.

It is easy to check that 7 is a measure on A. To complete the proof, we need
to show that if (X, Aj, 1) is a complete measure space with

ACA and i (E) = u(E) forall £ € A,

then
ACA  and  u(E) = p(E) foral E € A

For any AUM € A with A€ Aand M C N € A with u(N) = 0, we have that
M € A, since A; is complete. This implies that

AUM € A and i (AUM) = iy (A) = u(A) = g(AU M).

The proof is complete. O

4 Lebesgue measures

Our goal is to construct a o-algebra L(R) on R and a measure m : L(R) — [0, +-00]
such that

- L(R) contains all open and closed sets in R.
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- For any a < b, it holds
m([a,b]) = b—a.

- m is translation invariant
m(y + E) = m(E) for all y € R, E € L(R).
We then extend our construction to L£(R™).
How to construct (L(R),m)?

Step 1: Construct an outer measure m* : P(R) — [0, +o0],, i.e.,

such that
m*([a,b]) = b—a for all b > a.

Step 2. Using Caratheddory’s approach to define £(R) relying on m*.

Step 3. Restrict m* on L(R) to obtain m.

4.1 Owuter measures

Definition 4.1 Given a nonempty set X, a function p* : P(X) — [0, 00] is called
an outer measure if

(1) p(2) =0;
(ii) (Monotonicity) For any Ey C Es, it holds

w(E) < p(Ey).

(iii) (o-subadditive) For any sequence (E,),>1 C P(X), it holds

Ty (G En> < i 1 (Ey).

n=1 n=1

Notice that (ii)-(iii) can be rewritten by

Ec |JE. = w(E) <)) uE).

n=1
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Remark 4.2 An outer measure is not a measure on P(X) in general.

Indeed, let X = {0,1} and let u* : P(X) — [0, 1] such that

) = a0) = 1 and (1) = g

In this case, p* is an outer measure but does not satisfy the finite additive property.
Thus, it is not a measure on (X, P(X)).

Question: Can one find an outer measure on R such that the finite additive prop-
erty does not hold?

How to construct an outer measure? The most common way to obtain an
outer measure is to start with “elementary sets”.

Proposition 4.2.1 Given an algebra A on X, let p : A — [0, +00] be a o-subadditive
function with p(@) = 0. For any E € P(X), define

p*(E) = inf {i p(A,) : E C [OJ A, with (A,)n>1 C A} ,

n=1

then the following hold:
(i). u* is finite if p is finite.
(7). p* is an extension of p, i.e.,
p(A) = p(A) forall A € A.
(#i). p* is an outer measure on X.

Proof. (i) is trivial. Let’s prove (ii). For any A € A, since p*(A) < p(A), it is
sufficient to show that
p(A) < i (A)

Equivalently, for all (A,)y=1 € A with A C | J A,, it holds
=1
p(A) < > p(An).
n=1

Since (AN Ap)n>1 € A and U (AN A,) = A, the o-subadditive of p implies that

n=1

p(A) = p(UAnﬂA> < D p(AnnA) <Y p(Ay).
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(iii). Let’s show that p* is an outer measure. It is clear that p*(@) = 0 and p* is
monotone. It is enough to check that u* is o-subadditive, i.e.,

w (E = O En> < i w(Ey) for all £, € P(X). (4.1)

n=1

By the definition of p*, for any n > 1 and € > 0, there exists (A,, )y>1 C A such
that

c )
p(Ank)_Q_na En - UAnk

1 k=1

WE

M*<En) >

B
Il

This implies that

o . o] o 5
zuwzz[zp |
n=1 n=1 k=1
= p(A e = p(E)—e
(n,k)EN?
Taking ¢ to 0, we obtain (4.1]). O

Remark 4.3 The previous proof actually can be made quite a bit sharper. More
precise,

e the set A need not be an algebra (it mostly just needs to be able to cover any
set);

e the only place where one needs the o-subadditivity is in proving the extension
property (i.e. this definition always will give an outer measure, even without
subadditivity).

Let us now provide some basic examples of outer measures.

Example 4.1 (Lebesgue-Stieltjes outer measure) Given a non-decreasing func-
tion f : [A, B] = R, we define

p((a,b)) = f(b) = fla)  for all(a,b) C[A, BJ.

The Lebesque-Stieltjes outer measure is given by

wi(E) = inf {Z p((an,by)) : an, b, € [A, Bl,a, <b,, E C U(an,bn)} )

n=1

By the previous proposition u’} 1S an outer measure.
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Problem 9: Show that p%([a,b]) = f*(b) — f~(a), where f* is the limit from the
right and f~ is the limit from the left of f.
Example 4.2 (Hausdorff outer measure) For any 0 < s < 400, we define

71.5/2 (3]
s = = ——— ith I'(s) = 25 Yy (Buler G tion).
a T2 1) wi (s) /0 e “2* dx (Fuler Gamma function)

Notice that oy is the Lebesque measure of the unit ball in R? for every d € N. For
any given 0 < s < d and § > 0, we define for every E C R? that

H5(E) := inf {i a, - <diamT(En)>s :E C G E,,diam(E,) < 5} .

n=1

If s = 0 we only sum over non-empty E,. By the previous proposition, Hj is an
outer measure on R,

Since the map o — H§(E) is non-increasing, we then define

H*(E) = lim H3(F) =sup H3(E).

6—0+ 5>0
This is known as the Hausdorft outer measure. Moreover,
o When s = d this gives the R? Lebesque measure;
e When s =0 this gives a counting measure;

e When 0 < s < n this gives a way of measuring the size of intermediate objects,
such as curves and surfaces in three dimensions. It also allows one to measure
the size of fractals and other more exotic objects.

Problem 10: Show that both H35 are H? is outer measures.

Problem 11: [Unexample: Jordan content] For every subset £ C R, we define

k k
py(E) = inf {Z diam(Ey) : E C U Ek} .
i=1 i=1
Show that p; is not an outer measure on R.

Definition 4.4 (Carathéodory measurable set) Given an outer measure pi* on
X, a set A € P(X) is called a Carathéodory measurable set with respect to p* if

pi(E) = p(ENA)+p(EnNAY)

for all E € P(X).
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Consider a collection of Carathéodory measurable subsets of X with respect to u*
F = {AC X : Aisa Carathéodory measurable set w.r.t p*}.
By the definition, it is clear that
X, e F and AeF < A°eF.

Notice that thanks to the o-sub-additive property of the outer measure p*, the set
A € F if and only if

p(E) = p(ENA)+p (BN A7)
for all E € P(X).
Example 4.3 Let X = [0,1] and p* : P(X) — [0, +00] such that

WA =0 i ANQ=o

pr(A) =1 if ANQ # 2.
In this case, one can check that p* is an outer measure on [0,1]. Moreover,

e [0,1) is not a Carathéodory measurable set w.r.t p*.

e {1/V/2} is a Carathéodory measurable set w.r.t ji*

Problem 12: Find the collection F of all Carathéodory measurable sets w.r.t pu*
in the above example.

Theorem 4.5 (Carathéodory) Let u* be an outer measure on X. Then (X, F, u*)
is a complete measure space.

Proof. 1. We first claim that F is an algebra. It is clear that
X, o e F and Ae F <= A°eF.
For any A, B € F, we need to show that AU B € F, i.e.,
W(E) > p(EN(AUB))+ u(EN(AUB)9) for all £ € P(X). (4.2)
Indeed, since A, B € F, it holds

p(F) = p(FNA)+p (EnA)
for all F € P(X).
pr(F) = p(FNB)+p(EnN B
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Observe that
EN(AUuB) = (ENA)U(ENA°NDB).

We have
P (EN(AUB)) < p(ENA)+u ((ENA°NB)).

Thus,
p(EN(AUB))+p"(EN(AUB)Y) < pu(ENA)+u ((ENA°NB))
+1*(EN (AU B)°)
= p(ENA)+p ((ENA°NB))
+u*(ENA°N BY)
= u(ENA)+pu (En A
= w(E).
2. p* is is additive on F. For any A, B € F with AN B = @, it holds that

p(EN(AUB)) = p(EN(AUB)NA)+u (EN(AUB)N A9
= p(ENA)+p (ENB).

Thus, by the induction method, one can show that for any {A,..., A, } finite col-
lection of disjoint sets in F, it holds

w* <Eﬂ (0 Ak>> = iu*(EﬂAk) for all £ € P(X).
k=1 k=1

In particular, choosing £ = X, we obtain that

() = Ewn
k=1 k=1
3. Let us now check that F is a g-algebra. For a given be a sequence of mutually
disjoint sets A, in F, we show that

S = QAnG}".

Equivalently,
p(E) > p(ENS)+p (ENS9 for all £ € P(X).
Using the o-subadditive property of p*, we have
pw(ENS) = (U(E N An)) < > p(ENA,) = lim )Y pf(ENA)
n=1 k=1

n—00
n=1
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= lim u* (Eﬂ(Sn =: UAk>> .
On the other hand,

W(ENS) = (Em (ﬁ A;)) < (Em (ﬂ A)) _ (ENSY),

and it yields
p(ENS)+p(ENSY) < limsup [p(ENS,) +p (ENSE)]
n—oo

= w(E).

Thus, S € F and F is a o-algebra.

4. One can show that if p* is additive and o-sub-additive then p* s o-additive.
Therefore, (X, F, 1*) is a measure space.

5. To conclude the proof, we will show that (X, F, u*) is complete. Given N € F
with ©*(N) = 0, we claim that

M e F for all M C N.
Equivalently,
p(E) > p"(ENM)+ p*(En M) for all £ € P(X).
By the monotonicity of u*, it holds
0 < pw(MNE) < p'(NNE) < p*(N) =0
and it yields p*(M N E) = p*(N N E) = 0. Thus,
W MNOE)+p (ENM) < 0+p"(ENNY) < p'(E)
and the proof is complete. O

By using Carathéodory theorem, we have created a large class of complete mea-
sures space from some small family of sets and their size. However, the constructed
o-algebra via this approach is abstract. A natural question is whether one can di-
rectly show that a set is Carathéodory measurable. To do that we shall consider a
special class of outer measures.
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Definition 4.6 Let (X, d) be a metric space. An outer measure p* on X is called
a metric outer measure if

p(EUF) =p (E)+ p*(F),
for all sets E, F C X satisfying
d(E,F):=inf{d(z,y) :x € E,y € F'} > 0.

Proposition 4.6.1 Let X be a metric space and p* be a metric outer measure on
X. Then every Borel set is p* measurable.

Proof: Since closed sets generate the Borel o-algebra, we just need to prove that
any closed set is Carathéodory measurable. Now let C' C X be closed, and let
F C X satisfy pu*(F) < oo (the other case is trivial), we show that

p(F) = p (FNC)+p" (F\C).

Consider a sequence of sets £, C F\C such that

1 1
= F\C: >1 E, = NC:——< — 0.
{r e F\C :d(z,C) > 1}, n {ZL‘E \C n+1_d(x,(§’)<n}
Clearly these sets are disjoint and U E, = F\C. In particular,
n=0
p(FNC)+p (F\C) = p(FNC)+p" (U En>
n=0
< W(FNC) +p (UE) + Z
i=n-+1
= (Fﬂ(] (UE))JFZM*(E
i=n-+1
< @(F)+ Y w(E).
i=n+1
To complete the proof, we need to show that Z 1 (E,) < +oo. By the definition
n=0

of E,, it holds
d(Eak, Eon), d(Eok 1, Eany1) > 0 for all h # k.

Since p* be a metric outer measure on X, one has that

> w(Ex) = (U EQk) < p(F)
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and

N N
ZM (Boky1) = 1° (U E2k+1> < wr(F)
k=0 k=0
Thus,
ZM*(Ek) < 2-u(F) < 40
k=0
and this complete the proof. O

Problem 13: Let A be a og-algebra on X and let p : A — [0, +0o0] be additive.
Show that u is a measure on (X, .A) if and only if one of the followings holds

(i) p is o-subadditive;

(ii) For every sequence of increasing sets {4, },>1 in A, then

(U] = s,
n=1

Problem 14: In X = N, consider the algebra
A = {AeP(X) | Ais finite or A®is finite} .
Show that the function v : A — [0, +00] defined as
1

on
Z/(A) — neA

if A is finite
+00 if A is infinite

is additive but not o-additive.

4.2 Lebesgue measure on R

Let Z be a set of open intervals on R. For any I = (a,b) with a < b, denote by

b—a —o<a<b<+oo

+00 if a=—00 or b= -4oo0.

Observe that for every A € P(R), there exists (,,),>1 C Z such that

A:QIn.
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Introduce the function m* : P(R) — [0 4+ oo] be such that for every A € R

m*(A) := inf {ZE(In):InEI and A C UI”}
n=1

n=1

Proposition 4.6.2 The function m* : P(R) — [0,+00] is an outer measure. In
addition,

(i) for every —oo < a < b < 400, it holds

m*((a,0)) = ((a,0)) = b—ga;

(i) m* is translation invariant, in the sense that m*(x + E) = m*(E).

Proof. The fact that m* is an outer measure follows immediately from Proposition
and m* is translation invariant follows directly from the fact that ¢ is translation
invariant. To verify that m* extends ¢ on the open intervals (a, b), we need to prove
that
m*((a,b)) > ¢((a,b)) = b—a.
Equivalently, for any (a,b) C U(ai, b;), it holds
i=1

b—a < ZE((ai, b;)).

For every ¢ > 0 sufficiently small, since [a +£/2,b — ¢/2] C (a,b) is compact, there
exists a finite sub-covering (a;,, b;, ) such that

la+e/2,b-¢/2] < |J(ai, b,)

k=1

and this yields

=

boa—e < Y —a) < 3 Uab)
k=1 i=1
Taking € — 04, we the complete the proof. O

Using the Carathéodory’s approach, we then define the Lebesgue measure space
in R.

Definition 4.7 A set E € R is Lebesgue measurable if

m*(A) = m"(ENA)+m"(E°NA) for all A € P(R).
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Denote by
M = {E € P(R) | E is Lebesgue measurable}.

and m : M — [0, 00| such that
m(E) = m*(E) for all £ € M.
From Carathéodory’s theorem, it holds
e M is a g-algebra.
e m is a complete measure on M.

We say that m is the Lebesgue measure on R.

Basic properties of m.

(i). m(@) =0, m([a,b] =b—a and m({z}) = 0.
(ii). For all a € R and E € M, it holds

m(a+E) = m(E).

(iii) If m*(A) = 0 then A is Lebesgue measurable and m(A) = 0.
Proposition 4.7.1 It holds that
B(R) C M.

Proof. It is sufficiently to show that the set (a,+00) is measurable for any given
a € R. Equivalently, for any A € P(R), it holds

m*(A) > m*(AN (a,+00)) +m (AN (—o0,al).

It is trivial if m*(A) = 4+o00. Assume that m*(A) < co. For every € > 0, there exists
{I,}n>1 € T such that

W,

NE
~
=
.

A C U I, and m*(A)
n=1

For any n € N, denote by
Jy = I,N(a,400) and  J, = I,N (—oo,a+i> .

It is clear that
U(1,) > ((Jy) +€(J'
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Thus,
€

m(A) 42 > Z oI, > Z(E(Jn)Jrf(Jr/z)_Q_n)

n=1

> m*(AN(a,+00)) +m*"(AN(—o0,a]) —e.
Taking € > 0 to 0+, we obtain
m*(A) > m*(AN(a,+0)) +m* (AN (—o0,al)

and this implies that (—oo, a) is Lebesgue measurable. O

Problem 15: Show that m* is an outer metric measure on R.

Problem 16: Construct a Lebesgue measurable set but not Borel set.

4.2.1 Outer and inner approximation

Let (R, M, m) be the Lebesgue measure space on R. It is known that
B(R) ¢ M.

-

Question: Is the Borel o-algebra B(R) “dense” in M w.r.t m, i.e., for every e >0
there exists K. closed and O, open in R such that

K. C E C O. and  m(ON\K.) < e.
The following theorem is to answer the above question.

Theorem 4.8 Let E be a subset of R. Then E is Lebesque measurable if and only
if one of the following assertion holds

(a) For any e > 0, there exists O, open subset of R such that
E CO. and m*(ON\FE) < e.

(b) For any e > 0, there exists K. closed subset of R such that

E DK, and m*(E\K.) < e.
Proof. Let’s show that E is measurable if any only if (a) holds.

1. Assume that F is measurable. Two cases are considered

Case 1: If m(F) < 400 then there exists (1,,),>1 C Z such that
EC L, ad mE)+e > > ().
n=1 n=1
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The set O, := U I, O FE is open. Moreover, the g-additive property of m yields

n=1

m(O\E) = m(0.) —m(E) < (Zz(z,g) —m(E) < m(E)+e-m(E) = e

Case 2: If m(F) = 400 then we can write
E = |JE with E, =En(nn+1)U[-n-1-n)).
neN

Since E, is Lebesgue measure with m(£,) < 1, from case 1 there exists a open set
E, C O, such that

m(On\En) < for all n € N.

2n+1

The set O, = U O, is open, containing F, and satisfies

n=0
e.) e.@) 6
m(0\E) < Y m(O,\E) < Z%l = ¢
n=0 n=0

2. Assume that (a) holds, we show that E is Lebesgue measurable. For every n > 1,

1 o0
there exists an open set O, 2 E such that m*(O,\F) < —. Set G := ﬂ 0, e M,
n
n=1
we have

ECGeM and m*(G\E) = 0.

