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1 Why study measure theory?

1. Passing limit under integral sign: There are many reasons to pass limits
under integrals. Some examples:

(a) Differentiation under the integral sign: under what conditions can we
write

∂

∂y

∫ b

a

f(x, y) dx =

∫ b

a

∂

∂y
f(x, y) dx.

Both integrals and derivatives are defined in terms of limits, so this is
really a question of whether we can interchange limits.

(b) Given a open set Ω ⊆ Rd and a function g : ∂Ω → R, consider the
minimization problem

inf
f
J(f) :=

∫
Ω

|∇f |2 dx

subject to
f = g on ∂Ω, f : Ω→ R.

Basic question: Is there a function f ∗ such that J(f ∗) = inf J?

The direct method is to consider a sequence of functions fn so that

lim
n→∞

J(fn) = inf
f
J.

Show that the sequence fn has a limit f ∗ and that lim J(fn) = J(f ∗).
One important step is understanding how we can pass a limit under an
integral.

(c) Generalized solutions to differential equations: Consider the problem of
describing the electrical potential induced by a point charge. Heuristically
(and scaling out physical constants), we are trying to solve

∆f = δ0

where f is the electrical potential and δ0 is a Dirac mass at zero. However,
how do we rigorously define the Dirac mass at zero? One can think of
this as a limit of masses charged on a vanishing set, namely

δ0 = lim
n→∞

Cr−dχB(0,r).
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How do we accurately capture this “limiting process” when solving the
partial differential equation? This often involves an integral formulation,
and limits have to be passed under an integral. In other words, we often
want to use approximating sequences of functions, and be able to pass
limits under integrals (or into differential equations) rigorously.

2. Probability

(a) How does one define Brownian motion? We need a rigorous way to define
a probability measure over trajectories with the appropriate properties,
and measure theory lets us do that.

(b) How does one rigorously prove limit theorems? Approximating sequences,
passing derivatives and limits under integrals.

(c) How do we define conditional probabilities? How do we unify discrete
and continuous probability? How do we give an axiomatic formulation of
probability? Measure theory. . .

3. Generalized Calculus and geometry

(a) How do we define the size of a set? Volume/area/path length? Fractals?
Need a rigorous notion of size. For example, what is the area in R of
the rational numbers? What is the right notion of area of the Sierpinski
triangle, or Koch snowflake? This depends delicately on how we define
our notions of length. For example in R2, we could define

Area1(E) = inf

{
m∑
i=1

area(Rn) : Rn is an open rectangle, E ⊂
m⋃
n=1

Rn

}

Area2(E) = inf

{
∞∑
i=1

area(Rn) : Rn is an open rectangle, E ⊂
∞⋃
n=1

Rn

}
.

Suppose that E = Q2 ∩ (0, 1)2. One can show that

Area1(E) = 1 6= 0 = Area2(E).

(b) How do we define generalized derivatives? For example, consider the
function χ(0,∞). What is the derivative of this function, and how should
we think about it? For the function f(x) = |x| how should we think
about ∇f and ∆f? Measure theory gives us a rigorous way to think
about these objects.

This course will mostly be focused on the Lebesgue integration: namely defining a
measure and integration on Rd. Here is its outline:

• Review of Riemann integration (to highlight some shortcomings)
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• Measures: abstract properties for measuring size of sets.

• Construction of measures: outer measures, Lebesgue measure, Carathéodory
extension

• Measurable functions (analog of continuous functions)

• Lebesgue integration

• Lp spaces (deeper properties)

• Product measures

• A tour of Calculus topics for measure theory

2 A review on Riemann Integration

2.1 Riemann integrable functions

Given a bounded interval [a, b], let f : [a, b] → R be a bounded function. Consider
a partition P = {x0, x1, . . . , xn} of [a, b], i.e.,

a = x0 < x1 < . . . xn − 1 < xn = b.

For any i ∈ 1, n, denote by

mi := inf
x∈[xi−1,xi]

f(x) and Mi := sup
x∈[xi−1,xi]

f(x).

Definition 2.1 (Darboux sums) For any P partition of [a, b], the lower and up-
per Darboux sums for f with respect to P are defined by

L(f, P ) :=
n∑
i=1

mi · (xi − xi−1), [Lower Darboux sum]

U(f, P ) :=
n∑
i=1

Mi · (xi − xi−1). [Upper Darboux sum]

Let P[a,b] be a collection of all partitions of the interval [a, b]. From the above
definition, L(f, ·) and U(f, ·) satisfies the following properties.

Basic properties

(i) For any P ∈ P[a,b], it holds

mf · (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ Mf · (b− a)

with Mf := sup[a,b] f(x) and mf := inf [a,b] f(x).
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(ii) L(f, ·) is increasing and U(f, ·) is decreasing w.r.t to P ∈ P[a,b], i.e.,

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ) for all P ⊆ P ′.

(iii) For any P, P ′ ∈ P[a,b], it holds

L(f, P ) ≤ U(f, P ′).

Definition 2.2 Suppose that f : [a, b]→ R is bounded. Then

• The lower Riemann integral of f over [a, b] is

(R)

∫ b

a

fdx := sup
P∈P[a,b]

L(f, P ).

• The upper Riemann integral of f over [a, b] is

(R)

∫ b

a

fdx := inf
P∈P[a,b]

U(f, P ).

From (i) and (ii), it is clear that

mf · (b− a) ≤ (R)

∫ b

a

fdx ≤ (R)

∫ b

a

fdx ≤ Mf · (b− a). (2.1)

Definition 2.3 (Riemann integration (Bernhard Riemann 1826-1866)) The
bounded function f is said Riemann integrable if

(R)

∫ b

a

fdx = (R)

∫ b

a

fdx.

In this case, the Riemann integration of f over [a, b] is denoted by

(R)

∫ b

a

fdx := (R)

∫ b

a

fdx = (R)

∫ b

a

fdx.

From (2.1), one has

mf · (b− a) ≤ (R)

∫ b

a

fdx ≤ Mf · (b− a)

provided that f is Riemann integrable.

How to check that f is Riemann integrable?

It is clear that
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• If f is a constant function on [a, b], i.e. f(x) = C for all x ∈ [a, b], then f is
Riemann integrable and

(R)

∫ b

a

fdx = C · (b− a).

• Given a partition P = {x0, x1, . . . , xn} of [a, b], if

f(x) = ci for all x ∈ (xi, xi+1), i ∈ 0, n− 1,

then f is Riemann integrable and

(R)

∫ b

a

fdx =
n−1∑
i=0

ci · (xi+1 − xi).

In general, from (i)-(iii), we have

0 ≤ (R)

∫ b

a

fdx− (R)

∫ b

a

fdx ≤ inf
P∈P[a,b]

[U(f, P )− L(f, P )] . (2.2)

Theorem 2.4 (Darboux’s integrability condition) Let f : [a, b]→ R be bounded.
Then f is Riemann integrable if and only if for every ε > 0 there exists Pε ∈ P[a,b]

such that
U(f, Pε)− L(f, Pε) ≤ ε. (2.3)

Proof. 1. Assume that (2.3) holds for all ε > 0. This implies that

inf
P∈P[a,b]

U(f, P )− L(f, P ) = 0.

From (2.2), we have

(R)

∫ b

a

fdx = (R)

∫ b

a

fdx

and it yields the Riemann integrability of f over [a, b].

2. Assume that f is Riemann integrable, we have

α =: (R)

∫ b

a

fdx = sup
P∈P[a,b]

L(f, P ) = inf
P∈P[a,b]

U(f, P ).

For any ε > 0, there exists PL
ε , P

U
ε ∈ P[a,b] such that

U
(
f, PL

ε

)
− ε

2
< α < L

(
f, PL

ε

)
+
ε

2
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Set Pε := PL
ε ∪ PU

ε . By the monotonicity of L(f, ·) and U(f, ·), we have

U(f, Pε)− L(f, Pε) ≤ U
(
f, PU

ε

)
− L

(
f, PL

ε

)
< ε.

Thus, (2.3) holds.

As a consequence of Theorem 2.4, one obtains the following results.

Corollary 2.5 If f : [a, b]→ R is continuous then f is Riemann integrable.

Proof. Since f is continuous and [a, b] is a compact set, it is bounded by some
constant M and uniformly continuous. Thus, for a given ε > 0, there exists δ > 0
such that

|f(x)− f(y)| < ε

(b− a)
for all |x− y| ≤ δ.

Let Pε = {x0, x1, . . . , xn} be in P[a,b] with n sufficiently large such that

|xi − xi−1| =
b− a
n

< δ for all i ∈ 1, n.

We then have

Mi −mi = sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) <
ε

b− a
.

Thus,

U(f, Pε)− L(f, Pε) =
n∑
i=1

(Mi −mi) · (xi − xi−1)

≤ ε

b− a
· (b− a) = ε.

The Darboux’s integrability condition implies that f is integrable.

Corollary 2.6 If f : [a, b]→ R is monotone then f is Riemann integrable.

Proof. Without loss of generality, assume that f is increasing. In this case, f is
bounded and

f(a) ≤ f(x) ≤ f(b) x ∈ [a, b].

If f(b) = f(a) then f is constant in [a,b] and thus it is Riemann integrable. Other-
wise, given any ε > 0, let Pε = {x0, x1, . . . , xn} be in P[a,b] be such that

xi − xi−1 ≤
ε

f(b)− f(a)
for all i ∈ 1, n.

We compute

U(f, Pε)− L(f, Pε) =
n∑
i=1

(Mi −mi) · (xi − xi−1) ≤ ε

f(b)− f(a)
·

n∑
i=1

(Mi −mi)
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=
ε

f(b)− f(a)
·

n∑
i=1

[f(xi)− f(xi−1)] =
ε · (f(xn)− f(x0))

f(b)− f(a)

=
ε

f(b)− f(a)
· (f(b)− f(a)) = ε,

and the Darboux’s integrability condition implies that f is integrable.

Let us collect some basic properties of Riemann integrable functions.

Basic properties: Give two Riemann integrable functions f and g on [a, b], the
following holds

(i) f is integrable over [c, d] ⊂ [a, b]. Moreover,

(R)

∫ b

a

f(x)dx = (R)

∫ c

a

f(x)dx+ (R)

∫ b

c

f(x)dx.

(ii) For any α, β ∈ R, it holds

(R)

∫ b

a

αf + βg dx = α · (R)

∫ b

a

f dx+ β · (R)

∫ b

a

g dx.

Theorem 2.7 (Fundamental theorem in calculus) Let f : [a, b]→ R be bounded
and Riemann integrable. Suppose that F : [a, b]→ R is continuous and

F ′(x) = f(x) for all x ∈ (a, b).

Then,

F (b)− F (a) = (R)

∫ b

a

f(x) dx.

Proof. Since f is Riemann integrable, we need to show that

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P ) for all P ∈ P[a,b]. (2.4)

Assume that P = {x0, x1, . . . , xn}. Using the mean value theorem, we compute

F (b)− F (a) =
n∑
i=1

F (xi)− F (xi−1)

=
m∑
i=1

F ′(ξi) · (xi − xi−1) =
n∑
i=1

f(ξi) · (xi − xi−1)

for some ξi ∈ (xi−1, xi). For all i ∈ 1, n, it holds

mi := inf
[xi−1,xi]

f(x) ≤ f(ξi) ≤ sup
[xi−1,xi]

f(x) := Mi.
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Thus,
n∑
i=1

mi · (xi − xi−1) ≤ F (b)− F (a) ≤
n∑
i=1

Mi · (xi − xi−1)

and it yields (2.4).

Problem 1: Suppose that f : [0, 1]→ R is Riemann integrable. Prove that

(R)

∫ 1

0

f(x)dx = lim
n→∞

(
1

n
·

n∑
i=1

f

(
i

n

))
.

Problem 2: Suppose that f : [a, b] → R is Riemann integrable. Prove that |f | is
Riemann integrable and∣∣∣∣(R)

∫ b

a

f(x)dx

∣∣∣∣ ≤ (R)

∫ b

a

|f(x)|dx.

2.2 Non-Riemann integrable functions

In this subsection, we prove some examples to show that the Riemann integration
does not handle

- Functions with infinite discontinuities;

- Unbounded functions;

- Limits.

Example 2.1 (Dirichlet functions) Let f : [0, 1]→ R be such that

f(x) =


1 if x ∈ Q ∩ [0, 1]

0 if x ∈ [0, 1]\Q.

It is clear that f is bounded in [0, 1] but discontinuous at every x ∈ [0, 1]. Since Q
is dense in [0, 1], one can show that

L(f, P ) = 0 and U(f, P ) = 1 for all P ∈ P[0,1].

This implies that

(R)

∫ 1

0

fdx = 0 6= 1 = (R)

∫ 1

0

fdx

and f is not Riemann integrable.
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Remark 2.8 If f : [a, b] → R is bounded and continuous at all but a finite points
then f is Riemann integrable.

Problem 3: Is there a bounded and non-Riemann integrable function with countably
infinite discontinuities?

Example 2.2 Consider the function f : [0, 1]→ R such that

f(0) = 0 and f(x) =
1√
x

for all x ∈ (0, 1].

It is clear that
U(f, P ) = +∞ for all P ∈ P[0,1]

and thus

R

∫ 1

0

f dx = +∞.

However,

L(f, P ) ≤ lim
a→0+

∫ 1

a

f(x)dx = lim
a→0+

∫ 1

a

1√
x
dx = 2

and this implies that

R

∫ 1

0

f dx ≤ 2.

Thus, Riemann integration does not work with unbounded functions.

Example 2.3 Assume that

Q ∩ [0, 1] = {q1, q2, . . . , qn, . . . }.

For any n ∈ Z+, consider the function fn : [0, 1]→ R such that

fn(x) =


1 if x ∈ {q1, q2, . . . , qn}

0 if x /∈ {q1, q2, . . . , qn}.

Since fn is bounded and discontinuous at finite points, it is Riemann integrable.
Moreover, one can see that

(R)

∫ 1

0

fn dx = 0.

On the other hand, fn converges point-wise to the function f defined in the example
1 which is non-Riemann integrable. Thus, Riemann integration does not work well
with pointwise limits.
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Problem 4: Suppose that fn : [0, 1] → R are bounded, Riemann integrable func-
tions, and that fn converges uniformly to a function f . Then show that f is Riemann
integrable, and that the integral of fn converges to the integral of f .

We need to construct a theory which can remedy the problems illustrated in the
last few examples. More precisely, the notion of the length of an interval to a larger
collection of subsets of R. This will lead us to measures.

3 Measures

3.1 σ-algebras and measurable sets

3.1.1 Sets

Let X be a non-empty set. Denote by

P(X) = 2X = {A : A ⊆ X}.

For any given A ∈ P(X), the complement of A is

Ac = X\A = {x ∈ X : x /∈ A}.

It is clear that
A\B = A ∩Bc for all A,B ∈ P(X).

De Morgan identity. Let {An}n≥1 be a sequence of sets in P(X). The followings
hold (

n⋃
i=1

An

)c

=
∞⋂
n=1

Acn and

(
n⋂
i=1

An

)c

=
n⋃
i=1

Acn.

Definition 3.1 (Limit of a sequence of sets) Given {An}n≥1 a sequence of sets
in P(X), we define

lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
k=n

Ak and lim inf
n→∞

An :=
∞⋃
n=1

∞⋂
k=n

Ak.

If lim supn→∞ An = lim infn→∞ An = A then we set

A := lim
n→∞

An.

Notice that the set

lim sup
n→∞

An = {x ∈ X : x belongs to infinitely many of the An}.

Basic properties:

10



(a) lim infn→∞An ⊆ lim supn→∞An.

(b) If (An)n≥1 is a increasing sequence, i.e. An ⊆ An+1, then

lim
n→∞

An =
∞⋃
n=1

An.

If (An)n≥1 is a decreasing sequence, i.e. An ⊇ An+1, then

lim
n→∞

An =
∞⋂
n=1

An.

3.1.2 Algebras and σ-Algebra

Definition 3.2 A nonempty subset A of P(X) is called an algebra in X if

(i) ∅, X ∈ P(X)

(ii) If A,B ∈ A then A
⋃
B ∈ A

(iii) If A ∈ A then Ac ∈ A.

For the definition, it is easy to see that

• If A,B ∈ A then

A∆B := (A\B)
⋃

(B\A) ∈ A.

• If A1, A2, . . . , An ∈ A then

both
n⋂
i=1

Ai and
n⋃
i=1

Ai are in A.

Notice that the above statement does not hold for infinite sets in general.

Example 3.1 Assume that X = [0, 1). The class A consisting ∅ and all sets of
form

A =
n⋃
i=1

[ai, bi) with 0 ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ 1

is an algebra in [0, 1). However, if we consider

An = [1/n, 1) ∈ An for all n ≥ 1,

then the union of An
∞⋃
n=1

An = (0, 1)

is not in A.
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Definition 3.3 A collection A ⊆ P(X) is an σ-algebra if

(i) A is an algebra.

(ii) For any sequence of set (An)n≥1 ⊆ A, it holds

∞⋃
n=1

An ∈ A.

In this case, we say that (X,A) is a measurable space and A ∈ A is a measurable
set.

By the De Morgan identity, one can see that if A ⊆ P(X) is an σ-algebra then

∞⋂
n=1

An ∈ A for all (An)n≥1 ⊂ P(X).

Example 3.2 Given a nonempty set X, then

• {∅, X} is the smallest σ-algebra on X.

• P(X) is the largest σ-algebra on X.

• The collection all subsets E of X such that E is countable or Ec is countable
is a σ-algebra on X.

Lemma 3.4 Let A be an algebra on X. If

∞⋃
n=1

An ∈ A

for all sequence {An}n≥1 of mutually disjoint elements of A then A is a σ-algebra.

Proof. For any sequence {Bn}n≥1 in A, we need to show that

∞⋃
n=1

Bn ∈ A.

Observing that

B1

⋃
B2 = B1

⋃
[B2\B1] and B1 ∩ [B2\B1] = ∅,

we construct a sequence (An)n≥1 ⊂ A by induction

A1 = B1 and An+1 = Bn+1\

(
n⋃
i=1

Ai

)
for all n ≥ 1.

12



One can see that {An}n≥1 of mutually disjoint elements of A and

∞⋃
n=1

An =
∞⋃
n=1

Bn,

and this yields
∞⋃
n=1

Bn ∈ A.

By the Definition 3.3, we can easily show that

Lemma 3.5 Let K be a subset of P(X). Then

σ(K) :=
⋂ {

A ⊆ P(X) : K ⊂ A and A is a σ − algebra
}

is the smallest σ-algebra on X which contains K

The above lemma least to the following definition.

Definition 3.6 The set σ(K) is called a σ-algebra generated by K.

Borel σ-algebra. Assume that (X, d) is a metric space. Let K be a collection of
open subsets in X, i.e.,

K = {O ⊂ X : O is open}.

In this case, σ(K) is called Borel σ-algebra and denote by B(X). Moreover, a set
A ∈ B(X) is called a Borel set.

From the property (iii) in the definition 3.2, one can show that

B(X) = σ(H)

where H = {F ⊂ X : F is closed} is a collection of closed subset of X.

Example 3.3 Assume that (X, d) = (R, | · |). Denote by

F = {[a, b) : a < b}, F1 = {[a,+∞) : a ∈ R} and F2 = {(−∞, a] : a ∈ R},

we have
B(R) = σ(F) = σ(F1) = σ(F2).
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Proof. Let’s show that
B(R) = σ(F).

1. Given a < b, it holds

[a, b) =
∞⋂
n=1

(
a− 1

n
, b

)
∈ B(R).

This implies that
σ(F) ⊆ B(R).

2. To complete the proof, we meed to show that

B(R) ⊆ σ(F).

It is sufficient to show that for every open set V in R, it holds

V ∈ σ(F).

Since V is open, there exists open disjoint intervals (an, bn) for n = 1, K (K can be
∞) such that

K⋃
n=1

(an, bn) = V.

Finally, observing that

(an, bn) =
∞⋃
m=1

[
an +

1

m
, bn

)
∈ σ(F) for all n ≥ 1,

we have V ∈ σ(F). The proof in complete.

Problem 5: Show that σ(F2) = B(R).

Problem 6: Given a function f : R→ R, is {f−1(A) : A ∈ B(R)} a σ-algebra? For
f(x) = x2 describe σ(f) = σ({f−1(A) : A ∈ B(R)}).

3.2 Measures

Given a measurable space (X,A), let µ : A → [0,+∞] be such that µ(∅) = 0. We
say that

• µ is additive if

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai)

for all {A1, A2, . . . , An} of mutually disjoint elements of A.
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• µ is σ-additive if

µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

for all (An)n≥1 of mutually disjoint elements of A.

• µ is σ-subadditive if

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An) for all An ∈ A

Definition 3.7 (Measure) The map µ : A → [0,+∞] is called a measure if
µ(∅) = 0 and µ is σ-additive. Moreover,

• if µ(X) < +∞ then µ is a finite measure;

• if µ(X) = 1 then µ is a probability measure;

• if X =
∞⋃
n=1

An with µ(An) < +∞ for every n ≥ 1 then µ is a σ-measure (In

some sources, this is sometimes described as σ-finiteness).

Remark 3.8 The collection (X,A, µ) is a triple that defines a measure space.
This allows one to precisely define:

(i) what is the set that the objects live in (i.e. X);

(ii) what are the objects that we know how to measure (i.e. A);

(iii) what measure do we assign to each object.

This is a flexible abstract concept that allows us to address many different types of
problems: from Lebesgue integration, to geometric measure theory, to probability and
stochastic processes.

Definition 3.9 Let (X,A, µ) be a measure space. For any E ∈ A, denote by

A|E := {A ∩ E : A ∈ A} and µE(A) := µ(A ∩ E)

In this case, (E,A|E, µE) is a restricted measure space on E of (X,A, µ).
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Example 3.4 (a). Dirichlet measure

δx(A) =


1 if x ∈ A

0 if x /∈ A
for all A ∈ P(X).

for a given x ∈ X. In this case, δx is concentrated at x.

(b). Counting measure

µ](A) =


Card(A) if A has a finite elements

+∞ if A has a infinite elements

for every A ∈ P(X).

(c). Let Ω = {ω1, ω2, . . . , ωn} be a finite set. Given a numbers 0 ≤ p1 ≤ · · · ≤ pn

such that
n∑
i=1

pi = 1, we define

P(A) =
m∑
k=1

pik for all A = {pi1,...,pim} ⊆ Ω.

Then, (Ω,P(Ω),P) is a probability measure space.

Basics properties. Let (X,A, µ) be a measure space. Then

• (Finite additivity) For finite disjoint set (Ai)
n
i=1 ⊂ A, it holds

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai).

• (Monotonicity) For every A ⊆ B in A, it holds

µ(A) ≤ µ(B).