Since m*(G\E) = 0, it holds that G\ EF is in M. Thus, £ = G\(G\FE) is Lebesgue
measurable.

3. To conclude the proof, let’s show that E is Lebesgue measurable if and only if
(b) holds. Indeed, E is measurable if any only if £° is measurable. Equivalently, for
every € > 0, there exists O, open set such that

E¢ C O, and  m"(ON\E) < E.
The set K. = O¢ is closed and satisfies
K. C FE and  m"(E\K.) = m"(O\E) < e.

The proof is complete. O
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Corollary 4.9 Let E be a measurable set with m(E) < oo. Then there exists
(I,)N_, C T finite disjoint open intervals such that

N N N
m (U I, AE) = m <E\ U ]n> +m (U In\E> < e
Proof. From the above theorem, there exists any open set O, such that

E C O. and m(O\E) < g

Since O, is open, one has
oo
0. = J oL
n=1

for I, € Z and I, N I,, = @ for every m # n. By the o-additive property of m, one

has
n

m(0.) = Z m(l,) = nhjEO Z m(I).

k=1

In particular, there exits N, € N such that

m<U 1k> - Z m(I,) > m(og)—g.

k=1

This implies that

and the proof is complete. O

Remark 4.10 If E is a bounded set in R then for every ¢ > 0, there exists an open
set O, such that E C O, and

m*(0:) < m*(E)+e.
Howewver, it does not imply that
m*(O\E) < e

The first inequality is directly from the definition of outer measure. However, a
bounded set E is not measurable in general. Thus, the second inequality fails if £
is not Lebesgue measurable.
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4.2.2 Uncountable set with zero Lebesgue measure and non-Lebesgue
measurable set

Up to now, we has obtained the followings:
e Every at most infinite countable set in R has a zero Lebesgue measure.
e B(R) is a dense subset of M.
e (R, M, m) is a complete measure space.
One can ask several questions:
e [s there a uncountable set with zero Lebesgue measure?
e Construct a non-Lebesgue measurable set.
e Show that (R, B(R),m) is not complete.

e Construct a Lebesgue measurable set but not Borel.
1. Cantor set. Define a sequence of closed set (C},),>1 by induction

_ _ 1 2 _ Cas 2 Chy
Co = [0,1], & = {0,3}U{3,1] and  C, = = U(3+ : )

o0

The cantor set C' = ﬂ C,, is nowhere dense and closed. In particular, C' is measur-

n=1
able. Moreover, since (C,),>1 is decreasing and m(Cp) = 1 < 400, it holds

we) = w((1e) = m(me) = mmocy = (3) o
n=1

We now show that C'is uncountable. Assume by a contradiction that the set C' is
at most countable, i.e.,

C = {c,¢co,. . Cpy.o )

Then, one can construct a decreasing sequence of compact subsets (F)r>1 such that
Ck ¢ F, c (..
In particular, one has
o oo
xr € ﬂ F, C m C, = C.
k=1 k=1

Thus, there exists ng € N such that

o0
x:cnoeka

k=1
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and this yields a contradiction. O

Problem 17: Let C be the cantor set which is constructed as above. Show that

0 if s > F—z
n
H(C) =

400 otherwise.

Question. Notice that the cantor set C' is a Borel set with zero Lebesgue measure.
Can one construct a non Borel subset of C'?

2. Non-measurable sets. Thanks to the translation invariance of m, the fol-
lowing holds:

Lemma 4.11 Let E be a bounded Lebesque measurable. Suppose that there exists a
bounded countable infinite set of real numbers A such that

A1+Eﬂ/\2+E:® A # X €A
Then, m(E) = 0.
Proof. By the o-additivity of m, it holds

Zm()\—l—E) = m(UA—I—E) < 4+

AEA AEA

Since m(A + E) = m(FE) for all A € A and A has infinite elements, one obtains that
m(E) = 0. L

As a consequence, any bounded set V satisfies the above property but having a
positive outer measure is non-Lebesgue measurable. To construct V', one can think
of dividing E into infinite countable disjoint subsets (V},),>1 such that every n > 1,

r—y € Q for all x,y € V,,.

This leads to the following definition.

Definition 4.12 (Vitali sets) Given A C R, V' is called a Vitali subset of A if
Card(VNQ,) =1 with Q. = a+Q

for all a € A.
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How to construct a Vitali set? For any =z € R, set
Q: = z+Q,

we have

Q1 #92 — Q=Q <+ 1-yeQ
Given any subset A C [0, 1], consider the collection of all subset @,

Q4 = {Q.:7 € A}
Axiom of choice. There exists a choice function f: Q4 — A such that
f(Qr) € Q.NA  forall z € A
It is easy to check that the set
Vi = {f(Qs) : z€ A} C A
is a Vitali subset of A. Indeed, it is easy to see that
VanQ. = {f(Q.)} for all a € A.

In the following theorem, we shall show that every set with positive Lebesgue mea-
surable set contains a non Lebesgue measurable subset.

Theorem 4.13 If A € M has a positive Lebesque measure then the set Vi, is non
Lebesgue measurable.

Proof. Since V), is a Vitali subset of A, one has that

Q1+VAHQQ+VA:@ for all ¢1 # ¢2 € Q.
Moreover, for every x € A C [0, 1], it holds

v € f(Qz)+[-1,1]

and this implies that

A C Ny = U g+ Vs C [—1,2].
qe(@ﬂ[—l,l}

Assume that V4 is Lebesgue measurable. Then, the set N4 is also Lebesgue mea-
surable and
0 < m(A) < m(Na) < 3.
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On the other hand, by the o-additive property of m, one has

m(Na) = m U g+Val| = Z m(q+Va) = Z m(Va).

g€[-1,1]nQ g€[-1,1]nQ ge[-1,1]nQ
Thus,
0 < mA) < Y mla) <3
q€[-1,1]nQ
and it yields a contradiction. O

3. A non-Borel Lebesgue measurable set. Our construction will be divided
into two steps:

Step 1. The above cantor set C' can be expressed by
C = {x:ch-i’)" ey € {0,2}}.
n=1

[e.e]
For every x = Z cn - 37", we define

n=1

> 1 if ¢,=2
f(z) Z wi {0 if

¢, = 0.

The function f : C'— [0, 1] is increasing, and has the same value at the end of each
of the intervals we’ve removed. It can be extended to a continuous function on [0, 1]
such that f(z) is constant on each removed interval

f(z) =0 ae x€l01].
The following function
g(x) = x4+ f(x) for all z € [0,1]

is strictly increasing, continuous, and ¢([0,1]) = [0,2]. Hence, it has a continuous
inverse g~! : [0,2] — [0,1]. On the other hand, observe that the function g maps
removed interval of [0, 1] to intervals of [0, 2] of the same length, we have

m (g ([0,1INC)) = m([0,1\C) = 1

and this implies that
m(g(C)) = m([0,2]) —m(g([0,1\C)) = L.
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Step 2. Since ¢g(C) has positive Lebesgue measure, there exists k € Z such that
the set g(C) N [k, k + 1] has also positive Lebesgue measure. In particular, the set

A = g(C)N[k,k+1]—k C [0,1] has positive Lebesgue measure.

From Theorem[4.13] the set k+V4 C g(C') is not Lebesgue measurable. In particular,
it is not Borel. Thanks to the increasing property of g, the set g~!(k + V) is also
not Borel. On the other hand, by completeness of the Lebesgue space, since

g k+Vy) € C  with  m(C) = 0,

the set g~ '(k + V4) is Lebesgue measurable. O

Problem 18: Show that a strictly increasing function defined on an interval maps
Borel sets to Borel sets.

Problem 19: Let 7; : [c,d] — R? be a smooth curve with v,(c) = z,v(d) = v.
Show that H'(y1([c,d])) > |z — y|.

Problem 20: Given z,y € R" and S := {tz + (1 —t)y : t € [0,1]} show that
HI(S) =z —yl.

4.3 Lebesgue measure on R?

Given a closed and bounded rectangle
R = a1, b1] X [ag, ba] X [aq, bal, —00 < a; < b; < 00.
The volume of R is
V(R) = (by —ay) - (by —ag)...(bg— aq).

Denote by R(R?) a collection of bounded and closed rectangle.

Lemma 4.14 (Outer measure) The function u* : P(RY) — [0, +00] defined by

W(E) = inf {i V(R):EC G,RZ- ER(]Rd)}

i=1

15 a metric outer measure.

Proof. The fact that this is an outer measure follows from an earlier proposition.
The fact that it’s a metric outer measure follows the same argument as for the
Lebesgue measure on R. O

Some basic properties: The followings hold
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(i) p*(R) = V(R) for all R € RY;
(ii) p*(a+ E) = p*(A) for all a € R and A C RY;
(iii) p*({a} x R¥71) =0 for all a € R.

Definition 4.15 (Lebesgue measurable set) A subset A of R? is called Lebesgue
measurable if

p(E) = p(ENA)+u (ENAS)  forall E € R

Denote by
LRY) = {AeP(R?: Ais Lebesgue measurable}

and p : L(R?) — [0, +00] such that
u(A) = u*(A) for all A € L(R?).
With the same argument in one dimensional case, one can show that

Theorem 4.16 The triple (RY, L(R?), i) is a complete measure space in R?. More-
over,

w(R) = V(R)  forall R € R(RY),
and

pla+A) = u(A) foralla € R, A € L(R?).

4.3.1 Borel o-algebra and regularity properties
Let T(R?) be a collection of all open subsets of R%. Denote by

BRY) = o(T(R?)

the o-algebra generated by T (R™). Since pu* is a metric outer measure on R?, from

Proposition [4.6.1} it holds
BRY c L(RY).

Moreover, one also has that

Proposition 4.16.1 The Borel o-algebra is also generated by R(R?), i.e.,
BR?Y) = o (RERY).

Proof. We only need to show that
BR?Y) C o (R(RY).

Equivalently, for any O open and bounded subset of R?, it holds

O € o (RRY).
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In order to do so, let’s construct a sequence (Gy)n>1 C o (R(R?)) such that

O = QG,L.

For n = 1, we divide R into cubes (almost disjoint) with side 2. Let {C}1,Ci,...,Ci N, }
be all cubes contained in O and thus the set

N1
026G = |]JC €a(RRY).
i=1

For n = 2, we set O; := O\G and divide R? into cubes (almost disjoint) with side
272 and let {Cy1,Ca9,-,Ca N, } be all cubes contained in O;. The set

N1
O, O Gy = U 0272' € U(R(Rd))
=1

Since O is an open set, by continuing this process, we obtain the sequence of mutually
disjoint (G,,)n>1 such that

0 = |JG. € o (R®Y)
n=1
and this complete the proof. O

Theorem 4.17 (Borel regularity) Let A be a subset of R:. Then
p(A) = inf{u(G): ACG,G is open}. (4.3)
In addition, if A € L(R?) then
pu(A) =inf {u(G) : AC G, G is open} =sup{u(K) : K C A K is closed}. (4.4)

Proof. 1. (4.3) is trivial if u(A) = 4+o00. Assume that pu(A) < +oco. For every
e > 0, it holds

oo o0 c
i:LJI p(A) ; (i) + 5
For every i > 1, there exists S; € R(R?) such that

IS
9i+1 :

R, C 11’lt(SZ) and V(SZ) <

V(R;) +
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[e.e]

Thus, the set G, := Uint(SZ-) D A is open and

=1

o c i}
wG:) < Zv(Ri)"i_ﬁ < pi(A) +e
i=1

and it yields (4.3).

2. Let’s prove (4.4) for A € L(R?). For every £ > 0, we need to find K, compact
subset of R? such that

K. C A and u(K:) > p(A) +e.

If A is bounded then there exists F' € R(R?) such that A C F. From the previous
result, there exists an open set GG, such that

F\A C G. and  p(G.) < u(F\A)+e.
Thus, the set K. := F\G. C A is compact and satisfies
w(A) = p(F) —p(F\A) < pw(F) —w(Ge) +e = p(ke) +e.

Otherwise, if A is unbounded then one can consider the set A = AN B(0, R) and
let R to +oo0. O

With the same argument in theorem 4.8} one can show that

Theorem 4.18 The set A € P(RY) is Lebesgue measurable if and only if for every
€ > 0, there exists O. open set such that

A C O and P (ONA) < e

This theorem showed that B(RY) is ”dense” is L£L(RY) with respect to Lebesgue
measure 4. To conclude this subsection, we prove the following theorem.

Theorem 4.19 (R? L(R?), ;1) is the completion of (RY, B(R?), ).
Proof. Let’s consider the completion of B(R?)
BRY) = {AUM:AeBRY),MCN eBRY),u(N)=0}.

We show that B
BRY = L(RY).
Since p*(N) = u(N) = 0, one has that M is in L(R?) for every M C N. Thus,

B(RY) C L(RY).
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Let A be a set in £(R?). For any £ > 0, there exist K, closed and O, open sets such
that

K, C A C Og and M(Oe\Kz) <

|-

The following Borel sets K := U Ky and O := ﬂ Oy satisfy

>1 >1

K CACO and pu(O\K) = 0.

Thus,

A = K[ JA\K) € BRY.
and this complete the proof. O
Problem 21: Construct a set E C R?, where E = F; x E, (Cartesian product)
so that E is Lebesgue measurable in R?, but F; is not Lebesgue measurable in R.

Show that if £ and Fs are both Lebesgue measurable in R then will £} x Ey be
Lebesgue measurable in R2??

4.4 Hausdorff Measure

Here we state definitions and properties of the Hausdorff measure, without any
detailed proofs. For any 0 < s < +00, we define
71.3/2 0 )
a, = ———— with I'(s) = e *x* “dr (Fuler Gamma function).
[(s/2+1) () /0 ( / )

Notice that aq is the Lebesgue measure of the unit ball in R for every d € N. For
any given 0 < s < d and J > 0, we define for every £ C R? that

H5(E) := inf {Z Qg - (dlamT(En)) EC U E,,diam(E,) < 5} .
n=1 n=1

If s = 0 we only sum over non-empty FE,. Since the map ¢ — Hj(F) is non-
increasing, we then define

H(E) = lim Hj(E) = sup Hj(E).

6—0t >0
This is known as the Hausdorff metric outer measure.

Proposition 4.19.1 The Hausdorff outer measure H® satisfies the following prop-
erties:

(1) H° is the counting measure (meaning it just returns the number of elements
in a set).

44



(1)) H* =0 for s >d.
(iii) H*(x + E) = H*(E), H(AE) = PH(E).
(iv) H? = L2
We can use this outer measure to provide a notion of dimensionality of a set.
Proposition 4.19.2 Let 0 < s <t < 0o, and E C R%. Then
1. If H3(E) =0 for 0 < 6, then H*(E) = 0.
2. If H3(E) < oo then H'(E) = 0.
3. If H'(E) > 0 then H*(E) = oo.
With the previous proposition in mind, we can define
dimy(E) :==inf {0 < s <oo:H(E)=0}.
the Hausdorff dimension of E.
Example 4.4 The Hausdorff dimension of the Cantor set C' is In(2)/In(3).
Example 4.5 Any hyperplane with dimension k will have Hausdorff dimension k.

The Hausdorff measure is well-equipped to handle mappings between spaces of
different dimension:

Proposition 4.19.3 Suppose E C R* and f : E — R? be a Hélder continuous
function, meaning that for some L > 0, 6 €]0,1] we have

If(z) = fWI < Lile—yl"  forallz,ye€E.

Then,
Oés/nQ

s/mqys

H(f(E)) <

As many geometric objects (i.e. curves and surfaces) are defined in terms of smooth
mappings from between R? and R™, it turns out that H* is well-suited to describe
many geometric objects.

Proposition 4.19.4 Given a continuous curve vy parametrized as f : [a,b] — R,
we define

length(~y —sup{ZHf 11)H:a—t0<t1<...<tn—b},

where the supremum is taken over possible partitions {t;}. Then for any Lipschitz
f we will have
H(f(a,b])) = length(7).

In addition, if f € C! then length(y / |f/(t)| dt.



The same idea holds for more general manifolds:

Proposition 4.19.5 Let M C R? be a k-dimensional manifold of class C'. Let ¢
be a local chart of the manifold, meaning that for A C R*, ¢ : A — M is a C*
function, and V¢ has rank k in A. Then we have that

H*(p(A)) = surface area ((b(A)) = /A \/det(ﬁyi(b -0y, 0) dy.

In particular, if the manifold is the graph of a function f : R*™1 — R and M =
{(z, f(z)) : x € A}, then

HY(M) = surface area (M) = / V1+|Vf]2de.
A

In turn, M has Hausdorff dimension k and H* corresponds to the standard surface
measure.

Problem 22: Let £ = {(z,2%) : z € [0,1]}, £ C R% Prove that dimy(E) = 1.
Compute H'(E).

Problem 23: Prove Proposition 4.19.3

5 Measurable functions

Let (X, M) and (Y, ) be measurable spaces.
Definition 5.1 A map f : X — Y s measurable if and only if
f(B) € M for all Be N.

In the case, (Y, d) is a metric space and N' = B(Y") Borel o-algebra, we will say that
f is a Borel function.

Proposition 5.1.1 Let F be such that o(F) =N. Then f: X — Y is measurable

of
fY(F) e M for all F € F.

Proof. Observe that the collection
Ny = {AeN ffA)eM} C N
is an o-algebra on Y. Since F C Ny, it holds
o(F) € Ny

and it yields
Ny = N
The proof is complete. O
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Corollary 5.2 Let (X, dx) and (Y, dy) be metric space and M = B(X), N' = B(Y).