• (Excision) If A ⊆ B in A and µ(A) < +∞, then

µ(B\A) = µ(B)− µ(A).

• (Countable monotonicity) Let (An)n≥ be a sequence of measurable sets. Then

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An).
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Proof. (Countable monotonicity) Construct a new sequence of disjoint sets

B1 := A1, B2 = A2\B1, . . . , Bn := An\
n−1⋃
i=1

Bi .

It is clear that (Bn)n≥1 is mutually disjoint and

∞⋃
n=1

Bn =
∞⋃
n=1

An and Bn ⊆ An.

Thus,

µ

(
∞⋃
n=1

An

)
= µ

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An) .

Proposition 3.9.1 (The continuity of µ) For every sequence (An)n≥1 of A

• If (An)n≥1 is increasing then

µ
(

lim
n→∞

An

)
= lim

n→∞
µ(An).

• If (An)n≥1 is decreasing and µ(A1) < +∞ then

µ
(

lim
n→∞

An

)
= lim

n→∞
µ(An).

Proof. Assume that (An)n≥1 is increasing. We have

lim
n→∞

An =
∞⋃
n=1

An.

Denote by

B1 := A1, B2 = A2\B1, . . . , Bn := An\
n−1⋃
i=1

Bi .

It is clear that (Bn)n≥1 is mutually disjoint and

An =
n⋃
i=1

Bi for all n ≥ 1.
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Thus,

µ

(
∞⋃
n=1

An

)
= µ

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn)

= lim
n→∞

n∑
i=1

µ(Bi) = lim
n→∞

µ

(
n⋃
i=1

Bi

)
= lim

n→∞
µ(An)

and yields the first statement.

Problem 7: Prove the second statement of the above proposition. Is this still true
if one remove the assumption µ(A1) < +∞?

Corollary 3.10 Let µ be a finite measure. Then for any sequence (An)n≥1 ⊆ A, it
holds

µ
(

lim inf
n→∞

An

)
≤ lim inf

n→∞
µ(An) ≤ lim sup

n→∞
µ(An) ≤ µ

(
lim sup
n→∞

An

)
Proof. By the definition, we have

lim inf
n→∞

An =
∞⋃
n=1

Bn with Bn =
∞⋂
k=n

Ak.

Since Bn is increasing and Bn ⊆ An, it holds

µ
(

lim inf
n→∞

An

)
= µ

(
∞⋃
n=1

Bn

)
= lim

n→∞
µ(Bn) ≤ lim inf

n→∞
µ(An).

Similarly, one can show that

lim sup
n→∞

µ(An) ≤ µ

(
lim sup
n→∞

An

)
and this complete the proof.

Lemma 3.11 (Borel-Cantelli) For any sequence (An)n≥1 ⊆ A such that

∞∑
n=1

µ(An) < +∞.

Then it holds

µ

(
lim sup
n→∞

An

)
= 0.
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Proof. By the definition, we have

A =: lim sup
n→∞

An =
∞⋂
n=1

Bn with Bn =
∞⋃
k=n

Ak.

Since Bn is decreasing and µ(B1) ≤
∞∑
n=1

µ(An) < +∞, it holds

µ(A) = lim
n→∞

µ(Bn) ≤ lim
n→∞

∞∑
k=n

µ(Ak) = 0.

The proof is complete.

To complete this subsection, let us illustrate a typical use of the Borel-Cantelli
Lemma.

Example 3.5 Give a metric space (X, d), let (X,B(X), µ) be a Borel measure on
X. Assume that the sequence of continuous function fn : X → R converges in the
sense of measure µ to a continuous function f , i.e.,

lim
n→∞

µ (x ∈ X : |fn(x)− f(x)| > ε) = 0.

Then, there exists a subsequence fnk and E ∈ B(X) with µ(Ec) = 0 such that

lim
nk→∞

fnk(x) = f(x) for all x ∈ E.

Proof. For each k ≥ 1, we select nk ≥ 1 sufficiently large such that

µ

(
x ∈ X :

∣∣fnk(x)− f(x)
∣∣ > 1

k

)
≤ 1

k2

with nk−1 < nk. Set Ak :=
{
x ∈ X :

∣∣fnk(x)− f(x)
∣∣ > 1

k

}
, we have

∞∑
k=1

µ(Ak) ≤
∞∑
k=1

1

k2
< 1.

The Borel-Cantelli Lemma yields

µ

(
lim sup
k→∞

Ak

)
= 0.

Thus, set E = X\ lim supk→∞Ak such that µ(Ec) = 0, we obtain that

lim
nk→∞

fnk(x) = f(x) for all x ∈ E
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and this complete the proof.

Problem 8: Let (X,A, µ) be a measure space. The symmetric difference of A,B ⊂
X is defined by

A∆B = [A\B] ∪ [B\A] .

Show that If A,B are measurable (i.e., A,B ∈ A) and µ(A∆B) = 0 then µ(A) =
µ(B).

3.3 Sets of measure zero and complete measure space

Let (X,A, µ) be a measure space. We say that

• E ∈ A is a set of measure zero (null set) if µ(E) = 0.

• The statement (P) holds for almost everywhere in X if there exists a null set
E ⊂ X such that (P) holds for all x ∈ Ec.

It is clear that countable union of null sets is a null set.

Question. Is this true that if E is measurable with µ(E) = 0 then every sub-
set of E is measurable and has a zero measure?

NO in general. Indeed, let X = {−1, 0, 1} and let A = {∅, {0}, {−1, 1}, X} be a
σ-algebra on X. Consider the measure µ : A → [0, 1] such that

µ(X) = µ({0}) = 1 and µ({−1, 1}) = µ(∅) = 0.

In this case, {−1, 1} is a null set but {−1} and {1} are not measurable.

Definition 3.12 A measure space (X,A, µ) is complete if every subset of null set
is measurable.

How to complete a measure space (X,A, µ)?

Theorem 3.13 Let (X,A, µ) be a measure space. Then there exists a unique small-
est complete measure space (X,A, µ̄) such that

A ⊂ A and µ̄(A) = µ(A) for all A ∈ A.

Proof. Let’s define

A = {A ∪M : A ∈ A,M ⊆ N ∈ A with µ(N) = 0}

and
µ(M ∪ A) = µ(A).
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We claim that A is a σ-algebra. Indeed, it is clear that

∅, X ∈ A.

For any A ∈ A and M ⊆ N ∈ A with µ(N) = 0, we have

(A ∪M)c = Ac ∩M c = Ac ∩ [N c ∪ (N\M)] = (Ac ∩N c)
⋃

(Ac ∩ (N\M)).

Since Ac ∩N c ∈ A and (Ac ∩ (N\M)) ⊆ N , it holds

(A ∪M)c ∈ A.

Countable union property. Assume that

Ai ∈ A, Mi ⊆ Ni ∈ A with µ(Ni) = 0 for all i ≥ 1.

Since µ

(
∞⋃
i=1

Ni

)
= 0, we have

∞⋃
i=1

(Ai ∪Mi) ∈

(
∞⋃
i=1

Ai

)⋃(
∞⋃
i=1

Mi

)
∈ A.

Therefore, A is a σ-algebra on X.

It is easy to check that µ is a measure on A. To complete the proof, we need
to show that if (X,A1, µ1) is a complete measure space with

A ⊆ A1 and µ1(E) = µ(E) for all E ∈ A,

then
A ⊆ A1 and µ1(E) = µ̄(E) for all E ∈ A.

For any A ∪M ∈ A with A ∈ A and M ⊆ N ∈ A with µ(N) = 0, we have that
M ∈ A1 since A1 is complete. This implies that

A ∪M ∈ A1 and µ1(A ∪M) = µ1(A) = µ(A) = µ̄(A ∪M).

The proof is complete.

4 Lebesgue measures

Our goal is to construct a σ-algebra L(R) on R and a measure m : L(R)→ [0,+∞]
such that

- L(R) contains all open and closed sets in R.
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- For any a < b, it holds
m([a, b]) = b− a.

- m is translation invariant

m(y + E) = m(E) for all y ∈ R, E ∈ L(R).

We then extend our construction to L(Rn).

How to construct (L(R),m)?

Step 1: Construct an outer measure m∗ : P(R)→ [0,+∞],, i.e.,

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek)

such that
m∗([a, b]) = b− a for all b ≥ a.

Step 2. Using Caratheódory’s approach to define L(R) relying on m∗.

Step 3. Restrict m∗ on L(R) to obtain m.

4.1 Outer measures

Definition 4.1 Given a nonempty set X, a function µ∗ : P(X) → [0,∞] is called
an outer measure if

(i) µ∗(∅) = 0;

(ii) (Monotonicity) For any E1 ⊆ E2, it holds

µ∗(E1) ≤ µ∗(E2).

(iii) (σ-subadditive) For any sequence (En)n≥1 ⊂ P(X), it holds

µ∗

(
∞⋃
n=1

En

)
≤

∞∑
n=1

µ∗(En).

Notice that (ii)-(iii) can be rewritten by

E ⊆
∞⋃
n=1

En =⇒ µ∗(E) ≤
∞∑
n=1

µ∗(En).
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Remark 4.2 An outer measure is not a measure on P(X) in general.

Indeed, let X = {0, 1} and let µ∗ : P(X)→ [0, 1] such that

µ∗(X) = µ∗({0}) = 1 and µ∗({1}) =
1

2
.

In this case, µ∗ is an outer measure but does not satisfy the finite additive property.
Thus, it is not a measure on (X,P(X)).

Question: Can one find an outer measure on R such that the finite additive prop-
erty does not hold?

How to construct an outer measure? The most common way to obtain an
outer measure is to start with “elementary sets”.

Proposition 4.2.1 Given an algebra A on X, let ρ : A → [0,+∞] be a σ-subadditive
function with ρ(∅) = 0. For any E ∈ P(X), define

µ∗(E) = inf

{
∞∑
n=1

ρ(An) : E ⊆
∞⋃
n=1

An with (An)n≥1 ⊆ A

}
,

then the following hold:

(i). µ∗ is finite if ρ is finite.

(ii). µ∗ is an extension of ρ, i.e.,

µ∗(A) = ρ(A) for all A ∈ A.

(iii). µ∗ is an outer measure on X.

Proof. (i) is trivial. Let’s prove (ii). For any A ∈ A, since µ∗(A) ≤ ρ(A), it is
sufficient to show that

ρ(A) ≤ µ∗(A).

Equivalently, for all (An)n≥1 ⊆ A with A ⊆
∞⋃
n=1

An, it holds

ρ(A) ≤
∞∑
n=1

ρ(An).

Since (A ∩ An)n≥1 ⊆ A and
∞⋃
n=1

(A ∩ An) = A, the σ-subadditive of ρ implies that

ρ(A) = ρ

(
∞⋃
n=1

An ∩ A

)
≤

∞∑
n=1

ρ(An ∩ A) ≤
∞∑
n=1

ρ(An).
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(iii). Let’s show that µ∗ is an outer measure. It is clear that µ∗(∅) = 0 and µ∗ is
monotone. It is enough to check that µ∗ is σ-subadditive, i.e.,

µ∗

(
E :=

∞⋃
n=1

En

)
≤

∞∑
n=1

µ∗(En) for all En ∈ P(X). (4.1)

By the definition of µ∗, for any n ≥ 1 and ε > 0, there exists (Ank)k≥1 ⊆ A such
that

µ∗(En) ≥
∞∑
k=1

ρ(Ank)−
ε

2n
, En ⊂

∞⋃
k=1

Ank

This implies that

∞∑
n=1

µ∗(En) ≥
∞∑
n=1

[
∞∑
k=1

ρ(Ank)−
ε

2n

]
=

∑
(n,k)∈N2

ρ(Ank)− ε ≥ µ∗(E)− ε.

Taking ε to 0, we obtain (4.1).

Remark 4.3 The previous proof actually can be made quite a bit sharper. More
precise,

• the set A need not be an algebra (it mostly just needs to be able to cover any
set);

• the only place where one needs the σ-subadditivity is in proving the extension
property (i.e. this definition always will give an outer measure, even without
subadditivity).

Let us now provide some basic examples of outer measures.

Example 4.1 (Lebesgue-Stieltjes outer measure) Given a non-decreasing func-
tion f : [A,B]→ R, we define

ρ((a, b)) = f(b)− f(a) for all (a, b) ⊂ [A,B].

The Lebesgue-Stieltjes outer measure is given by

µ∗f (E) := inf

{
∞∑
n=1

ρ((an, bn)) : an, bn ∈ [A,B], an ≤ bn, E ⊂
∞⋃
n=1

(an, bn)

}
.

By the previous proposition µ∗f is an outer measure.
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Problem 9: Show that µ∗f ([a, b]) = f+(b)− f−(a), where f+ is the limit from the
right and f− is the limit from the left of f .

Example 4.2 (Hausdorff outer measure) For any 0 ≤ s < +∞, we define

αs =
πs/2

Γ(s/2 + 1)
with Γ(s) =

∫ ∞
0

e−xxs−1dx (Euler Gamma function).

Notice that αd is the Lebesgue measure of the unit ball in Rd for every d ∈ N. For
any given 0 ≤ s ≤ d and δ > 0, we define for every E ⊂ Rd that

Hs
δ(E) := inf

{
∞∑
n=1

αs ·
(

diam(En)

2

)s
: E ⊂

∞⋃
n=1

En, diam(En) < δ

}
.

If s = 0 we only sum over non-empty En. By the previous proposition, Hs
δ is an

outer measure on Rd.

Since the map σ → Hs
δ (E) is non-increasing, we then define

Hs(E) = lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs
δ(E).

This is known as the Hausdorff outer measure. Moreover,

• When s = d this gives the Rd Lebesgue measure;

• When s = 0 this gives a counting measure;

• When 0 < s < n this gives a way of measuring the size of intermediate objects,
such as curves and surfaces in three dimensions. It also allows one to measure
the size of fractals and other more exotic objects.

Problem 10: Show that both Hs
δ are Hs is outer measures.

Problem 11: [Unexample: Jordan content] For every subset E ⊆ R, we define

µJ(E) = inf

{
k∑
i=1

diam(Ek) : E ⊂
k⋃
i=1

Ek

}
.

Show that µJ is not an outer measure on R.

Definition 4.4 (Carathéodory measurable set) Given an outer measure µ∗ on
X, a set A ∈ P(X) is called a Carathéodory measurable set with respect to µ∗ if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac)

for all E ∈ P(X).
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Consider a collection of Carathéodory measurable subsets of X with respect to µ∗

F = {A ⊆ X : A is a Carathéodory measurable set w.r.t µ∗} .

By the definition, it is clear that

X,∅ ∈ F and A ∈ F ⇐⇒ Ac ∈ F .

Notice that thanks to the σ-sub-additive property of the outer measure µ∗, the set
A ∈ F if and only if

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac)

for all E ∈ P(X).

Example 4.3 Let X = [0, 1] and µ∗ : P(X)→ [0,+∞] such that
µ∗(A) = 0 if A ∩Q = ∅

µ∗(A) = 1 if A ∩Q 6= ∅.

In this case, one can check that µ∗ is an outer measure on [0, 1]. Moreover,

• [0, 1) is not a Carathéodory measurable set w.r.t µ∗.

• {1/
√

2} is a Carathéodory measurable set w.r.t µ∗

Problem 12: Find the collection F of all Carathéodory measurable sets w.r.t µ∗

in the above example.

Theorem 4.5 (Carathéodory) Let µ∗ be an outer measure on X. Then (X,F , µ∗)
is a complete measure space.

Proof. 1. We first claim that F is an algebra. It is clear that

X,∅ ∈ F and A ∈ F ⇐⇒ Ac ∈ F .

For any A,B ∈ F , we need to show that A ∪B ∈ F , i.e.,

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) for all E ∈ P(X). (4.2)

Indeed, since A,B ∈ F , it holds
µ∗(F ) = µ∗(F ∩ A) + µ∗(E ∩ Ac)

µ∗(F ) = µ∗(F ∩B) + µ∗(E ∩Bc)

for all F ∈ P(X).
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Observe that
E ∩ (A ∪B) = (E ∩ A) ∪ (E ∩ Ac ∩B).

We have
µ∗(E ∩ (A ∪B)) ≤ µ∗(E ∩ A) + µ∗((E ∩ Ac ∩B)).

Thus,

µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) ≤ µ∗(E ∩ A) + µ∗((E ∩ Ac ∩B))

+µ∗(E ∩ (A ∪B)c)

= µ∗(E ∩ A) + µ∗((E ∩ Ac ∩B))

+µ∗(E ∩ Ac ∩Bc)

= µ∗(E ∩ A) + µ∗(E ∩ Ac)
= µ∗(E).

2. µ∗ is is additive on F . For any A,B ∈ F with A ∩B = ∅, it holds that

µ∗(E ∩ (A ∪B)) = µ∗(E ∩ (A ∪B) ∩ A) + µ∗(E ∩ (A ∪B) ∩ Ac)

= µ∗(E ∩ A) + µ∗(E ∩B).

Thus, by the induction method, one can show that for any {A1, . . . , An} finite col-
lection of disjoint sets in F , it holds

µ∗

(
E ∩

(
n⋃
k=1

Ak

))
=

n∑
k=1

µ∗(E ∩ Ak) for all E ∈ P(X).

In particular, choosing E = X, we obtain that

µ∗

(
n⋃
k=1

Ak

)
=

n∑
k=1

µ∗(Ak).

3. Let us now check that F is a σ-algebra. For a given be a sequence of mutually
disjoint sets An in F , we show that

S :=
∞⋃
n=1

An ∈ F .

Equivalently,

µ∗(E) ≥ µ∗(E ∩ S) + µ∗(E ∩ Sc) for all E ∈ P(X).

Using the σ-subadditive property of µ∗, we have

µ∗(E ∩ S) = µ∗

(
∞⋃
n=1

(E ∩ An)

)
≤

∞∑
n=1

µ∗(E ∩ An) = lim
n→∞

n∑
k=1

µ∗(E ∩ Ak)
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= lim
n→∞

µ∗

(
E
⋂(

Sn =:
n⋃
k=1

Ak

))
.

On the other hand,

µ∗(E ∩ Sc) = µ∗

(
E ∩

(
∞⋂
k=1

Ack

))
≤ µ∗

(
E ∩

(
n⋂
k=1

Ack

))
= µ∗(E ∩ Scn),

and it yields

µ∗(E ∩ S) + µ∗(E ∩ Sc) ≤ lim sup
n→∞

[
µ∗(E ∩ Sn) + µ∗(E ∩ Scn)

]
= µ∗(E).

Thus, S ∈ F and F is a σ-algebra.

4. One can show that if µ∗ is additive and σ-sub-additive then µ∗ is σ-additive.
Therefore, (X,F , µ∗) is a measure space.

5. To conclude the proof, we will show that (X,F , µ∗) is complete. Given N ∈ F
with µ∗(N) = 0, we claim that

M ∈ F for all M ⊆ N.

Equivalently,

µ∗(E) ≥ µ∗(E ∩M) + µ∗(E ∩M c) for all E ∈ P(X).

By the monotonicity of µ∗, it holds

0 ≤ µ∗(M ∩ E) ≤ µ∗(N ∩ E) ≤ µ∗(N) = 0

and it yields µ∗(M ∩ E) = µ∗(N ∩ E) = 0. Thus,

µ∗(M ∩ E) + µ∗(E ∩M c) ≤ 0 + µ∗(E ∩N c) ≤ µ∗(E)

and the proof is complete.

By using Carathéodory theorem, we have created a large class of complete mea-
sures space from some small family of sets and their size. However, the constructed
σ-algebra via this approach is abstract. A natural question is whether one can di-
rectly show that a set is Carathéodory measurable. To do that we shall consider a
special class of outer measures.
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Definition 4.6 Let (X, d) be a metric space. An outer measure µ∗ on X is called
a metric outer measure if

µ∗(E ∪ F ) = µ∗(E) + µ∗(F ),

for all sets E,F ⊂ X satisfying

d(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F} > 0.

Proposition 4.6.1 Let X be a metric space and µ∗ be a metric outer measure on
X. Then every Borel set is µ∗ measurable.

Proof: Since closed sets generate the Borel σ-algebra, we just need to prove that
any closed set is Carathéodory measurable. Now let C ⊂ X be closed, and let
F ⊂ X satisfy µ∗(F ) <∞ (the other case is trivial), we show that

µ∗(F ) ≥ µ∗(F ∩ C) + µ∗ (F\C) .

Consider a sequence of sets En ⊂ F\C such that

E0 := {x ∈ F\C : d(x,C) ≥ 1}, En :=

{
x ∈ F\C :

1

n+ 1
≤ d(x,C) <

1

n

}
.

Clearly these sets are disjoint and
∞⋃
n=0

En = F\C. In particular,

µ∗(F ∩ C) + µ∗(F\C) = µ∗(F ∩ C) + µ∗

(
∞⋃
n=0

En

)

≤ µ∗(F ∩ C) + µ∗

(
n⋃
i=0

Ei

)
+

∞∑
i=n+1

µ∗(Ei)

= µ∗

(
(F ∩ C) ∪

(
n⋃
i=0

Ei

))
+

∞∑
i=n+1

µ∗(Ei)

≤ µ∗(F ) +
∞∑

i=n+1

µ∗(Ei).

To complete the proof, we need to show that
∞∑
n=0

µ∗(En) < +∞. By the definition

of En, it holds

d(E2k, E2h), d(E2k+1, E2h+1) ≥ 0 for all h 6= k.

Since µ∗ be a metric outer measure on X, one has that

N∑
k=0

µ∗(E2k) = µ∗

(
N⋃
k=0

E2k

)
≤ µ∗(F )
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and
N∑
k=0

µ∗(E2k+1) = µ∗

(
N⋃
k=0

E2k+1

)
≤ µ∗(F ).

Thus,
∞∑
k=0

µ∗(Ek) ≤ 2 · µ∗(F ) < +∞

and this complete the proof.

Problem 13: Let A be a σ-algebra on X and let µ : A → [0,+∞] be additive.
Show that µ is a measure on (X,A) if and only if one of the followings holds

(i) µ is σ-subadditive;

(ii) For every sequence of increasing sets {An}n≥1 in A, then

µ

(
∞⋃
n=1

An

)
= lim

n→∞
µ(An) .

Problem 14: In X = N, consider the algebra

A = {A ∈ P(X) | A is finite or Ac is finite} .

Show that the function ν : A → [0,+∞] defined as

ν(A) =


∑
n∈A

1

2n
if A is finite

+∞ if A is infinite

is additive but not σ-additive.

4.2 Lebesgue measure on R
Let I be a set of open intervals on R. For any I = (a, b) with a ≤ b, denote by

`(I) =


b− a −∞ < a ≤ b < +∞

+∞ if a = −∞ or b = +∞.