Then any continuous function f : X — Y is measurable.

Proof. Let F be a collection of all open sets in Y. By the continuity of f, it holds
f'(A) is open for all A € F,
and this particularly yields
f(A) € B(X) for all A € F.
Since o(F) = B(Y'), the above proposition implies that f is measurable. O
Problem 24: Assume that f: X — Y is measurable. Then
U = {F(B): BEN}

is the smallest o-algebra with respect to which f is measurable.

5.1 Real value functions

In the following discussion, we will be letting N” = B(R) (as is a common convention).
5.1.1 Basic properties
Given a measurable space (X, M), Consider the real value function

f:X = R = RU{—00,00}.

One can show that f is measurable if any only if one of the following holds

Lemma 5.3 Assume that f,g : X — R are measurable. Then the following func-
tions

cf, f+g, [ f-g. |fl, max{f,g} and min{f, g}

are measurable.
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Proof. 1. Let’s show that f 4 ¢ is measurable. For any b € R, it holds
(f+9)" ([o0,b)) = {z€X: f(a)+g(x) <b}

= U [{wGX:f(x)<q}m{x€X:g(m)<b—q}] € M.

qeQ

Thus, f + g is measurable.
2. f? is measurable. For any b > 0, it holds
()7 (=00,8) = {reX: @) <t} = {weX:|f()<Vb}
= {zeX:—Vb< f(x)<Vb} = f1(] =V V) € M.
As a consequence, the function

frg==[(f+9°— ¢

|

is measurable.

3. One can show that |f| is measurable. Thus,

frg—1f—4d
2

f+g+1f—4d

5 and min{ f, g} =

max{f,g} =

are measurable. O

Problem 25: Prove or give a counterexample: if (X, M) is a measurable space and
f: X — [—00,00] is a function such that

f((a,00)) € M for all @ € R,

then f is is a measurable function.
Problem 26: Give an example of a measurable space (X, M) and f : X — R such

that | f| is measurable but f is not measurable.

Point-wise convergence. Measurability is preserved by limiting operations of se-
quences of functions. Here operations are understood in a point-wise sense.

Proposition 5.3.1 If f, : X — R is measurable for all n > 1 then

sup fn, inf f,, lim sup f, and liminf f,
n>1 n>1 n—00 n—00

are measurable on X
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Proof. For any b € R, it holds

(supfn>_ ([o00.b) = (] {z€X: fulz) <b} € M

n>1

and

(jgflfn)_ ([o0b) = |J {zeX:ful)<b} € M

Thus, sup,,>; fn and inf,,>; f, are measurable. As a consequence, one has that
limsup f, = inf (sup fk> and liminf f, = sup (inf fk.)
n—00 n>1 k>n n—00 n>1 k>n

are measurable. O

Definition 5.4 A sequence of function (f,)n>1 converges pointwise to f if

ILm falz) = f(x) forall z € X.

From the above proposition, pointwise convergence preserves the measurability.

Corollary 5.5 If f, are measurable and converges pointwise to f then f is also
measurable.

Problem 27: Give an example of a measurable space (X, M) and a family (f;),g
such that f; : X — [0, 1] is measurable for every ¢ € R but the function f : X — [0, 1]
defined by

f(z) := sup fi(x) forall z € X
teR

is not measurable.

5.1.2 Simple functions

Given A € P(X), the function X4 : X — R defined by

1 forallz € A
Xa(r) =
0 for all z € A¢

is called the characteristic function of the set A. It is clear that X4 is a measurable
function if A is a measurable set.
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Definition 5.6 The function ¢ : X — R is simple if

N

Y = Z Ci* XE;
i=1
for some ¢; € R and E; € M.

It is clear that a simple function is measurable.

Remark 5.7 If ¢ is a simple function then there exists (A;), C M a collection
of finite mutually disjoint measurable sets such that

N
v = Z di - Xa,-
i=1

Theorem 5.8 (Approximation by simple functions) If f : X — R is a non-
negative measurable function then there exists a sequence of non-negative simple
functions (pn)n>1 such that

vn — [ pointwise.

In addition, if f is bounded then ¢, converges uniformly to f, i.e.,

lim |on— fllo = 0.

n—0o0

Proof. 1. For any n > 1, divide Range(f) = f(X) into sub-intervals with length
27", More precisely, let

B, = {zeX: f(z) >n}
and
L = [k’ 27" (k4 1) - 2_”) for all £ € {0,1,2,...,n2" — 1},

consider the function ¢, : X — [0, +00] such that

n-2"—1

Pn = Z k27" - XAk +n-XxB, with Ak,n = f71<Ik:,n)-
k=0

One can see that
e ¢, are non-negative simple functions for every n > 1;

e (¢©n)n>1 i a increasing sequence of functions, i.e.,

on(x) < @) for all z € X.
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2. Let us know show that nh_}rgo on(x) = f(z) for all x € X. Two cases may occur
o If f(z) = 400 then ¢, (x) =n for all n > 1 and it yields nlljr;(} on(T) = 400.
o If f(x) € [0,400) then for every n > f(z), we have
0 < f(z)—pn(x) < 27
Thus, nh_)ngo on(z) = f(2).
Therefore, ¢, converges pointwise to f.

3. Assume that |f(z)| < M for all x € X. We then have that
lf(x) —pn(z)] < 27" forallz € X;n > M.

Thus,
lim sup [f(z) —pn(z)] = 0
n—oo zeX
and it yields that ¢, converges uniformly to f. O

Corollary 5.9 Let f : X — R be measurable and uniformly bounded by M. Then
for e > 0 there exists simple functions p. and 1. such that

ve < f < e and lpe — Vel < €.
Proof. Decompose f into two parts
[T = max{0, f},
f=ft—=f with
f_ = maX{O, _f}
and then apply the previous lemma. O
Problem 28: Given (X, M) and (Y, ) measurable space and p a measure on M,
let f: X — Y be measurable. Denote by fyu : N'— [0, +o0c] such that
fin(A) = u(f1(A) for all A e V.

Show that fyu is a measure on N (called the push forward of p under f).

Problem 29: Given (X, M) and (Y, N') measurable space, let f : X — Y be such
that f(X) is countable. Show that f is measurable if

fy) € M forally e Y.

Problem 30: Suppose that f: R — R is a Lebesgue measurable function. Then
there exists a Borel measurable function g : R — R such that g(x) = f(z) for almost
every x € R.
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5.1.3 Convergence almost everywhere

Definition 5.10 Let (X, M, p) be a measure space and let (f, : X — R)n>l be a
sequence of functions on X. We say that B

e f, converges to f almost everywhere (f, == f) if there evists E € M with
w(E) =0 such that

lim f,(z) = f(x) for all x € X\E.

e f, converges to f almost uniformly (f, == f) if f is finite and for every
e > 0 there exists E. € M with u(E.) < ¢ such that

n—0oo z€X\E:

lim ( sup ]fn(x)—f(:v)]> = 0.

Basic properties: Assume that f, : X — R are Borel functions. The following
statements hold

(i). If the measure space (X, M, u) is complete then

fo = f = f is measurable.

(ii) If f, converges to f almost uniformly then f, converges to f almost every-
where.

(iii) If f, == f and f, == g then

f(z) = g(z) forae ze€ X.

Theorem 5.11 (Severini-Egorov) Let f, : X — R be a sequence of Borel func-
tions. Assume that (X, M, ) is a finite measure space, i.e., u(X) < oo. If f is a
finite Borel function then

fo==f = L

Proof. Assume that f,, converges to f almost everywhere. Then there exists £ € M
with p(E) = 0 such that

lim f,(z) = f(z) for all x € X\ E.

For every € > 0, we want to find E. € M such that u(E.) < ¢ and

lim (Sup Ifn(x)—f(l“)l) = 0.
n—00 zeX\E:

52



1. For any k,n > 1, denote by

= G{xEX|f—fZ|>%}

It is clear that Fj, is measurable. Moreover, the sequence of sets (Ek,)n>1 iS
decreasing for any k& > 1. This implies that

~ 1
lim Ey, = ﬂEkn = {xGX:limsup |fn(x) = f(x)] > E} = E.

n—00 n—00
Since p(Ex1) < u(X) < 400, one has

lim N(Ek,n) = N(Ek>

n—0o0

By the definition of F, it holds
E, C FE forallk >1

and it yields
lim wu(Eg,) = p(Ey) = 0 for all £ > 1.

n—oo

2. For every € > 0, one can find a sequence (ng)x>; such that

W(Epn) < % for all k > 1.

o0
The set E, := U Ej », has measure
k=1

[e.9]

= €
H(E%) < H l%cnk jg:'_g -
k=1 k=1

Moreover, for any k£ > 1, it holds

1
sup |f(z) — fi(z)] < + for all © > ny,.
z€X\E. k
Thus,
lim ( sup |fulz) — f<x>|> — 0
n=00 \ ze X\ E.
and the proof is complete. O
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Remark 5.12 The above theorem will be false in general if u(X) = 4o00. Indeed,
let’s consider X =R and

fn = Xntoo) for alln > 1.

We have that f, converges to O pointwise. On the other hand, for every E € M
with m(E) = 0, one has

sup fu(z) = 1 forallm > 1.
z€R\E

and this implies that

lim | sup fu(z)| = L
n=o0 \ zeR\E
Thus, f, does not converge to f almost uniformly.

Problem 31: Let (X, M,u) be a measure space and let {f, : X — R},>; be a
sequence of measurable functions. For any n > 1, denote by

1

By = foe XUt - h@ll > 5 |

Assume that ]
u(E,) < on forallm > 1,

show that {f,},>1 is pointwise convergent a.e on X.

Problem 32: Let (X, M, 1) be a measure space. A sequence of measurable func-
tions {f, : X — R},>1 is said to converge in measure to a measurable function f if
for every n > 0, it holds

T e € X |fu@) - f@)| > ) = 0.

(i) Show that if pu(X) < oo and {f,},>1 converges point-wise a.e. on X to a
measurable function f then {f,},>1 converges in measure to f.

(ii) Show that {f,},>1 converges in measure to f, then there exists a subsequences
of {fn}n>1 converges point-wise a.e. on X to f

Problem 33: Let g be a measurable function which is finite almost everywhere.
Suppose that f,, converges in measure to f, and that p is a finite measure. Prove
that

(i) fn g converges in measure to f - g.

(ii) if g, converges to g in measure, with f, g are finite a.e., then f,, - g, converges
in measure to f - g.
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5.1.4 Approximation by continuous functions

Definition 5.13 A measure p : B(RY) — [0,+00] is called a Radon measure if
wu(K) is finite for every compact subset K.

Theorem 5.14 (Lusin) Let i be a Radon measure on R? and let f : R — R be
Borel. Assume that

{w: f(z) #0} C A,
for some Borel set A with i(A) < oo. Then for every e > 0, there exits a continuous
function f.: RY = R such that

supp(f.) = {z € R?: f.(x) # 0}
18 contained in a compact set, and

iz eRY: L(2) £ f@)} < =
Proof. The proof is divided into several steps.

1. Assume that A is compact and 0 < f < 1. In this case, there exists a bounded
open set V such that

AcCV and V is compact.

Recalling the construction in theorem [5.§ the function f can be approximated
uniformly by a sequence of simple functions (¢, ),>1 defined as follows

271

fn = > k2T"-xa,,  owith  Ag, = fR27(k+1)27).
k=0

Observe that

1 1
1 = 5 XB with B, = {xERd:f(x)zﬁ},
1 . 4 1
Pn — Pn-1 = 2_n * XB, with B, = r e R - f(l’) — Op_1 > 2_n ’
we have
On = zn: i “ XB, and lim <sup lon(x) — f(x)|> = 0. (5.1)
AL n—o00 reX

i=1
Finally, since supp(f) C A, it holds

B, C ACV for all n > 1.
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2. For a fixed € > 0, there exist compact sets K, and open sets W,, such that

K, € B, W,
for all n > 1.
5
pVAK) < o
Set V,, = W, V, we have
K, C By, CVy, and u(Vu\K,) < 2% for all n > 1.

For any n > 1, let g : R — [0, 1] be such that

dyg ()
dKn (ZE) + dvﬁ (l’)

gn(x) = for all € R%.

Since dg, +dve > d(Ky, V) > 0, the function g, is a continuous with value in [0, 1]
and satisfies

1 for all x € K,,
gn(z) = for all n > 1.
0 for all z € V¢,

Thus, g, is an approximation of the characteristic function yp, for every n > 1.

3. A continuous approximation f. of f is defined by
fe(x) = i 1 gn() for all z € R%.
2n

n=1

We first claim that f. is continuous. Indeed, given any = € R?, we estimate

fo(y) = f(2)] < (Z%-\Qn(y)—gn(x)o +< > %-\gn(y)—gn(x)o

n=1 n=N+1
N 1

< 22_” ) ‘gn<y) _gn<x)| +2_N
n=1

for all y € R? and N > 1. This implies that

N
limsup |£.(y) - fo(x)] < limsup (Zgin-\gn@)—gn(x)r) Yow = o

y—x y—x —1
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Taking N — oo, we obtain that
limsup ’fs(y) - fe(x)‘ = 0.

Yy—x

Thus, f. is continuous at x. Moreover, since g, is non-negative, it holds

supp(fe(z)) = {weR’: f(2) #0} C [ J{zeR:gu(x)#0}

- [OJVn C V C V compact.
n=1
Finally, we have
{veR: fo(@) # f(@)} € (J{z eR:xp,(2) # gu(@)} € |J Vi\K),
n=1 n=1

and this yields

€

plo € R L(0) £ f(@) £ Y0 wVilK) £ 30

n=1 n=1

= E&.

4. Let’s extend our result to the case |f(z)| < M. In this case, we replace f = s

| M|
and has that |f| < 1. Then we decompose

[T = max{0, f}
f=f"—f  with
f~ = max{0,—f}.

Since f*, fT take values in [0, 1], for every € > 0 there exist f* continuous such
that supp(fF) are contained in compact sets and

pie e R f2 (@) # fH@) <

Then the approximation of fis f. = f& — f.

DO ™

5. Let’s now remove the compactness of A. From the density theorem (which we
gave for the Lebesgue measure in Theorem , but which holds for Radon measures),
for every A € B(Rd), there exists a compact set A such that

Ac A and pAA) < %

Set f:=f-x i From the previous step, there exists f. : R — R continuous with
support contained in a compact set such that

p({z e R L) £ F@)}) < 5
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Thus,
€ €
< -+5 =€

p({z eRY: £.(2) # f(2)}) < g < S+

6. Finally, let’s us remove the boundedness of f. Consider the decreasing sequence
of subsets of A

A, = {z eR:|f(2)| > n} foralln > 1.

Since p(A;) < u(A) < oo and ﬂ A, = @, it holds

n=1

Tim - p(A,) = M(ﬂ An) = 0.
n=1

For any € > 0, there exists ng > 0 sufficiently large such that u(Ag) < % and set

Je = (1_XAnO)'f-

Since f. is bounded by ng, then exists f. continuous with compact support such that

p({z e R L) 4 L)) < 5
This implies that
p({r e R f(0) £ f@)}) < S+5 = @
and the proof is complete. O

Corollary 5.15 Let ji be a Radon measure on B(R?) and let A be a Borel set with
pu(A) < +oo. Assume that f : A — R is a Borel function. Then for every ¢ > 0
there exists a compact set K. C A with n(A\K.) < € such that the restriction of f
on K., denote by f|k., is continuous.

Problem 34: Give an example of a Borel measurable function f : R — R such
that there does not exist a set B C R such that m (B¢) = 0 and f|p is a continuous
function on B

Problem 35: Let B C RY be a set of finite Lebesgue measure, with bounded
support. Construct a function ¢. € C2° so that m({¢. # x5}) < e.
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6 Lebesgue Integration

6.1 Non-negative measurable function

Given a measure space (X, M, u), we denote a class of non-negative simple functions

Si(X) = {gp:X—)[O,—Foo):(p:Zai-XAi with a; € [0,+00) and

i=1
A, Ay, ..., A, are mutually disjoint sets in ./\/l}
The Lebesgue integral of ¢ is defined as follows:

Definition 6.1 The (Lebesgue) integral of f over X w.r.t v is defined by

/ pdp(r) = / pdp = Y a; - p(Ay).

X b's P

Remark 6.2 In the above definition, we use the convention that 0 - oo = 0, i.e., if
a; =0 and p(A;) = 0o or a; = 0o and (A;) = 0 then a; - p(A;) = 0. Thus, one can
verify that the integral is independent of how the simple function is represented as a
linear combination of characteristic functions.

Example 6.1 The xq is not Riemann integral but
/XQ dm = 1-m(Q) = 0.
R

Moreover, / Xjo,,\@ = 1 but the lower Riemann integral of xppnq on [0,1] equals
[0,1]
to 0.

Example 6.2 Let i be a counting measure on Z". Given a sequence of nonnegative
number (ag)g>1, consider the function f : Z* — [0,+00) such that

f(k) = bg for all k > 1.

Then

Given two simple functions ¢y, 9 € S (X) and «a, § € [0, +00], the followings hold:

(i) /a-¢1+ﬁ-¢zdu=a-/¢1du+ﬁ-/@zdu;
X X X
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(ii) / rdp < / adp it 1 < .
X X
Definition 6.3 If the function f : X — [0, +00| is measurable then define

/fdu = Sup{/ edp g € Si(X) and wéf}.
X X

We say that f is integrable if

/fd,u< + 0o0.
X

/Afdu - /Xf-xAdu.

Basic properties: Given two integrable function f, g, the followings hold

For any A € M, we define

(). /on~f = a-/de/Lforalloz>O;

(ii). /Xf+gdu = /dewr/xgdu;

(iii)-/deué /ngu if f<g;

(iv). / fdu = / g dp if  f = g almost everywhere.

X X
Notice that (ii) and (iv) are nontrivial. Indeed, ¢, 1 € S, (X) satisfy o+ < f+g
does not imply that ¢ < f and ¢ < g. We will prove (ii) and (iv) later.

Theorem 6.4 (Monotone convergence theorem) Let (f,),>1 be a increasing
sequence of nonnegative measurable functions on X. Denote by

f(x) = lim f,(z) forallz € X.

n—o0

Then,

n—o0

/f dpu = lim fn dp.
X X

Proof. Since (f,(z)),>1 is increasing, the function f is well-defined, measurable,
and
flz) > fulz) forall z € X,n > 1.
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By the monotonicity, it holds

/fndMS /fdu for all n > 1,
b's b's
and it yields

n—oo

lim [ fudy < / fdu.
X X

To conclude the proof, we will show that

[ gaw < [ g
X n—oo X
Equivalently,

(1—¢)- / fdp < lim / fadp for all € > 0.
X n—oo X

For a fixed € > 0, we claim that

lim fodp > (1—¢)- / wdp for all S, (X) > ¢ < f.
X X

n—oo
Indeed, for any n > 1, we consider the set
A, = {zeX: fulr)>(1—¢e) ¢(x)}.

Since (f,,)n>1 is increasing and converges to f pointwise, the sequence of sets (A, ),>1
is increasing, i.e.,

Al g A2 g g An
and
lim A, = X.
n—oo

On the other hand, we have

/andu > /Anfndu > <1—g)./An¢du.

N
Y = Z Q; * XE;»
=1

Assume that

we compute

N N
lim pdp = lim (Zai'N(EimAn)> = Z%'M(Ez') = /‘Pdl"
i=1 X

n—oo f 4 n—00 —
Thus,
lim [ fodp > (1—¢)- / edp
and the proof is complete. O
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Corollary 6.5 Let f:g: X — [0,400] be measurable. Then

/Xf+gdu = /dewr/zgdu

Proof. It is known that there exist increasing sequences of simple functions (¢, )n>1
and (¢p,)p>1 in S (X) such that

lim ¢,(x) = f(x) and lim ¢, (z) = g(z) for all x € X.
n—oo n—oo

This implies that (¢, 4+, )n>1 is a increasing sequence of simple functions in S, (X)
and

lim ¢, + ¥, (x) = f(z)+ g(x) for all z € X.

n—oo

Using the monotone convergence theorem, we obtain that

/f+gdu = lim (/ Pn(T) + n() du)
X X
— Jin [ pudnt tiw [ = [ g+ [ gd

and the proof is complete. O

Problem 36: Show that the monotone convergence theorem fails for decreasing se-
quences of function. Does it hold for decreasing sequences on finite measure spaces?

Problem 37: Show that the monotone convergence theorem fails if the hypothesis
that fi, fo,... are nonnegative functions is dropped.

Problem 38: Let 1 be the counting measure on N. Use the monotone convergence
theorem to argue that for any a, , > 0 that

00 oo 00 oo
2D k=D

n=1 k=1 k=1 n=1

Problem 39: Let (f,,),>1 be a sequence of nonnegative measurable functions. Show

that N .
/X;fn(”f)d# = ;/an({ﬁ)dﬂ.

Problem 40: Let (f,)n,>1 be a sequence of nonnegative measurable functions such

that .
Z/ fo(x)dp <+ oc.
n=1 X

Show that f, converges to 0 almost everywhere.
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Lemma 6.6 (Chebychev/Markov inequality) Let f : X — [0,+00] be non-
negative. Then for all A > 0, it holds

1
plla e X f@) =N < 5 [ fau
X
Proof. Given \ > 0, we set

Xy ={zeX:f(x)=A} and ¢y = A xx,.

It is clear that
0 < px < f

The monotonicity implies that

/deu > /Xsoxdu = A p(X))

and it yields '
u{ze X | fz)>A}) < X-/fdu-
X

Corollary 6.7 Let f: X — [0,+00] be integrable, i.e.,

/fd,u< + 00.
X

Then the function f is finite almost everywhere in X and {x € X : f(x) > 0} is
o-finite, i.e.,

{reX: f(z)>0} C A, with w(Ay) < +oo.

Proof. Denote by
Xow = {zeX: f(x) =+o0}.

We have that
Xow € X, = {zeX: f(zx)>n} for all n > 1.

The monotonicity and the Chybechev’s inequality implies that
(X)) < p(X,) < % : /X fdu for all n > 1.
Taking n to 400, we obtain that
w(Xs) = 0.
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To complete the proof, one observes that

{reX:0< f(z) < +o0} C U Xi/n

n=1

with p(Xq/m) <n- / fdp < 4o00. O
X

Corollary 6.8 (Beppo Levi’s lemma) Let (f,)n>1 be a increasing sequence of
nonnegative measurable functions on X. Assume that

/fnd,u<M foralln >1
X

for some constant M. Then the function

flz) = h_g)lo fn(x) forallz e X

18 almost finite and lim fodp = / fdu.

Lemma 6.9 (Fatou’s lemma) Assume that (X, M, u) is a measure space. Let
(fr)n>1 be a sequence of non-negative measurable functions such that f, &e f.

Then
/fd,u < liminf /fndu.
X n—oo X

Proof. Consider the set of points where f,, converges to f
Xo = {z e X: lim f,(z) = f(x)}.
n—oo

By the above assumption, it holds that u(X\Xo) = 0. Thus, we only need to prove
that

lim inf fadp > fdp.
Xo

n—o0 XO

For every n > 1, the following function

gn(z) = inf fi(x) for all z € X.

k>n
is increasing and satisfies
gn(z) < fulz) and lim g,(x) = f(x) for all x € X.

n—oo
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Apply the monotone convergence theorem, we obtain that

fdp = lim [ g.dp
X0 n—o00 Xo

and it yields

fdp = liminf gndp < liminf fndp
n—00 n—0oo

Xo Xo Xo

The proof is complete. O

Corollary 6.10 For every sequence of mon-negative measurable functions f,, it
holds

n—oo n—

/liminffnd,u < liminf/ frdp.
X * Jx

Problem 41: Show that Fatou’s lemma does not hold for functions which take
negative values.

6.2 Integration of general measurable functions

Given a measure space (X, M, u), let f: X — R be measurable. The functions

[T = max{f,0}, [~ = max{—f,0},

are measurable and satisfy
f=1f—f and fl = fF+ 1.

Definition 6.11 The Lebesque integral of f is defined by

/X fdu = /X Fdy - /X Fdp

provided that/ frdu < 400 or/ [ dp < +o0.
X X

Notice that / fdu can take value +o0o or —oo. We say that f is integrable if and
X

[l = [ £ ran < o

Basic properties. Let f,g: X — R be integrable. Then the followings hold

only if
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(). /afdu:a'/fduforallaeR;
X X

(ii). /Xf+gdu=/de/~L+/ngu;

(iii). /fdug/gd,u if f<g ae.

(iv) /fdu‘ /Ifl dp.

Proof. (i), (iii) and (iv) are trivial. Let’s prove (ii) by setting h = f + g. We have
ho—h™ = fT—f +g" -9
Equivalently,
hWt+f+g9g = h +fr+g"
and it yields
/ AP+ f~+ g du = / h™+ fT+g" du
X X

The additive property of integral for non-negative function implies that

/h*du+/ f‘du+/ g dp = /h‘du+/ f*du+/9+du-
X X X X X X
Thus,

/hdu = /h+du—/h_du = /f+d,u—/ f_du+/g+d,u—/g_dﬂ
X X X X X X X
= /fdu+/gdu
X X

and the proof of (ii) is complete. O

Proposition 6.11.1 (Additivity and continuity of integration) Let f: X —
R be a integrable function and let (X,)n>1 be a sequence of measurable sets. The

following hold
(i). If (Xy)n>1 s mutually disjoint and cover X then

Jorae =3 [ ran

(7). If (X,)n>1 is decreasing then

/ fdp = lim fdu.
ﬂoo L Xn n—0o0 Xn

n=
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(73). If (X,)n>1 1S increasing and U X, = X then

n=1

lim fdp = /fd,u

n—oQ

Proof. We only need to prove the above proposition for non-negative measurable
functions.

(i). For every n > 1, denote by

Z f C XX
=1

One has that (f,,)n,>1 is increasing of non-negative measurable functions and con-
verges to f pointwise. By the monotone convergence theorem, it holds

fdu = lim/fnd,u: lim /fd,u: /fd,u.
/X n— 00 X n— 00 ; X; ; Xn

(ii). Set F = U X, denote by

n=1
= f-xe and  g» = [-xx,-

We have that (g,),>1 is decreasing and converges to g pointwise. This implies that
the sequence (h, := f — gn)n>1 is increasing of non-negative measurable functions
and converges pointwise to f — g. Thus, the monotone convergence theorem implies

that
[ r=gin = tim [ (r=a)

Since f is integrable, one has that

/ gdp = lim /gn dpu.
X n—oo z

/ fdu = lim/ fdu.
moo Xn n—o0 Xn

n=1

Thus,

(iii) is a consequence of (ii). O

sin(x)

Problem 42: Consider the set X = [7,00). Is f(z) =

on X? Does the improper Riemann integral of f exist?

Lebesgue integrable
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Theorem 6.12 (Lebesgue dominated convergence theorem) Let (X, M, i) be
a measure space and let (fn)n>1 be a sequence of measurable functions which con-
verges to a measurable function f almost everywhere. Assume that

fal <9 aexeX

for some integrable function g. Then f is integrable and
lim fodp = / f du.
n=eo Jx X
Proof. Since |f,| < g, it holds
g—fu g+ fn > 0 aexeX.
On the other hand, since f,, converges to f almost everywhere, one has

g—fo = g—f and g+ [, = g+ [.

The Fatou’s lemma yields

/g—fdu < liminf /g—fndu
X n—oo X
and

/g+fd,u < liminf /g—{—fnd“,
X X

n—oo

Since g is integrable, one has

lim sup /fn du. < /fdp < lirginf /fn du.
X X e X

n—oo
Thus,
lim fndp = /fdu.
X X

n—oo

and the proof is complete. O

Example 6.3 Let f, : R — R be such that

1
n if O<z<-—
n

fn<$) =

0 otherwise.

It is clear that (f)n>1 converges to f =0 pointwise. However,

/fndm = 1 does not converge to /fdm:O.
R R
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In this case, the Lebesque dominated convergence theorem can mot be applied here.
Indeed,

g(x) > sup fu(zr) > m  forallzx € {L l{

n>1 m+1"m
Thus,
. 1 1 — 1
d > . _——— frg B ——— =
/Xgm_ mzzlm (m m+1) m:1m+1 o
and g 1s not integrable. O

Absolute continuity of the Lebesgue integral. Let’s recall some basis facts:

(i) If f : X — R is integrable then f is finite almost everywhere;

(i) If / |fldm = 0 then f = 0 almost everywhere in X.
b

Proposition 6.12.1 (Absolute continuity) Suppose that f : X — R is inte-
grable. Then for every € > 0, there exists 0 > 0 such that for all A € M with

p(A) <6, it holds
[ e <
A

Moreover, there exists Xo € M such that u(Xo) < oo and

| e < e
X\ Xo

Proof. It is sufficient to prove the above proposition for non-negative f. For any
n > 1, we denote by

It is clear that (f,), > 1 is a increasing sequence of non-negative functions and
converges pointwise to f. Applying the monotone convergence theorem, we get

n—o0

lim fodp = /fd,u < 4 00.
X X

Thus, there exists ng € N such that

£

/X(f_fno)d# S 5
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Thus, for any A € M, we have

Jsaw = [ = tudns [ fudi < [ (= it o ut)

< %+n0'ﬂ<A)~

Choosing 6 = i, we obtain that
2710

/ fdu < ¢ for all pu(A) < 6.
A

To prove the second part of the proposition, denote by

E, = {xeX:f(x)e {n—li-l’%“’

we have -
Z/ fdp < /fdu< + 0.
n=1"En X

This implies that there exists n; € N such that

i/Enfd,u<€.

n=ni
Set

Xy = {m:f(x)>—}

we have that
wXo) < n- | fdu < +o00

and

The proof is complete 0

Remark 6.13 The above proposition fails if f is not integrable.

1
Indeed, let’s consider X = (0,1) and p Lebesgue measure on X. The function f = —
x

1
/ fdu = / —dy = + oc.
(0,6) (0,8 T
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Problem 43: Use the dominated convergence theorem to argue that

n

T\ 1 > 1
lim (1 — —) 24 dx = e T dx.

Problem 44: For any C' function f, prove the identity

d (! L d
- / f(r.y)de = / o fa ),

Definition 6.14 Consider the sequence of integrable function (fn)n>1. We say that

o (fn)n>1 is uniformly integrable if for every € > 0, there exists § > 0 such that

/ |fuldp < € foralln > 1, E € M with u(E) < ;
E

o (fn)n>1 is tight if for every e > 0, there exists Xo € M with p(X,) < 400
such that

/ \ful dp < € foralln > 1.
X\Xo

Theorem 6.15 (Vitali convergence theorem) Let (f,).>1 be a sequence of uni-
formly integrable and tight functions over X. Assume that

fn 25 f and f is integrable.

Then,
lim / |fo— fl du = 0.
n—oo X

Proof. 1. Let’s first prove the theorem in the case

u(X) < +oo.

Since f is integrable, f is finite almost everywhere. Thus, one can apply the Egorov’s
theorem to obtain that (f,),>; converges to f almost uniformly on X, i.e., for every
0 > 0 there exists Es > 0 such that

N0\ zeX\FE;

u(Es) <9 and lim < sup |fn(:t)—f(x)|> = 0.
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This implies that

— timswp [ |f=fuldp < lmswp [ (il dutimsup [ (f=fuldy
X\Es

n—oo n—oo E; n—oo

< timsup [ [f+ 1] duct p(X) - im sup [fola) = f()

n—00 Ejs *© reX\Es

= limsup lf| + | ful dia for all 9 > 0.

n—00 Es

The uniform integrability of (f,,),>1 and the absolute continuity of f implies that

I = limsup /|f—fn]du < € for all € > 0.
X

n—oo

Thus, taking € to 04, we get
lim |fo—fldp =0
n—oo X

2. Let’s now remove the boundedness of p(X). Observe that

e The tightness property of (f,),>1 implies that for every € > 0, there exists X!
such that

WX < +oo  and / fuldn < &
X\X2 2

e The absolute continuity of f implies that for every e > 0, there exists X2 such

that
(X3 < +oo and / |fldp < =
X\X2 2

Set X. = X! J X2, we have

pX) < oo and [ gl < 545 = =
X\ Xz

2 2
Therefore,
sy [ 1=l < e+timswp [ 1f = foldi = ¢
n—00 X n— 00 X,
for all € > 0, and the proof is complete. O

Corollary 6.16 Let (f,)n>1 be a sequence of non-negative integrable functions which
converges to 0 almost everywhere. Then

lim fn dp = 0

n—oo

if any only if (fn)n>1 is uniformly integmble and tight.
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The Vitali convergence theorem can be stated in a stronger way.

Theorem 6.17 A sequence of integrable f,, converges in L' to an integrable function
f if and only if

(a). fn converges to f in measure
(b). fn is uniformly integrable.

(c). For every e > 0 there exists a set pu(E) < oo so that for all n

/ | fal dp < €.
X\E

There are also other ways to characterize uniform integrability.

Theorem 6.18 Let F be a family of integrable functions. Consider the following
conditions.

1. F is uniformly integrable.
2. limy_,o SUp £ fx:|f(x)‘>t |f| dp = 0.

3. (De la Vallée Poussin) There ezists an increasing function vy : [0, 00) — [0, o0],

with .
lim M =

t—oo T

such that
SW/MNW<N
X

feF
Then (2) and (3) are equivalent and imply (1). 1If, in addition, sup/ |fl dp < oo,
feF Jx
then all three are equivalent.

Problem 45: For X = [0, 1], show that f,(x) = sin(nz) is uniformly integrable
and tight, but that it does not converge in L.

Problem 46: For X = [0, 1] give an example of a sequence which converges in
measure to 0 but does not converge almost everywhere.

Problem 47: Let f: X — R be integrable. Show that

im 1/n = T T .
| Am di = plx | f(z) #0)

n—-+oo

Problem 48: Let f : X — R be integrable and |f| < 1. Show that

fimint [ |77 dp = e | £ = 13-

n—-4o0o

73



6.2.1 The Radon-Nikodym theorem

For any f : X — [0, o] measurable function, let v : M — [0, +00] be such that
v(E) = / fdu for all £ € M.
E

It is easy to check that v is a measure on (X, M). Thanks to the absolute continuity
of the integral, we have that

p(E) =0 — /Efd,u = 0.

This leads to the following definition.

Definition 6.19 Given p and v measures on (X, M), we say that v is absolutely
continuous with respect to u, denote by v < u, if

w(lE) =0 == v(E) = 0.

In the other words, v is absolutely continuous with respect to p if for every € > 0,
there exists 0 > 0 such that

v(E) < ¢ for all E € M with p(E) < 0.