Observe that for every A ∈ P(R), there exists (In)n≥1 ⊂ I such that

A =
∞⋃
n=1

In .
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Introduce the function m∗ : P(R)→ [0 +∞] be such that for every A ∈ R

m∗(A) := inf

{
∞∑
n=1

`(In) : In ∈ I and A ⊆
∞⋃
n=1

In

}
.

Proposition 4.6.2 The function m∗ : P(R) → [0,+∞] is an outer measure. In
addition,

(i) for every −∞ < a < b < +∞, it holds

m∗((a, b)) = `((a, b)) = b− a;

(ii) m∗ is translation invariant, in the sense that m∗(x+ E) = m∗(E).

Proof. The fact that m∗ is an outer measure follows immediately from Proposition
4.2.1 andm∗ is translation invariant follows directly from the fact that ` is translation
invariant. To verify that m∗ extends ` on the open intervals (a, b), we need to prove
that

m∗((a, b)) ≥ `((a, b)) = b− a.

Equivalently, for any (a, b) ⊆
∞⋃
i=1

(ai, bi), it holds

b− a ≤
∞∑
i=1

`((ai, bi)).

For every ε > 0 sufficiently small, since [a + ε/2, b− ε/2] ⊂ (a, b) is compact, there
exists a finite sub-covering (aik , bik) such that

[a+ ε/2, b− ε/2] ⊂
N⋃
k=1

(aik , bik)

and this yields

b− a− ε ≤
N∑
k=1

(bik − aik) ≤
∞∑
i=1

`((ai, bi)).

Taking ε→ 0+, we the complete the proof.

Using the Carathéodory’s approach, we then define the Lebesgue measure space
in R.

Definition 4.7 A set E ∈ R is Lebesgue measurable if

m∗(A) = m∗(E ∩ A) +m∗(Ec ∩ A) for all A ∈ P(R).

31



Denote by
M = {E ∈ P(R) | E is Lebesgue measurable}.

and m :M→ [0,∞] such that

m(E) = m∗(E) for all E ∈M.

From Carathéodory’s theorem, it holds

• M is a σ-algebra.

• m is a complete measure on M.

We say that m is the Lebesgue measure on R.

Basic properties of m.

(i). m(∅) = 0, m([a, b] = b− a and m({x}) = 0.

(ii). For all a ∈ R and E ∈M, it holds

m(a+ E) = m(E) .

(iii) If m∗(A) = 0 then A is Lebesgue measurable and m(A) = 0.

Proposition 4.7.1 It holds that

B(R) ⊆ M.

Proof. It is sufficiently to show that the set (a,+∞) is measurable for any given
a ∈ R. Equivalently, for any A ∈ P(R), it holds

m∗(A) ≥ m∗(A ∩ (a,+∞)) +m∗(A ∩ (−∞, a]).

It is trivial if m∗(A) = +∞. Assume that m∗(A) <∞. For every ε > 0, there exists
{In}n≥1 ⊆ I such that

A ⊆
∞⋃
n=1

In and m∗(A) ≥
∞∑
n=1

`(In)− ε .

For any n ∈ N, denote by

Jn = In ∩ (a,+∞) and J ′n = In ∩
(
−∞, a+

ε

2n

)
.

It is clear that
`(In) ≥ `(Jn) + `(J ′n)− ε

2n
.
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Thus,

m∗(A) + ε ≥
∞∑
n=1

`(In) ≥
∞∑
n=1

(
`(Jn) + `(J ′n)− ε

2n

)
≥ m∗(A ∩ (a,+∞)) +m∗(A ∩ (−∞, a])− ε.

Taking ε > 0 to 0+, we obtain

m∗(A) ≥ m∗(A ∩ (a,+∞)) +m∗(A ∩ (−∞, a])

and this implies that (−∞, a) is Lebesgue measurable.

Problem 15: Show that m∗ is an outer metric measure on R.

Problem 16: Construct a Lebesgue measurable set but not Borel set.

4.2.1 Outer and inner approximation

Let (R,M,m) be the Lebesgue measure space on R. It is known that

B(R) ( M.

Question: Is the Borel σ-algebra B(R) “dense” in M w.r.t m, i.e., for every ε > 0
there exists Kε closed and Oε open in R such that

Kε ⊆ E ⊆ Oε and m (Oε\Kε) < ε.

The following theorem is to answer the above question.

Theorem 4.8 Let E be a subset of R. Then E is Lebesgue measurable if and only
if one of the following assertion holds

(a) For any ε > 0, there exists Oε open subset of R such that

E ⊆ Oε and m∗(Oε\E) ≤ ε.

(b) For any ε > 0, there exists Kε closed subset of R such that

E ⊇ Kε and m∗(E\Kε) ≤ ε.

Proof. Let’s show that E is measurable if any only if (a) holds.

1. Assume that E is measurable. Two cases are considered

Case 1: If m(E) < +∞ then there exists (In)n≥1 ⊂ I such that

E ⊆
∞⋃
n=1

In and m(E) + ε ≥
∞∑
n=1

`(In).
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The set Oε :=
∞⋃
n=1

In ⊇ E is open. Moreover, the σ-additive property of m yields

m(Oε\E) = m(Oε)−m(E) ≤

(
∞∑
n=1

`(In)

)
−m(E) ≤ m(E) + ε−m(E) = ε.

Case 2: If m(E) = +∞ then we can write

E =
∞⋃
n∈N

En with En = E ∩
(
[n, n+ 1) ∪ [−n− 1,−n)

)
.

Since En is Lebesgue measure with m(En) ≤ 1, from case 1 there exists a open set
En ⊆ On,ε such that

m(On,ε\En) ≤ ε

2n+1
for all n ∈ N.

The set Oε =
∞⋃
n=0

On,ε is open, containing E, and satisfies

m(Oε\E) ≤
∞∑
n=0

m(On,ε\E) ≤
∞∑
n=0

ε

2n+1
= ε.

2. Assume that (a) holds, we show that E is Lebesgue measurable. For every n ≥ 1,

there exists an open set On ⊇ E such that m∗(On\E) ≤ 1

n
. Set G :=

∞⋂
n=1

On ∈M,

we have
E ⊆ G ∈ M and m∗(G\E) = 0.

Since m∗(G\E) = 0, it holds that G\E is in M. Thus, E = G\(G\E) is Lebesgue
measurable.

3. To conclude the proof, let’s show that E is Lebesgue measurable if and only if
(b) holds. Indeed, E is measurable if any only if Ec is measurable. Equivalently, for
every ε > 0, there exists Oε open set such that

Ec ⊆ Oε and m∗(Oε\E) ≤ E.

The set Kε = Oc
ε is closed and satisfies

Kε ⊆ E and m∗(E\Kε) = m∗(Oε\E) ≤ ε.

The proof is complete.
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Corollary 4.9 Let E be a measurable set with m(E) < ∞. Then there exists
(In)Nn=1 ⊂ I finite disjoint open intervals such that

m

(
N⋃
n=1

In ∆E

)
= m

(
E\

N⋃
n=1

In

)
+m

(
N⋃
n=1

In\E

)
≤ ε.

Proof. From the above theorem, there exists any open set Oε such that

E ⊆ Oε and m(Oε\E) ≤ ε

2
.

Since Oε is open, one has

Oε =
∞⋃
n=1

In

for In ∈ I and Im ∩ In = ∅ for every m 6= n. By the σ-additive property of m, one
has

m(Oε) =
∞∑
n=1

m(In) = lim
n→∞

n∑
k=1

m(Ik).

In particular, there exits Nε ∈ N such that

m

(
Nε⋃
k=1

Ik

)
=

Nε∑
k=1

m(In) ≥ m(Oε)−
ε

2
.

This implies that

m

(
E\

Nε⋃
n=1

In

)
+m

(
Nε⋃
n=1

In\E

)
≤ m

(
Oε\

Nε⋃
n=1

In

)
+m (Oε\E) ≤ ε

2
+
ε

2
= ε

and the proof is complete.

Remark 4.10 If E is a bounded set in R then for every ε > 0, there exists an open
set Oε such that E ⊆ Oε and

m∗(Oε) ≤ m∗(E) + ε.

However, it does not imply that

m∗(Oε\E) ≤ ε.

The first inequality is directly from the definition of outer measure. However, a
bounded set E is not measurable in general. Thus, the second inequality fails if E
is not Lebesgue measurable.
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4.2.2 Uncountable set with zero Lebesgue measure and non-Lebesgue
measurable set

Up to now, we has obtained the followings:

• Every at most infinite countable set in R has a zero Lebesgue measure.

• B(R) is a dense subset of M.

• (R,M,m) is a complete measure space.

One can ask several questions:

• Is there a uncountable set with zero Lebesgue measure?

• Construct a non-Lebesgue measurable set.

• Show that (R,B(R),m) is not complete.

• Construct a Lebesgue measurable set but not Borel.

1. Cantor set. Define a sequence of closed set (Cn)n≥1 by induction

C0 = [0, 1], C1 =

[
0,

1

3

]⋃[
2

3
, 1

]
and Cn =

Cn−1

3

⋃(
2

3
+
Cn−1

3

)
.

The cantor set C =
∞⋂
n=1

Cn is nowhere dense and closed. In particular, C is measur-

able. Moreover, since (Cn)n≥1 is decreasing and m(C0) = 1 < +∞, it holds

m(C) = m

(
∞⋂
n=1

Cn

)
= m

(
lim
n→∞

Cn

)
= lim

n→∞
m(Cn) = lim

n→∞

(
2

3

)n
= 0.

We now show that C is uncountable. Assume by a contradiction that the set C is
at most countable, i.e.,

C = {c1, c2, . . . , cn, . . . }.
Then, one can construct a decreasing sequence of compact subsets (Fk)k≥1 such that

ck /∈ Fk ⊂ Ck.

In particular, one has

x ∈
∞⋂
k=1

Fk ⊆
∞⋂
k=1

Ck = C.

Thus, there exists n0 ∈ N such that

x = cn0 ∈
∞⋂
k=1

Fk
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and this yields a contradiction.

Problem 17: Let C be the cantor set which is constructed as above. Show that

Hs(C) =


0 if s >

ln 2

ln 3

+∞ otherwise.

Question. Notice that the cantor set C is a Borel set with zero Lebesgue measure.
Can one construct a non Borel subset of C?

2. Non-measurable sets. Thanks to the translation invariance of m, the fol-
lowing holds:

Lemma 4.11 Let E be a bounded Lebesgue measurable. Suppose that there exists a
bounded countable infinite set of real numbers Λ such that

λ1 + E
⋂

λ2 + E = ∅ λ1 6= λ2 ∈ Λ.

Then, m(E) = 0.

Proof. By the σ-additivity of m, it holds

∑
λ∈Λ

m(λ+ E) = m

(⋃
λ∈Λ

λ+ E

)
< +∞

Since m(λ+E) = m(E) for all λ ∈ Λ and Λ has infinite elements, one obtains that
m(E) = 0.

As a consequence, any bounded set V satisfies the above property but having a
positive outer measure is non-Lebesgue measurable. To construct V , one can think
of dividing E into infinite countable disjoint subsets (Vn)n≥1 such that every n ≥ 1,

x− y ∈ Q for all x, y ∈ Vn.

This leads to the following definition.

Definition 4.12 (Vitali sets) Given A ⊂ R, V is called a Vitali subset of A if

Card (V ∩Qa) = 1 with Qa := a+ Q

for all a ∈ A.
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How to construct a Vitali set? For any x ∈ R, set

Qx := x+ Q,

we have

Qx

⋂
Qy 6= ∅ ⇐⇒ Qx = Qy ⇐⇒ x− y ∈ Q.