The following holds:

Theorem 6.20 (Radon-Nykodym theorem) Let (X, M, ) be a o-finite mea-
sure space, 1.e€.,

X = U A, with w(A,) < 400 foralln>1.
n=1

For every o-finite measure v on (X, M) such that v < p, there exists a unique
measurable function f: X — [0,00) such that

v(E) = /Ef dpu for all E € M.

d
The function f is called the Radon-Nikodym derivative and is denoted by d—y
1

Proof. 1. Suppose that both 1 and v are finite measure. The following collection
of extended-value measurable functions

F = {f:X—)[O,—i—oo}:/fd/Lgy(A) forallAG./\/l}
A
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is non-empty and satisfies
max{f,g} € F for all f,g € F.

Since v is finite, it holds that

?22 (/){fdu) < v(X) < oo.

Let (fn)n>1 € F be such that

lim fondp = sup (/ fd,u>.
n—oo Jx feFr X

Thus, the sequence of functions

gn = max{fi, -, fu} € F

is increasing and satisfies

lim g,(z) = g(x) and lim gndit = sup (/ fdu).
X feFr X

n—00 n—0o0

By Lebesgue’s monotone convergence theorem, one has

/gdu = lim /gndu < v(F) forall E e M (6.1)
E n—oo E

ger, /gdu=sup (/fdu)-
X ferF X

2. To obtain the equality in (6.1]), we shall prove that the non-negative measure v

defined by

and this implies that

w(E) = v(F) - / gdp  forall Ee M
E
is 0. Suppose vy # 0, then there exists a constant § > 0 sufficiently small such that
(X)) —d0-pu(X) > 0.
By the Hahn decomposition theorem, there exists a set P, N € M with

PN =@, PN =X
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satisfy the following properties

w(P')—=90-u(P) >0 foral M> P CP,

(N')—d-u(N') <0 for all M > N' C N.
In particular, we have
Ww(P) 8- u(P) = [w(X) — 5u(X)] — (V) = 5u(N)] > 0
and this implies that

WE) = 6 u(P)+ [ gdu > 5-u(P)

Since v < p, one then gets that u(P) > 0.

To complete this step, we shall show that the function g + § - xp is in F. Indeed,
for every F € M, it holds

v(E) = ngdMVO(E) > /Egdwv@(EﬂP)

> [gduss-wB0P) = [ (@45 xe)du
E E

Thus,

/ngu+5-u(P) < /X(g+5-><p)du < sup (/}(fdp&) - /ngu

and this yields a contradiction.

3. Students should be able to prove the uniqueness and also remove the finite
measure assumption on u, v. O

We remark that o-finiteness in the previous theorem is in fact necessary, as
demonstrated by the following example:

Example 6.4 Let u be the counting measure on (R, B(R)) and let v be the Lebesgue
measure. It is easy to see that v < p. However, if we had a Radon Nikodym
derivative, we would have

v(A) = / f(z)du(z) for all A € B(R).
A
If we let A = {a}, i.e. the set given by a singleton, we obtain that f(a) = 0. Since

this holds for all a, we have that f =0, and that hence v = 0. This is false, so such
a Radon Nikodym derivative does not exist.

76



Example 6.5 Suppose that f is a non-decreasing, continuously differentiable func-
tion on [0,1]. Consider the Lebesque-Stieltjes measure D f and the Lebesge measure
m. We note that

D(B) = [ fdm,

where f' is continuous on [0,1], and hence is integrable. This immediately implies

that Df is absolutely continuous with respect to m and that the Radon-Nikodym
dD f

derivative satisfies = f.
dm

Theorem 6.21 (The Lebesgue decomposition theorem) Let p and v be o-
finite measure on (X, M). Then,

V = Vg + Vs
such that

e v, is absolutely continuous w.r.t .

e v, and p are singular (denote by u L vg), i.e., there exists A, B € M such
that ANB=2, AUB =X, and

Proof. Observe that the following measure is o-finite
A= pu+v and o< A

By the Radon-Nikodym theorem, there exists f : X — [0, 00) measurable such that

E) = d\ = d d for all £ .
u(E) /Ef /Efu+/Efv or all E € M
Denote by

X: = {reX: f(x) >0} and Xy = {zeX: f(x)=0},

we have that
X,(X =2, X |JX = X

Define
v (E) = v(ENXy) and vs(E) = v(ENXy).

It is easy to check that

vs(X;) = v(XyNXp) = v(@) =0
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and
wxo) = [ fax = / 0d) = 0.
Xo Xo

Thus, 4 and v, are singular.

To complete the proof, we will show that v, < pu. Indeed, for any £ € M with

ILL(E) — 0, we ha\/e
/,L( ) /E M /E 1% O

/Efdz/: /EnXofdu%—/EnX+de:0.

and this implies that
/ fdv = 0.
ENXy

Thus, v,(F) = v(EN X, ) =0 and this complete the proof. O

In particular,

Corollary 6.22 As a consequence, it holds
v(E) = / g dp + v with ve L p.
E

Example 6.6 Let i be the Lebesgue measure on [0, 1] and let

x if x €[0,1/2]
flx) = -
1+2¢  ifze(1/2,1]

Consider the Lebesgque-Stieltjes measure D f associated with f. By the Lebesgue
decomposition theorem, we can decompose

Vo << I

Df =v, + v, with {
ve L .

In this case, we can also easily give explicit formulas for these measures. For every

E e Mn|0,1], it holds

v (E) = / f’(a:)da::/ 1d:v+/ 2dx,
BEN([0,1\{1/2}) EN[0,1/2) BN(1/2,1)

and

vi(E) = DAEN{1/2}) = 5 - 6,(E).
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Example 6.7 Consider f:[0,1] = R given by

f=x+ fo(x)

where C' is be the Cantor set and fo is the Cantor function. Here f is continu-
ously differentiable on intervals which don’t intersect the Cantor set. Consider the
Lebesgue-Stieltjes measure D f, we have

Df(E\C) = f'(x)dx = / ldz.
E\C E\C

On the other hand, since the Lebesque measure of C' is zero, we can write
Df(E) = Df(ENC)+ Df(E\C) =: vs(F) + v.(F).

Here the Radon-Nikodym derivative of v, is exactly 1 (given the formula above using
the fundamental theorem of calculus). On the other hand, the support of v is exactly
the Cantor set.

6.2.2 Signed measure

Let (X, M) be a measurable space. A signed measure v : M — R satisfies the
following properties

(1). v(2) =0;
(ii). v attains at most one of the values co or —oo;
(iii.) For all sequences of mutually disjoint sets (E,),>1 in M, it holds

: (GE) S

n=1

n=1 n=1

where the series Z v(E,) is absolutely convergent if v <U En> is finite.

Example 6.8 Let v, v~ be non-negative measure on (X, M) such that one of them
1s finite. Then
v =v—v (%)

18 a signed measure.

Question: Given a signed measure v, can we decompose v at in (*)?

Definition 6.23 Let v be a signed measure on (X, M). We say that
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o A e M is positive if
v(B) > 0 forall Be M,B C A;

o A c M is negative if
v(B) < 0 for all Be M,B C A,

o Ac M s null if
v(B) =0 for all B e M,B C A;

Lemma 6.24 (Hahn Lemma) For any A € M with 0 < v(A) < oo, there exists
a positive measurable set P C A with

0 < v(P) < oc.

Proof. Assume that A contains sets of negative measure. Let n; € Z' be the
smallest positive integer such that there exists M > E; C A such that
1

E - —.
V( 1) < -

The set A; = A\ E; C A satisfies

v(A) = v(A) —v(E) > V(A)—i-l > 0.

ni

k
If A; is positive then the proof is complete. Inductively, if Ay := A\ (U El> is not
i=1
positive, then let ny; € Z* be the smallest such that there exists M > Ej,, C Ay
with

1
I/(Ek+1> < - .
Nk+1
By the definition of nj,1, it holds
1
v(B) > — —— for all M > B C A,
Ng41 —

If we never stop then the set

P = A\ (GEJ Cc A

satisfies

0 < V(P)—i—iy(Ei) =v(A) < +00 and v(P) < +oo.

=1
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In particular, we have

S S D BN = P ) < o

and this implies that lim n; = +o00. Thus, for every B C P, it holds that

1—00

and this yields

The proof is complete. O

Theorem 6.25 (Hahn decomposition theorem) Let v be a signed measure on
(X, M). Then there ezists P € M positive and N € M negative such that

PﬂN — @ and PUN = X.
Proof. Assume that

v(A) < +oo  forall Ae M.

By Hahn lemma, we can define
v = sup{r(A): A€ M is positive}.

There exists a sequence of positive sets (A,),>1 € M such that lim v(4,) = 7.

n—oo

The following set
P = U AZ € M,

i=1
is positive and
v(P) = v(Ag) +v(P\Ar) > v(Ax).

and this implies that
v = v(P) < oo.

Set N = X\ P € M, we have that

PﬂN = 2  and PUN = X.
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To complete the proof, we show that N is negative. Indeed, assume by a contradic-
tion that N is not negative. Then there exists a set £ C N such that v(£) > 0. In
this case, by Hahn lemma, there exists P € M such that

P C E, v(P) > 0 and P is positive.

Set P = P|J P, we have that P is positive and

v(P) = v(P)+v(P) > v
and it yields a contradiction. O
Theorem 6.26 (Jordan decomposition theorem) Let v be a signed measure.
Then there ezist two nonnegative measure v, v~ on (X, M) such that one of them

1s finite and
v =vt—uv and vt Lum. (6.2)

Proof. From Hahn’s theorem, there exist a positive measurable set P and a negative
measurable set N such that

X =PJN ad P[N =2
The following measure v+ : M — [0, +00]
vH(E) = v(ENP) and v (E) = —v(ENN) for all E € M.

satisfy (6.2)) O

Notice that v* is unique. We say that
e v " is the positive part of v;
e 1~ is the negative part of v;

e |v| = v + v is the total variation of v.

Corollary 6.27 Let v and p be o-finite signed measures on (X, M). There exist
o-finite measures v, and vs such that

Vo < 1
V = Vg + U with

ve L .
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Proof. Using Jordan decomposition theorem, we have
v =v —v with vt L vT
and v* positive. By the Lebesgue decomposition theorem, it holds

l/ai < W
vE = vF vt with

vE L op.

s

Set v, = v — v, and v, = v} — v

; +, we have

Vg < [ and ve L op

and the proof is complete. O

Problem 49: Let f : [a,b] — R satisfy

sup | f(wit1) — f(ai)| < oo
PEPq )

Define a function (mapping the set of closed subintervals of [a, b] to R) by D f([a, b]) =
f(b) — f(a). Argue that one can extend this function as a signed measure on the
Borel sets. How would we interpret D f?7 What would the Lebesgue decomposition
mean?

Example 6.9 Consider the function f(x) = cos(2wx) on the set x € [0,1]. Con-
sider the signed measure D f which satisfies D f([a,b]) = f(b) — f(a). By the Hahn

decomposition, there exist two positive measure such that
Df = Dft-Df, Df* L Df”
Let us now seek for formulas of these measures in this explicit case. Observe that

e On the interval [0,1/2], f is a decreasing function, and hence —Df is also a
Lebesgue-Stieltjes measure;

e On the interval (1/2,1], f is an increasing function, and hence D[ is exactly
the Lebesgue-Stieltjes measure.

Thus we may write
DfH(E) = DFEN(1/2,1]),  ~Df (E) = DF(EN[0,1/2)).

If we wanted we could make these measures even more explicit, by writing out their
Radon-Nikodym derivative:

DfT(E) = —/ 27 sin(27x) dz.
EN(1/2,1]
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6.2.3 Relation between Riemann and Lebesgue integrals
Let f be a real valued function on [a,b]. We first show that

Lemma 6.28 If f is Riemann integrable, i.e., f is bounded and

sup L(f,P) = _inf U(f,P),

PEP 1) PePla,p

then f is Lebesque integrable and

(R)/[ b]f(zrj) dr = fdm.

[a,b]

Proof. Assume that f is Riemann integrable. Then there exists (P,),>1 an increas-
ing sequence of partitions of [a, b] such that

lim L(f,P,) = lim U(f,P,) = (R) f(z) dz

n—oo n—oo [a,b]

For any n > 1, assume that

P, = {a=z0,21,...,Tm_1,Tm = b},
we define
m—1
n = My Xawg,xip1]y m; = inf x),
@ ; Xleiia] me[%mi+1[f( )
and
m—1
d)n - Z M; - X[zi,@it1] M; = sup f(l’)
P r€[zi, it

It holds that (¢,),>1 is increasing sequence of functions, (1,),>1 is decreasing se-
quence of functions, and

on < f < Yy, foralln >1

and
lim pdm = lim pdm = (R) f(z) dx.

n—oQ [a,b} n—oo [a,b} [a,b]

The following functions

g = limeg, < f < G = limuy,

n—oo n—oo

are Lebesgue integrable. Using the dominated convergence theorem, we have

/ gdm = lim [ p,dm = (R) f(z) de = lim ¢,dm = / Gdm.
[a,b] n—oo

n—00 [a,b] [a,b]
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and this yields
/ (G —gldm = 0 — G(z) = f(z) = g(x) a.ex € [a,b].
[a,b]
This implies that f is Lebesgue measurable and

fdm = / gdm = (R) f(z) dx.
[a,]

[a,b] [a,b]

The proof is complete. U

Theorem 6.29 Let f : [a,b] — R be bounded. Then f is Riemann integrable if and

only if
Dy = {x € [a,b] : f is discontinuous}

has zero Lebesgue measure.

Sketch of proof. For any 6 > 0, denote by

W(z) = inf f(y), H(x) = sup f(y)
y€lr—d,2+0] yElx—0,x+9]
and
h(z) = lim h°(z), H(z) = lim H°(x).
6—0 6—0

We have that
(i) h(z) < f(x) < H(z) for all x € [a, b];
(ii) f is continuous at x if and only if h(x) = H(z);

(iii) A is lower semi-continuous and H is upper semi-continuous. Thus, h, H are
Lebesgue measurable.

Key point. For any simple functions such that

plr) < flz) < d(x)

it holds
e(x) < h(z) < H(z) < 9(x) a.e x € [a,b].

o If f is Riemman integrable then there exist (¢n)n>1 and (¢, ),>1 sequences of
simple functions

b
on < f < 4, and lim opdm = (R)/ f(z)dz = lim Ypdm.

n—oo [a,b} n—0o0 [a,b]
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This implies that

/ hdm = Hdm
[a,b] [a,b]

and it yields h = H a.e. = € [a, b].

o If D¢ has zero Lebesgue measure then f is continuous almost everywhere. Consider
the partition

P, = {a =2 <x < ... < Zgn9g < Tm_y = b}
with
. b—a : n
zi = at+i-— forall7 € {0,1,...,2" — 1}
and
on—1 o1
Pn = Zmi'X[m,mi+1[a wn = ZMZX[(EZ,(EHJ[
i=0 i=0

By the definition of h and H, one has
oo = b and ¢, = H.

Thus,
P Pn —> [

The dominated convergence theorem implies that

lim opdm = lim Ypdm = fdm
n—oo [a,b] n—oo [a,b] [a,b}
and it yields
b
(R) / fdx = fdm.
a [a,b]
The proof is complete. O

7 LP-spaces

7.1 LP-spaces with 1 < p < +o0

Let (X, M, i) be a measure space. For every given p > 1, we define
LP(X,pu) = {f : X = R is measurable : / |f|Pdu < —i—oo}
X

and

I = ([ rvan)” dora g e £
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Every function f € £P(X,u) is finite almost everywhere. Moreover, LF(X, i) is a
vector space since

a-f, f+ge Ll (X, p) for all f,g € L7(X, 1), € R.

Indeed,
- fllp, = laf-Ifll, < +o0

and

If+gly = /X(|f+9|p)dM < ot (/X|f|pdu+/x|g|pdu) < +oo.

Notice that (£F(X, u), || - ||,) is NOT a normed space. Indeed, the function

0 zeX\{a}

is not 0 but || f||, = 0.

Equivalent relation in £P(X, u): For any f,g € LP(X, ), we say that
f~gq = f =9 ae x € X.

Denote by
LP(X,p) = LOX p)/ ~

and for any f € LP (X, p)
f=Agell(X,p):g=1F ae}

It is clear that 3
||f||p = Hng for all g € f.
The function || - ||, : LP?(X, u) — [0, 4+00) such that

1l = N1
is well-defined.
We claim that (LP(X, u), || - ||,) is @ norm space. Indeed, one can see that
(i). ||fll, = 0if any only if f =0 € LP(X, u);
(ii). For any @ € R and f € LP(X, p), it holds
e fllp = fed - 11l
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Therefore, we only need to show that

If+glle < [lfll,+ gl f,9 € L7(X, ).

In order to do so, let us recall some basic inequalities.

Lemma 7.1 (Holder’s inequality) Letp,q € [1,+00) be conjugate. If f € LP(X, )
and g € LY(X, ) then fg € LY(X,u) and

gl < 171 - llglle- (%)
Proof. If f or g is 0 then it is trivial. Otherwise, we define
F(z) = /() and  G(x) = g(x)
1f1lp lgllq
One has that
1Ellp = NGy = 1
and (x) is equivalent to
IFGl, < 1.
Using Young’s inequality, we have
F(x)P |G(x)?
F(z) - G(z)| < [Pl | [G@)
p q|
Thus,
1 1 1 1
/|FG|dM < —'/ IFI”du+—-/ Glidpy = =+= =1
X P Jx 4 Jx p g
and the proof is complete O

Corollary 7.2 If u(X) < 400 then it holds
L7 (X, pn) C LPY(X, ) for all 1 < p; < py < +00.