Given any subset A ⊂ [0, 1], consider the collection of all subset Qx

QA = {Qx : x ∈ A}.

Axiom of choice. There exists a choice function f : QA → A such that

f(Qx) ∈ Qx ∩ A for all x ∈ A.

It is easy to check that the set

VA := {f(Qx) : x ∈ A} ⊆ A

is a Vitali subset of A. Indeed, it is easy to see that

VA ∩Qa = {f(Qa)} for all a ∈ A.

In the following theorem, we shall show that every set with positive Lebesgue mea-
surable set contains a non Lebesgue measurable subset.

Theorem 4.13 If A ∈ M has a positive Lebesgue measure then the set VA is non
Lebesgue measurable.

Proof. Since VA is a Vitali subset of A, one has that

q1 + VA
⋂

q2 + VA = ∅ for all q1 6= q2 ∈ Q.

Moreover, for every x ∈ A ⊆ [0, 1], it holds

x ∈ f(Qx) + [−1, 1]

and this implies that

A ⊆ NA :=
⋃

q∈Q
⋂

[−1,1]

q + VA ⊆ [−1, 2].

Assume that VA is Lebesgue measurable. Then, the set NA is also Lebesgue mea-
surable and

0 < m(A) ≤ m(NA) ≤ 3.
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On the other hand, by the σ-additive property of m, one has

m(NA) = m

 ⋃
q∈[−1,1]∩Q

q + VA

 =
∑

q∈[−1,1]∩Q

m(q + VA) =
∑

q∈[−1,1]∩Q

m(VA).

Thus,

0 < m(A) ≤
∑

q∈[−1,1]∩Q

m(VA) ≤ 3

and it yields a contradiction.

3. A non-Borel Lebesgue measurable set. Our construction will be divided
into two steps:

Step 1. The above cantor set C can be expressed by

C :=

{
x =

∞∑
n=1

cn · 3−n : cn ∈ {0, 2}

}
.

For every x =
∞∑
n=1

cn · 3−n, we define

f(x) =
∞∑
n=1

dn · 2−n with dn =

{
1 if cn = 2

0 if cn = 0.

The function f : C → [0, 1] is increasing, and has the same value at the end of each
of the intervals we’ve removed. It can be extended to a continuous function on [0, 1]
such that f(x) is constant on each removed interval

f ′(x) = 0 a.e. x ∈ [0, 1].

The following function

g(x) = x+ f(x) for all x ∈ [0, 1]

is strictly increasing, continuous, and g([0, 1]) = [0, 2]. Hence, it has a continuous
inverse g−1 : [0, 2] → [0, 1]. On the other hand, observe that the function g maps
removed interval of [0, 1] to intervals of [0, 2] of the same length, we have

m (g ([0, 1]\C)) = m ([0, 1]\C) = 1

and this implies that

m (g(C)) = m([0, 2])−m (g ([0, 1]\C)) = 1.
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Step 2. Since g(C) has positive Lebesgue measure, there exists k ∈ Z such that
the set g(C) ∩ [k, k + 1] has also positive Lebesgue measure. In particular, the set

A := g(C) ∩ [k, k + 1]− k ⊆ [0, 1] has positive Lebesgue measure.

From Theorem 4.13, the set k+VA ⊆ g(C) is not Lebesgue measurable. In particular,
it is not Borel. Thanks to the increasing property of g, the set g−1(k + VA) is also
not Borel. On the other hand, by completeness of the Lebesgue space, since

g−1(k + VA) ⊆ C with m(C) = 0,

the set g−1(k + VA) is Lebesgue measurable.

Problem 18: Show that a strictly increasing function defined on an interval maps
Borel sets to Borel sets.

Problem 19: Let γ1 : [c, d] → Rd be a smooth curve with γ1(c) = x, γ1(d) = y.
Show that H1(γ1([c, d])) ≥ |x− y|.

Problem 20: Given x, y ∈ Rn and S := {tx + (1 − t)y : t ∈ [0, 1]} show that
H1(S) = |x− y|.

4.3 Lebesgue measure on Rd

Given a closed and bounded rectangle

R = [a1, b1]× [a2, b2]× [ad, bd], −∞ < ai ≤ bi <∞.

The volume of R is

V (R) = (b1 − a1) · (b2 − a2) . . . (bd − ad).

Denote by R(Rd) a collection of bounded and closed rectangle.

Lemma 4.14 (Outer measure) The function µ∗ : P(Rd)→ [0,+∞] defined by

µ∗(E) = inf

{
∞∑
i=1

V (Ri) : E ⊆
∞⋃
i=1

, Ri ∈ R(Rd)

}
is a metric outer measure.

Proof. The fact that this is an outer measure follows from an earlier proposition.
The fact that it’s a metric outer measure follows the same argument as for the
Lebesgue measure on R.

Some basic properties: The followings hold
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(i) µ∗(R) = V (R) for all R ∈ Rd;

(ii) µ∗(a+ E) = µ∗(A) for all a ∈ R and A ⊆ Rd;

(iii) µ∗({a} × Rd−1) = 0 for all a ∈ R.

Definition 4.15 (Lebesgue measurable set) A subset A of Rd is called Lebesgue
measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ∈ Rd.

Denote by
L(Rd) =

{
A ∈ P(Rd) : A is Lebesgue measurable

}
and µ : L(Rd)→ [0,+∞] such that

µ(A) = µ∗(A) for all A ∈ L(Rd).

With the same argument in one dimensional case, one can show that

Theorem 4.16 The triple (Rd,L(Rd), µ) is a complete measure space in Rd. More-
over,

µ(R) = V (R) for all R ∈ R(Rd) ,

and
µ(a+ A) = µ(A) for all a ∈ R, A ∈ L(Rd).

4.3.1 Borel σ-algebra and regularity properties

Let T (Rd) be a collection of all open subsets of Rd. Denote by

B(Rd) = σ(T (Rd))

the σ-algebra generated by T (Rn). Since µ∗ is a metric outer measure on Rd, from
Proposition 4.6.1, it holds

B(Rd) ⊂ L(Rd).

Moreover, one also has that

Proposition 4.16.1 The Borel σ-algebra is also generated by R(Rd), i.e.,

B(Rd) = σ
(
R(Rd)

)
.

Proof. We only need to show that

B(Rd) ⊆ σ
(
R(Rd)

)
.

Equivalently, for any O open and bounded subset of Rd, it holds

O ∈ σ
(
R(Rd)

)
.
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In order to do so, let’s construct a sequence (Gn)n≥1 ⊆ σ
(
R(Rd)

)
such that

O =
∞⋃
n=1

Gn.

For n = 1, we divide Rd into cubes (almost disjoint) with side 2−1. Let {C1,1, C1,2, . . . , C1,N1}
be all cubes contained in O and thus the set

O ⊇ G1 :=

N1⋃
i=1

Ci ∈ σ
(
R(Rd)

)
.

For n = 2, we set O1 := O\G1 and divide Rd into cubes (almost disjoint) with side
2−2 and let {C2,1, C2,2, ·, C2,N2} be all cubes contained in O1. The set

O1 ⊇ G2 :=

N1⋃
i=1

C2,i ∈ σ
(
R(Rd)

)
.

SinceO is an open set, by continuing this process, we obtain the sequence of mutually
disjoint (Gn)n≥1 such that

O =
∞⋃
n=1

Gn ∈ σ
(
R(Rd)

)
and this complete the proof.

Theorem 4.17 (Borel regularity) Let A be a subset of Rd. Then

µ∗(A) = inf {µ(G) : A ⊆ G,G is open} . (4.3)

In addition, if A ∈ L(Rd) then

µ(A) = inf {µ(G) : A ⊆ G,G is open} = sup {µ(K) : K ⊆ A,K is closed} . (4.4)

Proof. 1. (4.3) is trivial if µ(A) = +∞. Assume that µ(A) < +∞. For every
ε > 0, it holds

A ⊆
∞⋃
i=1

Ri and µ∗(A) ≥
∞∑
i=1

V (Ri) +
ε

2
.

For every i ≥ 1, there exists Si ∈ R(Rd) such that

Ri ⊂ int(Si) and V (Si) ≤ V (Ri) +
ε

2i+1
.
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Thus, the set Gε :=
∞⋃
i=1

int(Si) ⊃ A is open and

µ(Gε) ≤
∞∑
i=1

V (Ri) +
ε

2i+1
≤ µ∗(A) + ε.

and it yields (4.3).

2. Let’s prove (4.4) for A ∈ L(Rd). For every ε > 0, we need to find Kε compact
subset of Rd such that

Kε ⊆ A and µ(Kε) ≥ µ(A) + ε.

If A is bounded then there exists F ∈ R(Rd) such that A ⊆ F . From the previous
result, there exists an open set Gε such that

F\A ⊆ Gε and µ(Gε) ≤ µ(F\A) + ε.

Thus, the set Kε := F\Gε ⊆ A is compact and satisfies

µ(A) = µ(F )− µ(F\A) ≤ µ(F )− µ(Gε) + ε = µ(Kε) + ε.

Otherwise, if A is unbounded then one can consider the set AR = A ∩ B(0, R) and
let R to +∞.

With the same argument in theorem 4.8, one can show that

Theorem 4.18 The set A ∈ P(Rd) is Lebesgue measurable if and only if for every
ε > 0, there exists Oε open set such that

A ⊆ Oε and µ∗(Oε\A) ≤ ε.

This theorem showed that B(Rd) is ”dense” is L(Rd) with respect to Lebesgue
measure µ. To conclude this subsection, we prove the following theorem.

Theorem 4.19
(
Rd,L(Rd), µ

)
is the completion of

(
Rd,B(Rd), µ

)
.

Proof. Let’s consider the completion of B(Rd)

B(Rd) :=
{
A ∪M : A ∈ B(Rd),M ⊆ N ∈ B(Rd), µ(N) = 0

}
.

We show that
B(Rd) = L(Rd).

Since µ∗(N) = µ(N) = 0, one has that M is in L(Rd) for every M ⊆ N . Thus,

B(Rd) ⊆ L(Rd).
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Let A be a set in L(Rd). For any ` ≥ 0, there exist K` closed and O` open sets such
that

K` ⊆ A ⊆ O` and µ(O`\K`) <
1

`
.

The following Borel sets K :=
⋃
`≥1

K` and O :=
⋂
`≥1

O` satisfy

K ⊆ A ⊆ O and µ(O\K) = 0.

Thus,

A = K
⋃

(A\K) ∈ B(Rd).

and this complete the proof.

Problem 21: Construct a set E ⊂ R2, where E = E1 × E2 (Cartesian product)
so that E is Lebesgue measurable in R2, but E1 is not Lebesgue measurable in R.
Show that if E1 and E2 are both Lebesgue measurable in R then will E1 × E2 be
Lebesgue measurable in R2?

4.4 Hausdorff Measure

Here we state definitions and properties of the Hausdorff measure, without any
detailed proofs. For any 0 ≤ s < +∞, we define

αs =
πs/2

Γ(s/2 + 1)
with Γ(s) =

∫ ∞
0

e−xxs−1dx (Euler Gamma function).

Notice that αd is the Lebesgue measure of the unit ball in Rd for every d ∈ N. For
any given 0 ≤ s ≤ d and δ > 0, we define for every E ⊂ Rd that

Hs
δ(E) := inf

{
∞∑
n=1

αs ·
(

diam(En)

2

)s
: E ⊂

∞⋃
n=1

En, diam(En) < δ

}
.