Proof. Consider the conjugate pair

D2 P2
(p>q) = (_7 >
P1 P2 — D1

For any f € LP2(X, u), it holds

fIP* e LP(X,p) and 1 € LIY(X,p).

Applying the Holder’s inequality, we get

1 1 1--
/X|f|” dp < P Mtlq = w(X) 72 - [[FlI7, < +o0

and it yields f € LP' (X, p). O
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Lemma 7.3 (Minskowki’s inequality) Let p € [1,+00) and f,g € LP(X, ).
Then f+ g € LP(X, u) and
1F+glle < 1Fllp + gl

Proof. It is easy to prove the lemma for p = 1. Assume that p > 1 and ¢ is its
conjugate. Since pq = pq(1/p+1/q) = p+ ¢, it holds

If+glP™ € LYX,p)  forall f,geLP(X,p).

Applying the Hélder’s inequality, we get

/X|f+g!”_1'\f!du < I +al=H, Wl = 1F+gllp - 1Al

and
JArarelaldi < s+ ol gl = 17+ gl Dol
Thus,
15 aPdn < (Ul + gl 1F +

Dividing by ||f + gHg_l, and noting that the left hand side is ||f + g||”, we then
obtain

If+ally < 171+ llgll-
The proof is complete. U

Problem 50: Assume that p > 2. Use the triangle inequality and the convexity of

2P to show that
H f—y

|22 C< 201 + ol

This inequality is related to the uniform conveazzty of the L norm. Note that the
p = 2 case is related to the parallelogram identity.

Problem 51: Use Holder’s inequality (several times) to prove the following:

/ f(@)g(z —y)h(y) dx dy < || fllpllgllqlIR]lr,
R4 JRA
where 111

Shi4- =2

p q T

Problem 52: Suppose that f € LPNL", with 1 <p < s < r < co. Show that

11l < IR

Minkowski’s inequality shows that (L?(X, u), || - ||,) is a normed space. We are
now going to show that it is actually a Banach space.
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Theorem 7.4 (Riesz-Fischer) Let (f,)n>1 be a Cauchy sequence in LP(X, ).
Then there exists f € LP(X, ) such that

(i) There exists a subsequence (fn,)k>1 Of (fu)n>1 which converges to f almost
everywhere.

(i) fn converges to f in LP(X, u), i.e
lim | fn = fll, = 0
n—o0
Proof. Since (f,,)n>1 is Cauchy, we can find (f,,, )k>1 C (fn)n>1 such that

[ fanss — forlly < 277 forall k> 1.

Denote by

k
Z | frser (2) = fos(x)|  and Z | s (2) = fu(@)],

we have

k k
lgelly < Y Mo = Sy < D270 <1,
i=1 i=1

(gn)n>1 is increasing and g, 2o .

Thus, the monotone convergence theorem implies that

glPdpy = lim gnlPdp < 1
H H
X n—oo X

and it yields g € L?(X, u). In particular,

Z Fne (2) = fon (@)

is finite almost everywhere. Thus,

S () + Z [fper (@) = fap(z)] is convergent a.e.

and we define

F@) = fu @)+ [foes (@) = fu(2)] -

It is clear that f,, — f and

Il < Ifndle +llgll, < 400 = f € L(X,p).
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To complete the proof, since (f,,)n>1 is Cauchy, we only to show that f,, converges
to fin LP(X, p). For any k > 1, consider the function

hi(x) = [fn. () = f(2)
we have that b, == 0, and

bl < (1 + 1 ful + 1) € LHX, p).

The dominated convergence theorem implies that

lim / | fro, — fIPdp = lim / |hi|Pdp = 0
k—o0 X k—o0 X
and the proof is complete. O

As a consequence of Fatou’s lemma, dominated convergence theorem, the Vitali
convergence theorem, and the previous proposition we have the following:

Corollary 7.5 Let (f,)n>1 be a sequence in LP(X, u). Assume that
o g
(1) If (fu)n>1 is bounded in LP(X, ) then f € LP(X, u) and

Il < tmint [ £l

(11) If there exists g € LP(X, ) such that
|fu(z)] < g(x) for alla.e. x € X, foralln>1,

then f, converges to f in LP(X, ).

(111) (fn)n>1 is uniformly integrable and tight then f, converges to f in LP(X, u).

Notice that .
fo — f = [ falle = 1 flp-

Proposition 7.5.1 Let (f,)n>1 be a sequence in LP(X, p). If

fo == fELX(X,pn)  and  full, = (£l

then f, REiN f.
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Proof. Consider the function

_ S@P )P falz) = f2)P
2 20

gn ()
By convexity of t?, we have that
g >0 and g, = [fP

The Fatou’s lemma implies

imint [ loaldn = [ 7P

Recalling that || f,,||, — || f]lp, we then obtain that

limsup/ |fo — fIPdp < 0.
X

n—o0

and it yields f, LEiN f. O

7.2 L™-space

Given a measure space (X, M, ), let f: X — R be Borel. We define the essential
supremum of f as the following:

o If n({|f| > M}) >0 for all M > 0 then || f||o = 0.

e Otherwise,

[flle = inf{M >0:pu(|f|>M)=0} < +oo

We say that f is essentially bounded if || f||o is finite. In this case, we write
fe L™(X,p).
Notice that for any f € £ (X, u), it holds
(a). |f(z)] < |If|lo for ae. z € X;
(b). The essential supremum of f can be defined by

| flle := min{M >0:|f(z)| <M a.e.}.
Example 7.1 Consider f : [0,1] — R to be the Dirichlet function (i.e. the function
which is 1 on the rationals and 0 on the irrationals). Then || f|le = 0, but f is not

equal to the zero function.
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We denote by
(X, p) = L2 (X,p) [ ~,

the following holds:
Proposition 7.5.2 (L*(X, u),| - ||e) s @ Banach space.
Proof. Given any Cauchy sequence (f,,)n>1 in L>(X, 1), we set

An = {z e X [fu(x)] > [Ifnlloc}

and
Bum = {z € X |fn(x) = fu(@)] > [ fm = folloc}-
By the definition of || - ||o, it holds

w(A,) = p(Bum) = 0 for all n,m > 1,

e (39U (8m)

n,m=1

and thus the set

has a zero measure. Set X := X\ X;, we have

|fm(z) = foul(@)] < ||fin — falloo for all z € X.

In particular, (f,(z)),>1 is a Cauchy sequence in X. Thus, it is converges. Define

lim f,(z) if z€X,

Nn—00
flz) =
0 if S XQ.

One can easily check that
[fllo < limsup [[falle < + o0
n—oo
and it yields f € L*°(X, u). To complete the proof, we will show that
lim ||f,— fllo = 0
n—o0
Observe that

Fn(@) = F@] < M= falloo + | fnl@) = f(2)] - forallz e X.
Since (fn)n>1 is Cauchy in L*°(X, u) , there exists N. > 0 such that

[ fm = fulle < & forallm,n> N,
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and this implies that
[falx) = f(@)] < e+ |fm(z) = f(z)]  forall m,m > N..
For any z € X, we take m to 400 and obtain that
|fo(z) = fz)] < € for all n > N.

and it yields
N fo— fllo < € for all n > N..

The proof is complete. U

Proposition 7.5.3 (Relation between || - || and || -||,) Assume that f € LP N
L for some 1 < p < 400. Then,

fe L and  dim |flly = [|flle:

q——+00
q=>p

Proof. For any p < ¢, we have

Qd — D, q_pd q—p . pd
/lel ) /lel P < 11 /lel ,

1-2 P
I£lle < A fllee ™ - lIfll7 <+ o0

and it yields

Thus, f is in LY and

. . 5
timsup £, < Tmsup (175" 1715) = 1/l

q—00 q—o0

To complete the proof, we need to show that
[flle < liminf [|f]],.
q—00

Equivalently, for any a < || f||~, it holds that

- o
liminf [ fll, > a
Applying Markov’s inequality, we get
1 _
0 < n{lfl>ap) = n({lfr>a) < oo [ e = @l
X

and this implies that

1flly = a-p({|f]>a}).
Taking ¢ to +00, we then obtain

liminf ||f]l, > a-liminfu({|f| > a})s = a.
q—0 q—00

The proof is complete O
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Definition 7.6 (Convergence in measure) Let (f,),>1 and [ be measurable func-

tions from X toR. We say that (f,)n>1 converges in measure to f if for everyn > 0,
it holds

Tim p({z e X:|fu—fl>n}) = 0.

Proposition 7.6.1 Let (f,)n>1 and f be Borel functions from X to R. The follow-
ing statements hold:

(1). If (X) < oo and {f,}n>1 converges point-wise a.e. on X to a measurable
function f then {f,}n>1 converges in measure to f.

(7). If {fn}tn>1 converges in measure to f, then there exists a subsequences of
{fn}n>1 converges point-wise a.e. on X to f.

Proof. (i). By the Severini-Egorov theorem, for any £ > 0, there exists some set
E. such that

WE) <= and  lim sup |ful@) - f(2)] = 0 (1)

n—0o0 IEX\EE
For any n > 0, set
Ay = {ze X |fulz) = f(2)] > n},
we have
WAL = (AL 0B+ p(AN\E) < 2+ (A7 0 (X\E.))
From (1), there exists INV,, > 0 such that

|fu(z) — f(2)] < n for all n > N,,z € X\E..

Thus,
ApN(X\E;) = 0 foralln>N,

and it yields

limsup u(Ay) < e+ limsup u(A) N(X\E,)) = €.

n—-+o0o n—o00

Taking ¢ to 0+, we obtain that

limsup pu(A4y) = 0

n—-+o0o

and the proof is complete. O
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7.3 Dense subsets in L?

In this subsection, we will show that the set of simple functions and the set of of
continuous functions with compact support are dense in LP.

Proposition 7.6.2 Assume that
S = {p: X > R:¢ issimple}.

For any 1 < p < 400, it holds B
S = L~

Proof. For any f € L?, it holds that f is finite almost everywhere, and
f=r=rf

where f* = max{f,0} and f~ = max{—f,0} are non-negative functions. Thus,
we can assume that f is non-negative. Recalling the approximation theorem, there
exists a increasing sequence of simple functions (¢;,),>1 C S such that

On 225 f and on(x) < f(x) ae. x€X.
Thus, the dominated convergence theorem implies that ¢, converges to f in LP. [J
Let © be an open subset in RY. The set
C.(Q) = {f Q= R continuous functions with supp(f) compact}
is a vector space.
Theorem 7.7 Let pu: B(2) — [0, +00] be a Radon measure, i.e.,
p(K) < +o0 for all K C Q compact.

The set C.(S2) is dense in LP(S2, p).

Proof. It is sufficient to show that for any f € L”(2, u) non-negative and ¢ > 0,
there exists f. € C.(2) such that

Ife = fll, < e

This is divided into several steps:

1. Assume that Q = R? and

0 < [[flle < M and  supp(f) C B(0,r).
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Since p is radon, we have that

u(B(0,r)) < pu(B(0,r) < +oc.

By Lusin’s theorem, there exists f. € C.(R?) such that

Ifelo < M and  p(B.:={z€R”: f.(z) # f(z)}) <

Thus,
[t gpdu = [ 1 fran < @upeue) - o
R E.
and it yields
1=l <

2. Let’s now remove the assumption

supp(f) € B(0,r).

For every n > 1, we set
gn = [ XBOn)-

Using the dominated convergence theorem, one can show that
lim g, — fll, = 0.
n—oo

In particular, there exists n. > 0 sufficiently large such that
€
lgn. = Flp < .
From the previous step, on can find f. € C.(R%) such that

|fe = gnsHp <

DO M

and it yields
1fe = fllpy <

DO | ™

3. To remove the assumption
0 < Iflle < M,
we consider the sequence of functions

9n = [ XE, with  E, = {x € X : f(z) <n}.
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which converges to f in L”. Thus, there exists n. > 0 sufficiently large such that

3
_ < —,
lgn. = Fllp < 2

From the previous step, on can find f. € C.(R?) such that

€ 5
Hfs_gns“p < 5 = ||f€_f||p < 5
2 2
4. Let’s go back to the case Q C R? open. We denote by
f(z), x €
f =
0, x € Q°
and fi : B(R?) — [0, +o0] such that
a(A) = p(ANQ) for all A € B(R?).
From the previous steps, there exists f. € C.(R?) such that
- € — €
I=flb <5 = ||Be-f| <3
p

To complete the proof, we modify f. so that its support is contained in Q. Let
(Vi)n>1 be a sequence of open bounded subsets of 2 such that

V, C V,ou  and Uv. =«
n=1

We set dve ()
_ Vi &
gn(x) = [fe(x)- dye, ,(z) + dy, ()

It is clear that

Supp(gn) C Vn-i—la |gn| S fa and gn ﬁ fe € Q.

Hence, g,, converges to f. in LP(€), u). In particular, there exists n. > 0 sufficiently
large such that

- €
— < —.
[ gne — fllp, < 9
Therefore, set f. = g,. we have that f. € C.(2) and
Ife = fllp < €
and the proof is complete. O
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Corollary 7.8 (Translation continuity in L?) Let f be in LP(RY), 1 < p < oo.

Then
lim |f(z+h)— f(x)|Pde = 0

[h|—=0  JRd

Proof. From the above theorem, for every € > 0 there exists f. € C.(R%) such that

€
— < =
5=l <
Let K. be the compact support of f.. Consider the compact set
K. C K. = {z eR?: dg.(x) <1},

we have )
supp(f-(-+ h)) C K. for all |h| < 1.

For every |h| < 1, one estimates

[ m - fapis = [ I+ h) - o

< ( sup |fe(x)_fe(y)|p>'£d(f(e)'

lz—y[<|h|

Notice that f. is uniformly continuous in R?, we have

lim |fe(z + h) — fo(z)Pdz = 0.

h—0+ R4

In particular, there exists 6. > 0 small such that |h| < .

3

5+ 1) = £l < 5

and this implies that

3¢
<

1FCHR) = FOllp = IfC+h) = L0l +2-1fe = fllo =

The proof is complete. U

Problem 53: Assume that p(X) < oo and 1 < p,q < 400 are a conjugate pair.
Show that if f: X — R is a Borel function such that

fg € LYX,p) for all g € LP(X, p)

then f is in L"(X, u) for r € [1,¢].
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Problem 54: Let 1 < p < oo. Show that if f € LP(R? u) (u is the d-Lebesgue
measure) and f is uniformly continuous, then

f(z) = 0.

[[]| =00

Is it still true if f is just continuous?
Problem 55: Let {f,},>1 be the sequence defined by

fn(w) = # for all xr € (0, 1) .

Show that f, € LP((0,1),m) and f,, — 0 in L? for every 1 < p < 2.

t
Problem 56: Prove Hardy’s inequality, namely that if F(t) = tl/ f(t)dt then
0

for 1 <p< oo
IFllsooon < 25 - 1 luogocey

Problem 57: One can define the Fourier transform of an L! function via
1 .
F(HN) = —/ t)e A dt.
(NN == [ 0

This definition makes sense for any A by Holder’s inequality. However, one often
would like to make sense of the Fourier transform of an L? function, and this point-
wise definition does not make sense. However, one can directly compute that

(F(Xpe)s F(X1ae)) = (Xibudls X[dse])-

Argue that this formula allows us to define a Fourier transform on L? and that the
Fourier transform is an isometry on L2

7.4 Dual space of L’
Given a real Banach space (B, || - ||), the dual space of B is defined by

B* = {T:B—R : T islinear and bounded}

with norm
T(z)| _ !T(ﬂf)!‘
oy |7l lzii=1 |||l

Notice that if 7" € B* then T is continuous.

1Tl =

Goal: Given a measure space (X, M, ) and 1 < p < 400, find [LP(X, u)]".
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Let f € LY(X, u) where ¢ is the conjugate of p, i.e.,

11
-+- =1 — p+q = pq.
poq

Consider the linear functional T : L?(X, ) — R such that

Ty(o) = [ Fradu forallge (X,

The followings hold:

Proposition 7.8.1 Given any f € L9 with p > 1, the map T is bounded and

1Tyl = 1 fllq-

If X is o-finite then the same result holds for p =1 and ¢ = .

Proof. Two cases are considered:

1. Assume that p > 1. From Holder’s inequality, we have

1@l < [ faldi < I8l lgly  forallge L2
X
Thus, the map 7% is bounded and

ITpll« < 1 lg- (7.1)

We need to show that [|f||, < [|T¥]l«. If f = O then it is trivial. Otherwise, we
consider we consider

/]
1£1lq

g = Sign(f)-< )p c L? with lgll, = 1.

We compute that

1 . 1 £l
Ti(g) = - [ T rde = 7 [ |fl%dp = = = Il
1£114 /X Ifllg /X 1£114

and this yields (7.1)).

2. Assume that p =1,¢ = +00 and X is o-finite. In this case, we also have that

T,(g)| < / Faldn < 1fll- / gldu  forall g € L.
X X

Thus, the map T is bounded with ||T%||. < ||f|l. To compute the proof, we need
to show that

ITslle = 11 Nl (7.2)
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Notice that the function

g = sign(f) ¢ L.
For every € > 0, one needs to find g. € L! such that

lglly = 1 and  |Tp(ge)| > [Iflloc — e
By the definition of || - ||o, the following set
A: = {ze X [f@)] > [[flle —€}

have a positive measure. Since p is o-finite, there exists B. C A, such that

0 < u(B:) < + o0

Consider the function g. : X — R such that

ge = sign(f)-;((gz)-

X B:
9e = / dp =1
ol = e

We compute

and .
Ty(ge)| = /fgdu‘ = fldp = || flle — &
T (92)] i (B B€| | il
Thus,
\Trlle > [[flloo —€ for all € > 0,
and this yields ((7.2)). O

As a consequence, the linear map T : LY — [LP]* defined by
T[f] = Ty for all f € LY
is isometry, .i.e.,
Ifllg = ITUI = [ITell« forall f el

In particular, it is linear, bounded and injective. The next theorem will show that
T is actually onto for p > 1.

Theorem 7.9 (Riesz representation theorem for (L?)*) Given anyp > 1, the
map T : LY — [LP|* such that

T0) = [ fodu  foralfeLiger
X
is an isometric isomorphism of L onto [LP|*, i.e., T is bijective and
1T =TI = A = flle
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Proof. From the previous proposition, we only need to show that 7' is onto, i.e.,
for any F' € [LP]*, find f € L? such that

Tf] = F.

Equivalently,

T(fl(g) = / f-gdu = F(g)  forall g € L. (%)
X
The proof of (*) is divided into several steps:

1. Assume that u(X) < +oo. Recalling that the set
S = {p: X —=>R:¢ isasimple function}

is dense in LP. Thus, by the continuity of T[f] and F', it is sufficient to check (x)
for all g = ¢ € S. Indeed, if (x) holds for all g = ¢ € S then for every g € L?, there
exists (¢n)n>1 C Sp such that

v, convergesto g in LP.
and thus
Tifll9) = lim T(fl(pn) = lim Flg.) = Flg).

n—o0

On the other hand, since Ty and F' are linear, (x) holds for all simple functions if

any only if it holds for all measurable characteristic functions. Therefore, we need
to find f € L9 such that

/f'XA dp = F(xa) for all A € M.
X

Let v : M — R be such that
v(A) = F(xa) for all A € M.
One can check that v is a sign measure on (M, u). Indeed,
v(@) = F(0) =0 and v(A) < +o00  forall Ae M.

Given (A,),>1 a disjoint sequence of sets, we have

XA = ZXAZ-, A = UA"‘
i=1 n=1

Using the dominated convergent theorem, we get

Z XA; — XA
=1
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and this implies that

v(A) = Flxa) = lim F(Zw) = lim } F(xa)

k=1 k=1
= lim > v(A) = v(Ap).
e k=1 k=1

On the other hand, if (A) = 0 then x4 = 0 in L” and this implies that
v(A) = F(xa) = 0.

The measure v is absolutely continuous with respect to . Using Radon-Nikodym
theorem, there exists f : X — R measurable such that

F(xa) = v(4) = /f~XAd,u for all A € M
b

and it yields
F(p) = /f-gpdu for all p € S.
X

Choosing ¢ = sign(f) € S, we have
1
/le! dp = F(o) < IFl-llell, = I1Fl - p(X)r < 400

and thus f € L'. To show that f € L%, we consider a sequence of simple functions
(on)n>1 € S such that

pn == fand  ea| < |f].

The following function

gn = Sign(f)-< had >g

lenllq
is in L™ and satisfies

ol = 1 o = 17eol ad [ el de =l
X
Using the Fatou’s lemma, one gets
I fll; < liminf ||p,l[, = liminf /]gpn-gn|du < liminf /\f-gn\du

= liminf
n—oo

/ f-gndu’ — liminf |[F(g)| < |IF]..
X n—oo
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Thus,
fel® and  flly < s

Using the previous proposition, we obtain that

£ =11 fllg-

2. X is o-finite. Then there exists (A, ),>x increasing such that
X = U A, and w(A,) < + oc.
n=1

From step 1, let f,, € LI(A,, 1) be such that

F(g) = / fo-gdp  forall g € LP(A,, p).
An

Since (A;,)n>1 is increasing, one has that
fm = fa a.e.r € A,,m>n.

Denote by
flz) = lim f,(x) ae reX
n—oo

The Fatou’s lemma implies that

1l < lminf [|£.[l, < [|F].

and the dominated convergence theorem yields

F(g) = /f-gdu for all g € L”.
X

3. In general, X is non o-finite then for any o-finite set A, let f4 € L9(A, u) be
such that

Flo) = [ fa-gdn  forallg e L7 p).
A
Introduce the constant
M = sup{||fallq: A C X is o—finite} < |F| .

Choosing (A,,),>1 increasing sequence of sets such that limy, ||fa,|, = M, and we

define .
B = |J A fp = lim fa,.
n=1

n—oo

By a contradiction argument, one can show that

F(g-xx\B) = 0 for all g € L?
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and this implies that

/fB'gdu:F(g) for all g € L?.
X

The proof is complete. O

Corollary 7.10 Given (X, M, 1) a measure space, and 1 < p < oo, then LP(X, u)
is reflexive, i.e.,
[LP(X, w)]™ = LP(X, ).

It means that the identical map
i LP(X, ) = [LP(X p)]”
such that
i) = F(f)  forall FeLP(X, p)]

18 1sometric isomorphism.

7.5 Weak convergence
Given p > 1, let ¢ is its conjugate, i.e., 1/p+1/q = 1.

Definition 7.11 (Weak convergence) We say that a sequence (f,,)n>1 C LP(X, u)
converges weakly to f € LP(X, u) (denote by f, LN f)if

n—oo

lim fop du = / fodu for all p € LY(X, p).
X X

Example 7.2 Let f,, be an orthonormal sequence in L?(X, ). Then, f, converges
weakly to zero.

Lemma 7.12 (The Riemann-Lebesgue lemma) For any f € L*(R), it holds

o

lim f(t)sin(at) dt = 0.
a—oo J_ o

Sketch of proof. 1. Suppose f is an indicator function of an interval [b, ¢|. Then,
by explicit computation

lim [ f(¢)-sin(at)dt = lim L (— cos(ab) + cos(ac)) = 0.

a—r 00 R a—0o0
Given any set F with finite Lebesgue measure, for any € > 0, there exists a finite

collection of find disjoint intervals I; such that m (EA (UK I j)) < ¢. This then

j=1
gives

‘/XE(t) sin(at) dt’ < ’/(XE — Xuz,) sin(at) dt’ + ‘/XU,J. sin(at) dt‘.
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The first term is bounded by ¢, while the second goes to zero by the explicit com-
putation above. Hence we have Riemann Lebesgue for indicator functions. By
linearity, we also have the Riemann-Lebesgue lemma for simple functions.

2. By linearity, we also have the Riemann-Lebesgue lemma for simple functions.
Now let f, be a sequence of simple functions converging to f in L!. We then have

‘/f sin(at) dt‘ ‘/ — fn(t)) sin(at) dt‘ ’/fn ) sin(at) dt‘

The first term goes to zero in n (uniformly in @), while by what we’ve already proven
we know that the second term goes to zero as a — oo. This then proves the desired
result. O

As a consequence, the following holds:
Example 7.3 The sequence f, = sin(nx) converges weakly to zero in L>®(R).

Problem 58: Prove that the sequence f,(z) = ¢™* n € Z, is a maximal orthogonal
sequence in LZ((—m, 7)) (complex-valued, L? functions on the interval (—m,7)).

Some basis facts.

() If (fa)n>1 converges to f in LP(X, u) then (fn)n>1 converges weakly to f in
LP(X, p).

Indeed, using Holder’s inequality, we have

lim sup
n—o0

‘Auz—ﬁ-ww}s limsup [ — 1, - lilly = 0

n—oo

for all ¢ € L4. Thus,

lim | (fu—f)-pdu = 0.

n—0o0 X

(b) If (fn)n>1 converges weakly to f in LP(X, u) then
liminf [ full, > [ fllp-

Indeed, using Riesz-representation theorem, we have

1l = 1T = sup /mﬂ: sup @m/hmw
llellg=1 X lellg=1 n—oo | Jx
<  su liminf || f, = liminf || f,],.
< sw (Hminf |l llel,) = lmint 4],
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(¢) If (fu)n>1 converges weakly to f in LP(X, ) then the sequence (fn)n>1 is
bounded.

Recalling that L?(X, p) is Banach and reflexive, the Banach Alaoglu’s lemma yields
the following compactness result.

Theorem 7.13 (Weak compactness in L”) If 1 < p < oo and (fn)n>1 @S a
bounded sequence in LP, i.e.,

sup || full, < M < +oo.
n>1

Then there exists f € LP and a subsequence (fy, )k>1 of (fo)n>1 such that f,, L f.

Remark 7.14 The weak compactness theorem does not hold when p = 1. For
exzample, if we consider the sequence in L'(R) given by f,(z) = no(xz/n), where ¢

is a non-negative function satisfying | ¢ = 1, then f, is bounded in L' but does

not converge weakly to anything. In particular, we have, for g € L, which is also
continuous, we get

[ a9 g00).

This cannot be represented as the integral of g times an L' function. This indicates
that f,, actually converges weakly to a measure: namely the Dirac mass centered at
zero. Indeed, it is possible to recover a sort of compactness for L' functions if one
1s willing to relax to consider measures.

Let’s provide a sufficient condition of convergence in LP.

Proposition 7.14.1 (Radon-Riesz Theorem) For 1 < p < oo, assume that

fo == and | full, = IS

Then, f, converges to f in LP.

Proof. 1. To get an idea, let us start with p = 2. In this case, we have
1fu = FUI2 = Wfull2 +1LF12 = 2(fn, ),

where (f,, f) = /fnfdu is the L? inner product. Taking n — oo and using both
fn— fand ||f.]] = || f]l, we obtain that

i (IFalls + 1715 = 200, 1) = 2-IfIlE =207, 6) = 0.

2. Two sources for the proof of the case 1 < p < oo are page 78 in Riesz’s functional
analysis book, or at this linkl. Two cases are considered:
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If p > 2 then one can show that

14+¢P > 1+ pt+ Chlt]

for some constant C; > 0. In particular, applying this inequality for ¢ = ! "f_ ! ,
we have F Nk ! f f FIP

1420 > 14p- 2L 40y |2

‘ 7 7 7
Thus,

[ful? > [fIP+p(fo = FIFIP sign(f) + Cr - [ fu — fIP
and this yields

Pdy > dptp- | (Fa— ) [fPsign(f)dp+ Cy [ |fo — FlPdp.
/X|f| W /X|f| Wt p /X(f £) - 117 sign(f)du + 1/le flPdy

Taking n — +o00, and using both f, — f and || f,|| — || f]|, we obtain that

/ fPdu > / fPdp+ 0+ Cy - limsup / o — fIPdp.
X X X

n—oo
This implies that
lim / |fo — fIPdp = 0.
n—oo X

To complete the proof, we will consider the case 1 < p < 2. In this case, we
have the inequality (for some ¢; > 0)

c|t|p for |t| > 1,
L+t —1—pt >
cit?  for [t < 1.

fn_f
f

Applying this inequality to t = , and then multiplying by | |, we obtain
— If |f, — f| < f then
[fal? = fIP 4 p(fa = DI e [ = FPLAP
— If |fo — f| > f then
[fal? = |f1P+ p(fo = DUF2f + e | fu = fIP

This implies that

/ fo— flPdp < / 1P — ldi
| fn=fI<f |[fn—fI<f
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IN

([ )y =) |
= Cz-|!f\|£/2-</ \fn!p—lf\p—p(fn—f)lf\p2f)2
lfn=fI<f

On the set where |f,, — f| > f, we obtain the same integral inequality as in
the case where p > 2, namely

/ fulPdp > / P+ p- / (fa = ) - [f P sign(f)dp
| fn=FfI>f | fn=FfI>f | fn=f1>f

fe / fo — fIPdp.
|[fo=FfI>f

Hence,

[ 10 gPan < G s ( / Ifnlp—|f|”—p(fn—f)|f|”‘2fdu)
X X

se{1,1/2}
and it yields
lim/ |fn — fIPdp = 0.
n—oo X

The proof is complete. O

Theorem 7.15 Let Q C R? is open and bounded, with () < co and 1 < p < oo.
Assume that (fn)n>1 converges to f almost everywhere in ) and

sup I full, < M for some M > 0.

Then, f, converges weakly to f in LP(Q).

Proof. Using Egoroft’s theorem, for every € > 0 there exists E. C €2 such that

w(E:) < e and  lim ( sup |fn(l’)—f(fﬂ)|> = 0.

n=00 \ xeQ\E.:

For any g € L9, we have

/(fn—f)9d$ < \fn—f||g|dx—|—/ | fn — fllglda.
0 E. 0

E.

Since f,, converges uniformly to f in Q\E., we have that

sup |fu(z) — f(2)] < € for all n > N..
2€Q\Fe
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Using the Holder’s inequality, we get

[ =1 lolan < (/ \fn—frpdu)”-uguq
Q\E- Q\E.

< w(QY? - glly - € for all n > N..
On the other hand, using the Fatou’s lemma, we have

Il < it fll, < M

and this implies that ||f, — f||, < 2M. Thus,

/ f = fal - lgldp < 2M-(/ |g|qd,u)q
E. o

By the continuity property of Lebesgue integral, we have

lim lg|%dp = 0.
E.

e—0

and this yields

lim [ (f—fu)-gdp = 0 for all g € L%

n—oo Q

Therefore, f, converges weakly to g. O

Problem 59: Suppose that u, € C*([0,1]) satisfy u, — u and «/, — v/, both in
L?, and u € C'. Argue that u, converges strongly to u in L?.

Problem 60: Show that if f,, converges strongly to f in L” and g,, converges weakly
to g in LY, with p and ¢ Holder conjugate, then

tiw [ fugudu= [ fgdn

8 Product measures

8.1 Product measures and Fubini’s theorem

Given (X, M) and (Y, N') measurable spaces, denote by
XxY = {(z,y):ze X yeY}

For any A € M and B € N, a set

A X B is a measurable rectangle.
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Let R be a collection of £ C X x Y such that

M A, e M, B, € N,
E = |J A xB,
n=1 Aann ﬂ AmXBmZQ

One can easily check that R is an algebra.

Definition 8.1 (Product o-algebra) The collection
MxxN = o(R)

is called the product o-algebra of M and N

Proposition 8.1.1 Let (X, M, u) and (Y,N,v) be o-finite measure spaces. If E €
M x N then

(1). For any (x,y) € X x Y, it holds
E, = {yeY:(z,y) € E} and E, = {reX:(z,y) € E}
are measurable.
(ii). The following functions
x —v(E,) and y — u(Ey)

are Borel. Moreover,

Proof. It is divided into several steps:

(i). Let’s consider
N
E = (JAixB € R.
i=1

For any (z,y) € X x Y, it holds

N N
E, = [JAixB), and E, = | J(4 x By,

i=1 =1

(Az X Bl)x = and (Az X Bz)y =
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This implies that E, € N and E, € M and
RCF={EeMxN:E,eN,E,e M forall (z,y) € X xY}.
Since F is a o-algebra, one has that F = M x N.

(ii). Assume that p and v are finite measure. Set
G = {FeMxN:E satisfies (ii)}.

we need show that
G = MxN.
We first claim that
R C G.

N
Indeed, for any set £ = U A; X B; € R, it holds that the functions z — v(E,)

i=1

and y — u(E,) defined by

v(E,) = V<U<Ai><81~>x> = > By

=1

~

and
W(E,) = u<U<Az-><Bz->y> = > nA) X )

are Borel and satisfies

By Halmos’s theorem, if G is monotone, i.e., for any monotone sequence of sets
(En)n>1 C G converges to E, it holds that E € G. Then,

o(R) C G = MxN = G.
To complete this part, we show that G is monotone. Two cases are considered:

e If (E"),>1 C G is increasing and converges to E then both (E}),>1 and (£} )n>1
are increasing and converge to E, and F, respectively. This implies that ,u(E;’)
and v(E7) are also increasing and

lim p(Ey) = p(Ey),  lim v(EY) = v(E,). (8.1)

In particular, the functions

x — v(E,) and y — u(Ey)
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are Borel. Using the monotone convergent theorem, we obtain that

/I/(Ex) dp = lim v(EX)dp = lim v(E,)dv = /Eydy
X Y

and F isin G.

e With a similar argument, we can show that if (E"),>; C G is decreasing and
converges to . In this case, we need to use the finite property of u and v to

verify (8.1).

(iii). Assume that p and v are o-finite. Then there exists increasing sequence of
sets (X,)n, > 1 and (Y},),>1 such that

X =X, v = [JV and puX,)v(,) < +oo foralln>1
n=1

n=1
Denote by
Hn = HX, and Up = Vy,.
For any £ € M x N, we have that
vn(Ey) = v(E:NY,) T— v(E,)

and
i(E) = n(E,nX,) 1= ulE,).

Thus, the functions
r — v(E,) and y — u(E,)

are Borel. Again, using the monotone convergent theorem, we get

/V(Ex)du = lim [ v,(E;)dp = lim Un(Ey)d iy
X

= lim pn(Ey)dy, = lm [ p,(E,) dv = /,u(Ey)dl/
b Y

n—o0 Yn n—o0
and the proof is complete. O

Theorem 8.2 Let (X, M,u) and (Y,N,v) be o-finite measure spaces. The map
pRv:MxN —[0,+00] such that

(p@Vv)(E) = /)(V(Ex)dﬂ = / w(Ey)dv  for all E € M x N

Y

15 an o-finite measure. Moreover, ;1 @ v is a unique measure satisfied
(H©V)(Ax B) = p(A)-v(B)
for all Ae M and B e N.
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Proof. Let’s show that u ® v is o-additive. For any mutually disjoint sequence of
sets (E™),>1 € M x N, we have

(L@ V) (UEn> = /Xy< UE” )du = /XZV((Eg)dN
_ Z/XI/(E;‘)CZM = Y (wev)(E.).

n=1

Thus, p ® v is a measure.