If s = 0 we only sum over non-empty En. Since the map σ → Hs
δ (E) is non-

increasing, we then define

Hs(E) = lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs
δ(E).

This is known as the Hausdorff metric outer measure.

Proposition 4.19.1 The Hausdorff outer measure Hs satisfies the following prop-
erties:

(i) H0 is the counting measure (meaning it just returns the number of elements
in a set).
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(ii) Hs ≡ 0 for s > d.

(iii) Hs(x+ E) = Hs(E), Hs(λE) = λsHs(E).

(iv) Hd = Ld.
We can use this outer measure to provide a notion of dimensionality of a set.

Proposition 4.19.2 Let 0 ≤ s < t <∞, and E ⊂ Rd. Then

1. If Hs
δ(E) = 0 for 0 < δ, then Hs(E) = 0.

2. If Hs(E) <∞ then Ht(E) = 0.

3. If Ht(E) > 0 then Hs(E) =∞.

With the previous proposition in mind, we can define

dimH(E) := inf {0 ≤ s ≤ ∞ : Hs(E) = 0} .

the Hausdorff dimension of E.

Example 4.4 The Hausdorff dimension of the Cantor set C is ln(2)/ln(3).

Example 4.5 Any hyperplane with dimension k will have Hausdorff dimension k.

The Hausdorff measure is well-equipped to handle mappings between spaces of
different dimension:

Proposition 4.19.3 Suppose E ⊂ Rk and f : E → Rd be a Hölder continuous
function, meaning that for some L > 0, θ ∈]0, 1] we have

‖f(x)− f(y)‖ ≤ L‖x− y‖η for all x, y ∈ E.

Then,

Hs/η(f(E)) ≤
αs/η2

s

αs2s/η
Ls/ηHs(E).

As many geometric objects (i.e. curves and surfaces) are defined in terms of smooth
mappings from between Rd and Rm, it turns out that Hs is well-suited to describe
many geometric objects.

Proposition 4.19.4 Given a continuous curve γ parametrized as f : [a, b] → Rd,
we define

length(γ) := sup

{
n∑
i=1

‖f(ti)− f(ti−1)‖ : a = t0 < t1 < · · · < tn = b

}
,

where the supremum is taken over possible partitions {ti}. Then for any Lipschitz
f we will have

H1(f([a, b])) = length(γ).

In addition, if f ∈ C1 then length(γ) =

∫ b

a

|f ′(t)| dt.
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The same idea holds for more general manifolds:

Proposition 4.19.5 Let M ⊂ Rd be a k-dimensional manifold of class C1. Let φ
be a local chart of the manifold, meaning that for A ⊂ Rk, φ : A → M is a C1

function, and ∇φ has rank k in A. Then we have that

Hk(φ(A)) = surface area
(
φ(A)

)
=

∫
A

√
det(∂yiφ · ∂yjφ) dy.

In particular, if the manifold is the graph of a function f : Rd−1 → R and M =
{(x, f(x)) : x ∈ A}, then

Hd−1(M) = surface area
(
M
)

=

∫
A

√
1 + |∇f |2 dx.

In turn, M has Hausdorff dimension k and Hk corresponds to the standard surface
measure.

Problem 22: Let E = {(x, x2) : x ∈ [0, 1]}, E ⊂ R2. Prove that dimH(E) = 1.
Compute H1(E).

Problem 23: Prove Proposition 4.19.3

5 Measurable functions

Let (X,M) and (Y,N ) be measurable spaces.

Definition 5.1 A map f : X → Y is measurable if and only if

f−1(B) ∈ M for all B ∈ N .

In the case, (Y, d) is a metric space and N = B(Y ) Borel σ-algebra, we will say that
f is a Borel function.

Proposition 5.1.1 Let F be such that σ(F) = N . Then f : X → Y is measurable
if

f−1(F ) ∈ M for all F ∈ F .

Proof. Observe that the collection

Nf := {A ∈ N : f−1(A) ∈M} ⊆ N

is an σ-algebra on Y . Since F ⊆ Nf , it holds

σ(F) ⊆ Nf

and it yields
Nf = N .

The proof is complete.
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Corollary 5.2 Let (X, dX) and (Y, dY ) be metric space andM = B(X), N = B(Y ).
Then any continuous function f : X → Y is measurable.

Proof. Let F be a collection of all open sets in Y . By the continuity of f , it holds

f−1(A) is open for all A ∈ F ,

and this particularly yields

f−1(A) ∈ B(X) for all A ∈ F .

Since σ(F) = B(Y ), the above proposition implies that f is measurable.

Problem 24: Assume that f : X → Y is measurable. Then

Uf = {f−1(B) : B ∈ N}

is the smallest σ-algebra with respect to which f is measurable.

5.1 Real value functions

In the following discussion, we will be lettingN = B(R) (as is a common convention).

5.1.1 Basic properties

Given a measurable space (X,M), Consider the real value function

f : X → R = R ∪ {−∞,∞}.

One can show that f is measurable if any only if one of the following holds

(a). f−1([−∞, b)) ∈M for all b ∈ R;

(b). f−1([−∞, b]) ∈M for all b ∈ R;

(c). f−1((a,+∞]) ∈M for all a ∈ R;

(d). f−1([a,+∞]) ∈M for all a ∈ R.

Lemma 5.3 Assume that f, g : X → R are measurable. Then the following func-
tions

cf, f + g, f 2, f · g, |f |, max{f, g} and min{f, g}

are measurable.
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Proof. 1. Let’s show that f + g is measurable. For any b ∈ R, it holds

(f + g)−1([∞, b)) = {x ∈ X : f(x) + g(x) < b}

=
⋃
q∈Q

[
{x ∈ X : f(x) < q}

⋂
{x ∈ X : g(x) < b− q}

]
∈ M.

Thus, f + g is measurable.

2. f 2 is measurable. For any b ≥ 0, it holds

(f 2)−1([−∞, b)) = {x ∈ X : f 2(x) < b} =
{
x ∈ X : |f(x)| <

√
b
}

= {x ∈ X : −
√
b < f(x) <

√
b} = f−1(]−

√
b,
√
b[) ∈ M.

As a consequence, the function

f · g =
1

4

[
(f + g)2 − f 2 − g2

]
is measurable.

3. One can show that |f | is measurable. Thus,

max{f, g} =
f + g + |f − g|

2
and min{f, g} =

f + g − |f − g|
2

are measurable.

Problem 25: Prove or give a counterexample: if (X,M) is a measurable space and
f : X → [−∞,∞] is a function such that

f−1 ((a,∞)) ∈ M for all a ∈ R,

then f is is a measurable function.

Problem 26: Give an example of a measurable space (X,M) and f : X → R such
that |f | is measurable but f is not measurable.

Point-wise convergence. Measurability is preserved by limiting operations of se-
quences of functions. Here operations are understood in a point-wise sense.

Proposition 5.3.1 If fn : X → R is measurable for all n ≥ 1 then

sup
n≥1

fn, inf
n≥1

fn, lim sup
n→∞

fn and lim inf
n→∞

fn

are measurable on X
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Proof. For any b ∈ R, it holds(
sup
n≥1

fn

)−1

([−∞, b)) =
∞⋂
n=1

{x ∈ X : fn(x) < b} ∈ M

and (
inf
n≥1

fn

)−1

([−∞, b)) =
∞⋃
n=1

{x ∈ X : fn(x) < b} ∈ M

Thus, supn≥1 fn and infn≥1 fn are measurable. As a consequence, one has that

lim sup
n→∞

fn = inf
n≥1

(
sup
k≥n

fk

)
and lim inf

n→∞
fn = sup

n≥1

(
inf
k≥n

fk

)
are measurable.

Definition 5.4 A sequence of function (fn)n≥1 converges pointwise to f if

lim
n→∞

fn(x) = f(x) for all x ∈ X.

From the above proposition, pointwise convergence preserves the measurability.

Corollary 5.5 If fn are measurable and converges pointwise to f then f is also
measurable.

Problem 27: Give an example of a measurable space (X,M) and a family (ft)t∈R
such that ft : X → [0, 1] is measurable for every t ∈ R but the function f : X → [0, 1]
defined by

f(x) := sup
t∈R

ft(x) for all x ∈ X

is not measurable.

5.1.2 Simple functions

Given A ∈ P(X), the function XA : X → R defined by

XA(x) =


1 for all x ∈ A

0 for all x ∈ Ac

is called the characteristic function of the set A. It is clear that XA is a measurable
function if A is a measurable set.
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Definition 5.6 The function ϕ : X → R is simple if

ϕ =
N∑
i=1

ci · χEi

for some ci ∈ R and Ei ∈M.

It is clear that a simple function is measurable.

Remark 5.7 If ϕ is a simple function then there exists (Ai)
N
i=1 ⊂ M a collection

of finite mutually disjoint measurable sets such that

ϕ =
N∑
i=1

di · χAi .

Theorem 5.8 (Approximation by simple functions) If f : X → R is a non-
negative measurable function then there exists a sequence of non-negative simple
functions (ϕn)n≥1 such that

ϕn → f pointwise.

In addition, if f is bounded then ϕn converges uniformly to f , i.e.,

lim
n→∞

‖ϕn − f‖∞ = 0.

Proof. 1. For any n ≥ 1, divide Range(f) = f(X) into sub-intervals with length
2−n. More precisely, let

Bn := {x ∈ X : f(x) ≥ n}

and

Ik,n :=
[
k · 2−n, (k + 1) · 2−n

)
for all k ∈ {0, 1, 2, . . . , n2n − 1},

consider the function ϕn : X → [0,+∞] such that

ϕn =
n·2n−1∑
k=0

k2−n · χAk,n + n · χBn with Ak,n = f−1(Ik,n).

One can see that

• ϕn are non-negative simple functions for every n ≥ 1;

• (ϕn)n≥1 is a increasing sequence of functions, i.e.,

ϕn(x) ≤ ϕn+1(x) for all x ∈ X.
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2. Let us know show that lim
n→∞

ϕn(x) = f(x) for all x ∈ X. Two cases may occur

• If f(x) = +∞ then ϕn(x) = n for all n ≥ 1 and it yields lim
n→∞

ϕn(x) = +∞.

• If f(x) ∈ [0,+∞) then for every n ≥ f(x), we have

0 < f(x)− ϕn(x) < 2−n.

Thus, lim
n→∞

ϕn(x) = f(x).

Therefore, ϕn converges pointwise to f .

3. Assume that |f(x)| < M for all x ∈ X. We then have that

|f(x)− ϕn(x)| < 2−n for all x ∈ X,n ≥M.

Thus,
lim
n→∞

sup
x∈X
|f(x)− ϕn(x)| = 0

and it yields that ϕn converges uniformly to f .

Corollary 5.9 Let f : X → R be measurable and uniformly bounded by M . Then
for ε > 0 there exists simple functions ϕε and ψε such that

ϕε < f < ψε and ‖ϕε − ψε‖∞ < ε.

Proof. Decompose f into two parts

f = f+ − f− with


f+ = max{0, f},

f− = max{0,−f}

and then apply the previous lemma.

Problem 28: Given (X,M) and (Y,N ) measurable space and µ a measure onM,
let f : X → Y be measurable. Denote by f]µ : N → [0,+∞] such that

f]µ(A) = µ(f−1(A)) for all A ∈ N .

Show that f]µ is a measure on N (called the push forward of µ under f).