To show that p ® v is o-finite. Let (X,,), > 1 and (Y},),>1 be such that
X = GX”’ Y = GY" and XY, < + for all n > 1.
n=1 n—1
Denote by 7, := X,, X Y,,, we have
XxY = G Zn and pRv(Z,) = wX,) xvY, < +oo
n=1

and the proof is complete. O

Corollary 8.3 Let E € M x N be such that
(h@v)(E) = 0.

Then it holds
w(Ey) =0 vae yey

v(E,) =0 poae xeX.

Theorem 8.4 (Tonelli’s theorem) Let (X, M, pn) and (Y,N,v) be o-finite mea-
sure spaces. Let f: X XY — [0, 00| be measurable (on the product space). Then all
of the following integrals are well-defined and the following equalities hold:

fadper) = [ [ tepwds = [ [ fepa. @2)

XxXY

Proof. Assume that f = yg for E € M x N. By the previous theorem, we have

famdusr) = @onE) = [ B = [ p(B)i

- /X/Yf(x,y)dydu:/Y/Xf(x,y;lﬂdu
11

5

X XY



Thus, (8.2)) holds for simple functions. For a general f, we can approximate f by
an increasing of simple sequence f,, : X x Y — [0. + oo] such that

lim f,(x,y) = f(z,y) for all (z,y) € X x Y.
n—oo

By the monotone converging theorem, it holds that

fla,y)dp®r) = lim falz,y)d(p @ v).
XxY N0 JX XY
On the other hand, for any z € X, the sequence f,(z,-) is increasing and con-
verges pointwise to f(z,-). Thus, y — f(z,y) is Borel and = / fulz,y)dv is an

Y
increasing sequence of Borel functions such that

lim fna:y /fxy for all z € X.

n—oo

Again, the monotone converging theorem, one has

lim /X /Y Fuli, y)dvdy = /X /Y F(z,y)dvdp

fadnsr) = [ [ fe g

Similarly, we can also show that

foy)d(pev) = /Y /X £z, y)dpudv.

and this yields

X XY

XxXY

The proof is complete. U

Using the above theorem and decompose the function f = f* — f~ with f* =
max{0, f} and f~ = max{0, —f}, we can prove the following theorem.

Theorem 8.5 (Fubini’s theorem) Let (X, M, pu) and (Y,N,v) be o-finite mea-
sure spaces. A measurable function

f:XxY - R

18 integrable if

o[ ([ [ ()} <

where fY(x) = f*(y) = f(x,y). In this case,

[ riwey) = /y /X Frdudy = /X /Y Fodvd,



Proof. I would leave it to students to read. O

Example 8.1 Consider the space X =Y = [0,1], where X is equipped with the
Lebesgue measure m and Y s equipped with the counting measure . Consider the
function f(z,y) = Xa=y. Then

/X/Yf(x,y)du(y)dm(x)Z/dem(x)ZI#O:/Odu //fxy ) dm(z) du(y).

This demonstrates why one needs o-finite measure spaces in order to have a Fubini
theorem (indeed 1 is not o-finite).

Example 8.2 Consider the function

22 — y?

f(xay):ma

on the set E =[0,1] x [0,1]. The integrand is precisely 0,0, tan™'(y/z). Hence one
can integrate explictly, and one gets that

/Olfolf(x,y)dxdyz—g#%:/glfolf@’y)dydw.

Hence the assumption on integrability is essential in Fubini’s theorem.

Example 8.3 Consider X =Y = N both equipped with the counting measure L.
Consider the function f(i,7) = Xi=j — Xi=j+1- Then

/x/yfdﬂduzzzf(i’j):17&0:22f(2’=j):/y/xfdudu-

This example again reiterates the need for absolute integrability in Fubini’s theorem.

8.2 Convolution and Approximation

Let f and g be Borel function from R to R. Assume that the mapy ~ f(z—y)-g(y)
is in LY(R?) for every € R%. The convolution product f * g is defined by

(f*g)(x /f:c— (y) dy for all z € RY.

The following holds:

Lemma 8.6 Let p and q be conjugated. For any f € LP(RY) and g € L4(R?), it
holds that f * g is continuous and

1 #gllee < 1fllp - llglle-
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Proof. For any x € R¢, we have that

Fro@l = | [ s | < 17 =y laly = 161, ol

and it yields
1f * glle < Wfllp - llglly < oo
To show that f * g is continuous, we estimate

[(f*g)(x+h)—(f*g)(r)] < flx+h—y) — flx—y)|-g9(y) dy

Rd
< lf@h =)= fl@ =)l llglly

The translation continuity in L” implies that

limsup |(f * g)(x +h) = (f* g)(z)| < ||g!|q'|,1li|glo||f(flf+h—')—f(x—')Hp =0

|h|—0

and it yields the continuity of f * g. O

Some basic properties:
(a) (f*g)(z)=(g* f)(x) for all z € R%
(b) Let 1 < p,q,r < +o0 be such that

1 1 1
- = 1+-.
p q r

For any f € L? and g € L%, one has that

1f = glle < 11l llgllg-
In particular, if f € L' and g € L9 then

1 *glly < WAl Ngllg -
(c) If f,g and h are in L' then (by Fubini’s theorem) it holds
(fxg)xh = fx(gxh).

Proposition 8.6.1 (Smoothness) Let f € LP(R?) and K € C™(RY). Then the
function f* K is in C™(RY) and

DY(fxK) = fxDK

d
where a = (aq, g, - -+, ag) with Zai <m and
i=1
olel
D%g = /

ax?l - .aad(L‘d'

118



Idea of proof. We have that
(f*K)(x) = [ fle—y)-Kydy = | fly) Kz —y)dy.
R4 Rd
For any i € 1,d, one has
Of*K) . _ OK(z —y)

implies that f * K is in C'. By induction, one can show that f x K is in C™(R¢) O

dy.

€ L4, the map (x) is continuous and this

Approximation by smooth functions. Consider (¢.).~o C L}(R?) such that

(i). ¢ >0 and / @e(z)dxr =1 for all € > 0;

Rd

(ii) For every 6 > 0, it holds

lim ¢ (v)dr = 0.

e20 J)jz)>5

Proposition 8.6.2 The followings holds

(i) If f € L™ is continuous at xo then
lim (f %)) = Flxo).
In addition, iof f € L™ is uniformly continuous then
lm || f* e — fllo = 0.
e—0
(i) If f € LP then
lim £ % . = fll, = 0.

Proposition 8.6.3 Let Q C R? be open. Then C°(Q) is dense in LP(Q) for every
1<p<4o0.

Proof. Since C.(Q?) is dense in L”, we only need to prove that

Ce(2) S C=(Q).

Given any f € C.(Q), we need to construct {f,}m>1 € C°(f2) such that f,, con-
verges to f in LP.
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In order to do so, we extend f to R? such that

f(z) r €
flz) =
0 zeRN\Q.
Introduce a standard modifier
52
C e g’ lz| < e
pE(I) =
0 lz| > e
with
1

C:

7
/ el=P-1dxy
|| <1

The function p. satisfies the following properties

(i) pe € C(RY)  supp(p:) € B(0,¢);

(ii) pe >0 and / pe(z)dx = 1,

Rd

(iii) For every € > 0, one has

lim p(x)dr = 0.

€70 J||z]|>6

For any m > 1, denote by

fm(x) = frpi(z) = (x —y)-po(y)dy

Rd

From the previous proposition, it holds

fm € C(Q) and  supp(fm) € supp(f)+ supp (p ) C KCQ

1
m

for some compact set K and m > 1 sufficiently large. On the other hand, since f is
uniformly continuous, we have that

m—r0o0 m—r0o0
This implies that for m > 1 sufficiently large it holds

/|fm—f|”d1' - [|fm—f|pdx < (B fu — fI.
Q K
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Thus, f,, converges to f in LP. O

Recalling the Weierstrass theorem, for all f € C.(R?), there exists a sequence of
polynomials (P;)g>; which converges to f uniformly on all compact subsets of R,
we obtain the following.

Corollary 8.7 Given any X € B(R?Y) bounded, define
Py = {P:X = R:P isa polynomial} .

Then, the set Px is dense in LP for all 1 < p < oo.

9 A tour of Calculus topics for measure theory

Here we're going to review a few ideas from calculus in the context of measure
theory. This is meant to expose us to ideas and techniques, rather than to develop
anything fully. The proofs are small modifications of Giovanni Leoni’s lecture notes
on measure theory.

The first goal will be to create an analog of the formula

d t
— s)ds = f(t),
5 | s =
which holds in some measure theoretic sense. The appropriate version is as follows:

Theorem 9.1 (Lebesgue differentiation) Let u be a Radon measure on R (over
the Borel sets), and let f: RY — R be a locally integrable function, i.e.,

/|f($)|du(217) < 400 for all K compact.
K

Then there ezists a Borel set E with u(E) = 0 so that for any x € E° we have

[ 1) - @l dnte) =0

r=0% w(B(x, 7)) JB@n)

Any point where the above limit is zero is known (when p is the Lebesgue measure)
as a Lebesque point of f. Essentially f is locally well-behaved, in a very controlled
sense, near Lebesgue points. The previous theorem is sometimes stated as “almost
every point is a Lebesgue point of f”. Any Lebesgue point will satisfy
1
=0t u(B(x, 7)) B

This can be interpreted as saying that locally integrable functions actually are equal
to local averages at most places.

The proof of this theorem requires some machinery. In particular, it uses the
(Hardy-Littlewood) maximal function:
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Definition 9.2 (Maximal function) Given a locally integrable function f, the
mazximal function M(f) of f is given by

0 if W(B(z,7)) =0 for some r > 0,

— 1
M(f)(x) : sup—/ |fldp  otherwise.
r>0 pu(B(z,r) JB@n

Maximal functions are important technical tools in several topics, in particular in
the study of Fourier analysis and singular integrals (which are important for classical
solution formulas for differential equations).

Theorem 9.3 Let u be a Radon measure over the Borel sets in RY. Then

1. If feL?, 1 <p< o0, then
1Ml < Cld, )l

2. If f € L! then fort >0,
C(d
e M) > ) < S [ 11

Note that M(f) will not necessarily be in L' if f € L'. The inequality that the
theorem gives is known as a weak L' inequality.

Proof of Lebesgue differentiation theorem (L' case): By the density theorem,
we can approximate f be a function g. € C.(R?) such that

1) - a.ldn < <

Since it is continuous on a compact set, g. is uniformly continuous, i.e., n > 0 there
exists a 0 > 0 so that

9e(x) —g-(y)] < n  forall |z —y| <é.

Hence, for any 0 < r < d, we have

1 1
— (2) — 0. dpuly) < ——— dule) —
,u(B(x,r)) /B(x,r) |g ( ) g (y)| M(y) = ,u(B(x,r)) /B(m’,.) g M(y) "

and this implies that

lim —— / 19:(2) — ge(w)] duly) = 0.

r=0t 1(B(x, 7)) JB@m
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In turn, we may write

, 1
s / 1)~ ) ()

1
lim sup ———— —g:-(y)|d () — flz
< msp e [ 1f0) 0 )lduty) +lar(x) — S 0)

< M(f = g)(@) + [g=(x) = f ()]

Thus, if we set

Gy = {:c e R?: limsup

1
- — f(x)|d
maw i _176) = 1) u(y)>t}

and

Et,e = {CL’ : M(f _gs)(x) > t}a Ft,e = {.73 : |gs<x> - f(l‘)’ > t},

then
Gy C EUF, for all ¢ > 0.

Using the weak L' inequality for maximal functions and Markov’s inequality, we get

C(n)e €
N(Et,a) S (t) ) M(Ft,€> S E

and this implies that

(Gat) < % =

Taking ¢ — 0 gives that 1(Gy) = 0. Finally, let £ = U Gi/n. Then pu(E) =0, and

furthermore for any x € E° and any n we have

1
lim sup
r—o0t  u(B(x,r))

[ - sl <

This concludes the proof. O
Corollary 9.4 For a continuous function, every point is a Lebesque point.

Example 9.1 Consider the space X = [—1,1] equipped with the Lebesgue measure,
and let f = Xz=0. Then any point except x = 0 is a Lebesque point (as f is
continuous at all other points). However, f is not a Lebesgue point. Indeed, we may
compute

1 t
—/ Neso — aldz = |a] + |1 — a] £0.
2t |,

This means that even if we redefine f however we like at the point zero, it cannot
be a Lebesgue point of f.
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Example 9.2 Consider a measure v < p, with p being a Radon measure on R™.
Then by the Radon-Nikodym theorem, letting f = g—:

WE) = [ f@)into)

Now if we let E = B(x,r), and take a limit asr — 07, by the Lebesque differentiation
theorem for p almost every x

I (B
f( ) 0+ /J(B(Q?, 7,)) /B(x,r) f(y> M(y) r—0+ M(B(.’E,T))

This gives a formula for computing the Radon-Nikodym derivative.

One crucial concept in multi-variable calculus is the change of variables formula.
This formula continues to hold under Lebesgue integration. We begin by stating
(without proof) a lemma:

Lemma 9.5 Let L : R? — R? be a linear map. Then for every Lebesque measurable
set E, we have that L(E) is Lebesgue measurable and that

LYL(E)) = |det(L)|LY(E).

Proof. The proof relies on reducing to the case of elementary matrix transforma-
tions, and using the fact that the Lebesgue measure is (up to a constant) the only
translation invariant measure on R?. O

We now state the change of variables formula:

Theorem 9.6 (The change of variables) Let U,V C R? be open sets, and U :
U — V be invertible such that both ¥ and V=1 are differentiable. Then for any
integrable function f

[ty = [ 5w det V@) da.

1% U

Proof. We define a measure p: M — [0, +00] such that
wE) = LYV(E)) forall E € M.

Using the smoothness of ¥, one can show that p is a Radon measure, which is
absolutely continuous with respect to the Lebesgue measure. Thus, we can write

dp
E)y= | —/— for all £ :
u(E) /Edﬁd(x)dx or a e M
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Now, given a Lebesgue measurable set H, the set E = U~1(H) is also Lebesgue
measurable, and so we can write

d_ pd _ pd dp _ dp
|, e = et = ey = | Taede = | (v g dr

By the linearity, the identity will also hold for simple functions, and hence using the
monotone convergence theorem it will also hold for non-negative functions. In turn
for any integrable function we have

[ iy = [ 1w@) i ds

By the Lebesgue differentiation theorem, we have that

Ay MB@ 7)) 4y u
dﬁd( ) Lo+ L4(B(z,r)) Lae .

On the other hand, by the differentiability of ¥, for any given € > 0, there exists
r > 0 small enough such that

—V(z)+U(B(z,r)) C V¥(z)(B(0,r(1+¢))).
In turn
u(B(x,r)) = LUAY(B(z,1)) < LYAVE(2)(B0,7(1+¢)))).
Thus, from the previous Lemma, we get
u(B(x,r)) < |det(V¥(2))|(1 + )L (B(x,7))
Taking r to zero and the € to zero, we find that

dp

(@) < | det(VU(a)).

This establishes the change of variables formula as an inequality. Switching U, V'
and U, U~ one can then prove the opposite inequality, which concludes the proof.
Ul

The coarea formula can be seen as a specialized sort of change of variables:

Theorem 9.7 Let u be Lipschitz and g € L, both on Q C R? open. Then
/g(x)|Vu(x)] dr = // g(x) dH* (z) dt
Q R Ju—1(t)
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9.1 Weak derivatives

For a smooth function f and a function ¢ € C2°, we have the identity

Op,0de = — [ Oy, fodx.
[ 10,00 =~ [0 foda

The first of these integrals is well-defined for any integrable function f. Hence we
can define a weak derivative of a function f in the following way:

Definition 9.8 We say that an integrable function v is the weak derivative of f (in

the x; direction) if
/ fOr,0dx = —/v(bdx
R4

Often, we will just write v = 0,,f. This function is not a classical derivative, it’s
only a derivative in an integrated sense. However, it can be associated with the
classical derivative in an almost everywhere sense. Similarly, we can say that

for all ¢ € C>(RY).

® a measure [, is a derivative of f in the sense of distributions if
fonods =~ [ odu,
R

for all ¢ € C°(RY).
Using these, we can then define Sobolev spaces and BV spaces:
Definition 9.9 The Sobolev space WP(Q), Q C R open, is the space such that f
and its weak first partial derivatives (with respect to all of the inputs x;) are all LP

functions. WP is a Banach space (after considering equivalence classes) under the
norm

d
1Al = 1 F 1l + Z 10:fl-

Definition: The space BV (Q2), Q C R? open, of functions of bounded variation
is the space of L' functions which whose first partial derivatives, in the sense of
distributions, all have finite total variation. The BV norm is given by

d
£y = 171+ Z |1, | (62).

These spaces show up in many applications. One very convenient property about
these spaces is their compactness:

Theorem 9.10 Suppose, for 1 < p < oo, that u, is bounded in WP, Then it is
compact in LP, and the limit point lies in WP, Similarly, if u, is bounded in BV
then it is compact in L' with limit point in BV .
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