Problem 29: Given (X,M) and (Y,N ) measurable space, let f : X → Y be such
that f(X) is countable. Show that f is measurable if

f−1(y) ∈ M for all y ∈ Y .

Problem 30: Suppose that f : R → R is a Lebesgue measurable function. Then
there exists a Borel measurable function g : R→ R such that g(x) = f(x) for almost
every x ∈ R.
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5.1.3 Convergence almost everywhere

Definition 5.10 Let (X,M, µ) be a measure space and let
(
fn : X → R

)
n≥1

be a
sequence of functions on X. We say that

• fn converges to f almost everywhere (fn
a.e.−−→ f) if there exists E ∈ M with

µ(E) = 0 such that

lim
n→∞

fn(x) = f(x) for all x ∈ X\E.

• fn converges to f almost uniformly (fn
a.u.−−→ f) if f is finite and for every

ε > 0 there exists Eε ∈M with µ(Eε) < ε such that

lim
n→∞

(
sup

x∈X\Eε
|fn(x)− f(x)|

)
= 0.

Basic properties: Assume that fn : X → R are Borel functions. The following
statements hold

(i). If the measure space (X,M, µ) is complete then

fn
a.e.−−→ f =⇒ f is measurable.

(ii) If fn converges to f almost uniformly then fn converges to f almost every-
where.

(iii) If fn
a.e.−−→ f and fn

a.e.−−→ g then

f(x) = g(x) for a.e. x ∈ X.

Theorem 5.11 (Severini-Egorov) Let fn : X → R be a sequence of Borel func-
tions. Assume that (X,M, µ) is a finite measure space, i.e., µ(X) < ∞. If f is a
finite Borel function then

fn
a.e.−−→ f =⇒ fn

a.u.−−→ f.

Proof. Assume that fn converges to f almost everywhere. Then there exists E ∈M
with µ(E) = 0 such that

lim
n→∞

fn(x) = f(x) for all x ∈ X\E.

For every ε > 0, we want to find Eε ∈M such that µ(Eε) < ε and

lim
n→∞

(
sup

x∈X\Eε
|fn(x)− f(x)|

)
= 0.
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1. For any k, n ≥ 1, denote by

Ek,n =
∞⋃
i=n

{
x ∈ X : |f − fi| >

1

k

}
.

It is clear that Ek,n is measurable. Moreover, the sequence of sets (Ek,n)n≥1 is
decreasing for any k ≥ 1. This implies that

lim
n→∞

Ek,n =
∞⋂
n=1

Ek,n =

{
x ∈ X : lim sup

n→∞
|fn(x)− f(x)| > 1

k

}
:= Ek.

Since µ(Ek,1) ≤ µ(X) < +∞, one has

lim
n→∞

µ(Ek,n) = µ(Ek).

By the definition of Ek, it holds

Ek ⊆ E for all k ≥ 1

and it yields
lim
n→∞

µ(Ek,n) = µ(Ek) = 0 for all k ≥ 1.

2. For every ε > 0, one can find a sequence (nk)k≥1 such that

µ(Ek,nk) ≤
ε

2k
for all k ≥ 1.

The set Eε :=
∞⋃
k=1

Ek,nk has measure

µ(Eε) ≤
∞∑
k=1

µ(Ek,nk) ≤
∞∑
k=1

ε

2k
= ε.

Moreover, for any k ≥ 1, it holds

sup
x∈X\Eε

|f(x)− fi(x)| ≤ 1

k
for all i ≥ nk.

Thus,

lim
n→∞

(
sup

x∈X\Eε
|fn(x)− f(x)|

)
= 0

and the proof is complete.
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Remark 5.12 The above theorem will be false in general if µ(X) = +∞. Indeed,
let’s consider X = R and

fn = χ[n,+∞) for all n ≥ 1.

We have that fn converges to 0 pointwise. On the other hand, for every E ∈ M
with m(E) = 0, one has

sup
x∈R\E

fn(x) = 1 for all n ≥ 1.

and this implies that

lim
n→∞

(
sup
x∈R\E

fn(x)

)
= 1.

Thus, fn does not converge to f almost uniformly.

Problem 31: Let (X,M, µ) be a measure space and let {fn : X → R}n≥1 be a
sequence of measurable functions. For any n ≥ 1, denote by

En
.
=

{
x ∈ X : |fn+1(x)− fn(x)| > 1

2n

}
.

Assume that

µ(En) ≤ 1

2n
for all n ≥ 1 ,

show that {fn}n≥1 is pointwise convergent a.e on X.

Problem 32: Let (X,M, µ) be a measure space. A sequence of measurable func-
tions {fn : X → R}n≥1 is said to converge in measure to a measurable function f if
for every η > 0, it holds

lim
n→∞

µ {x ∈ X : |fn(x)− f(x)| > η} = 0 .

(i) Show that if µ(X) < ∞ and {fn}n≥1 converges point-wise a.e. on X to a
measurable function f then {fn}n≥1 converges in measure to f .

(ii) Show that {fn}n≥1 converges in measure to f , then there exists a subsequences
of {fn}n≥1 converges point-wise a.e. on X to f

Problem 33: Let g be a measurable function which is finite almost everywhere.
Suppose that fn converges in measure to f , and that µ is a finite measure. Prove
that

(i) fn · g converges in measure to f · g.

(ii) if gn converges to g in measure, with f, g are finite a.e., then fn · gn converges
in measure to f · g.
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5.1.4 Approximation by continuous functions

Definition 5.13 A measure µ : B(Rd) → [0,+∞] is called a Radon measure if
µ(K) is finite for every compact subset K.

Theorem 5.14 (Lusin) Let µ be a Radon measure on Rd and let f : Rd → R be
Borel. Assume that

{x : f(x) 6= 0} ⊂ A,

for some Borel set A with µ(A) <∞. Then for every ε > 0, there exits a continuous
function fε : Rd → R such that

supp(fε) = {x ∈ Rd : fε(x) 6= 0}

is contained in a compact set, and

µ
{
x ∈ Rd : fε(x) 6= f(x)

}
< ε.

Proof. The proof is divided into several steps.

1. Assume that A is compact and 0 ≤ f < 1. In this case, there exists a bounded
open set V such that

A ⊂ V and V is compact.

Recalling the construction in theorem 5.8, the function f can be approximated
uniformly by a sequence of simple functions (ϕn)n≥1 defined as follows

ϕn =
2n−1∑
k=0

k2−n · χAk,n with Ak,n = f−1
[
k2−n, (k + 1)2−n

)
.

Observe that
ϕ1 =

1

2
· χB1 with B1 =

{
x ∈ Rd : f(x) ≥ 1

2

}
,

ϕn − ϕn−1 =
1

2n
· χBn with Bn =

{
x ∈ Rd : f(x)− ϕn−1 ≥

1

2n

}
,

we have

ϕn =
n∑
i=1

1

2n
· χBn and lim

n→∞

(
sup
x∈X
|ϕn(x)− f(x)|

)
= 0. (5.1)

Finally, since supp(f) ⊆ A, it holds

Bn ⊆ A ⊆ V for all n ≥ 1.
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2. For a fixed ε > 0, there exist compact sets Kn and open sets Wn such that
Kn ⊆ Bn ⊆ Wn

µ(Wn\Kn) <
ε

2n

for all n ≥ 1.

Set Vn = Wn

⋂
V , we have

Kn ⊆ Bn ⊆ Vn and µ(Vn\Kn) <
ε

2n
for all n ≥ 1.

For any n ≥ 1, let g : Rd → [0, 1] be such that

gn(x) =
dV cn (x)

dKn(x) + dV cn (x)
for all x ∈ Rd.

Since dKn + dV cn > d(Kn, V
c
n ) > 0, the function gn is a continuous with value in [0, 1]

and satisfies

gn(x) =


1 for all x ∈ Kn

0 for all x ∈ V c
n .

for all n ≥ 1.

Thus, gn is an approximation of the characteristic function χBn for every n ≥ 1.

3. A continuous approximation fε of f is defined by

fε(x) =
∞∑
n=1

1

2n
· gn(x) for all x ∈ Rd.

We first claim that fε is continuous. Indeed, given any x ∈ Rd, we estimate

|fε(y)− fε(x)| ≤

(
N∑
n=1

1

2n
· |gn(y)− gn(x)|

)
+

(
∞∑

n=N+1

1

2n
· |gn(y)− gn(x)|

)

≤

(
N∑
n=1

1

2n
· |gn(y)− gn(x)|

)
+

1

2N

for all y ∈ Rd and N ≥ 1. This implies that

lim sup
y→x

|fε(y)− fε(x)| ≤ lim sup
y→x

(
N∑
n=1

1

2n
· |gn(y)− gn(x)|

)
+

1

2N
=

1

2N
.
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Taking N →∞, we obtain that

lim sup
y→x

|fε(y)− fε(x)| = 0.

Thus, fε is continuous at x. Moreover, since gn is non-negative, it holds

supp(fε(x)) =
{
x ∈ Rd : fε(x) 6= 0

}
⊆

∞⋃
n=1

{
x ∈ Rd : gn(x) 6= 0

}
⊆

∞⋃
n=1

Vn ⊆ V ⊆ V compact.

Finally, we have

{x ∈ Rd : fε(x) 6= f(x)} ⊆
∞⋃
n=1

{x ∈ Rd : χBn(x) 6= gn(x)} ⊆
∞⋃
n=1

(Vn\Kn) ,

and this yields

µ(x ∈ Rd : fε(x) 6= f(x)) ≤
∞∑
n=1

µ(Vn\Kn) ≤
∞∑
n=1

ε

2n
= ε.

4. Let’s extend our result to the case |f(x)| < M . In this case, we replace f =
f

|M |
and has that |f | < 1. Then we decompose

f = f+ − f− with


f+ = max{0, f}

f− = max{0,−f}.

Since f+, f+ take values in [0, 1[, for every ε > 0 there exist f±ε continuous such
that supp(f±ε ) are contained in compact sets and

µ
(
x ∈ Rd : f±ε (x) 6= f±(x)

)
≤ ε

2
.

Then the approximation of f is fε = f+
ε − f−ε .

5. Let’s now remove the compactness of A. From the density theorem (which we
gave for the Lebesgue measure in Theorem 4.8, but which holds for Radon measures),
for every A ∈ B

(
Rd
)
, there exists a compact set Ã such that

Ã ⊂ A and µ(A\Ã) <
ε

2
.

Set f̃ := f · χÃ. From the previous step, there exists fε : Rd → R continuous with
support contained in a compact set such that

µ
(
{x ∈ Rd : fε(x) 6= f̃(x)}

)
≤ ε

2
.
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Thus,

µ
(
{x ∈ Rd : fε(x) 6= f(x)}

)
≤ ε

2
≤ ε

2
+
ε

2
= ε.

6. Finally, let’s us remove the boundedness of f . Consider the decreasing sequence
of subsets of A

An = {x ∈ Rd : |f(x)| > n} for all n ≥ 1 .

Since µ(A1) ≤ µ(A) <∞ and
∞⋂
n=1

An = ∅, it holds

lim
n→∞

µ(An) = µ

(
∞⋂
n=1

An

)
= 0.

For any ε > 0, there exists n0 > 0 sufficiently large such that µ(A0) <
ε

2
and set

f̃ε = (1− χAn0 ) · f.

Since f̃ε is bounded by n0, then exists fε continuous with compact support such that

µ
(
{x ∈ Rd : fε(x) 6= f̃ε(x)}

)
<

ε

2
.

This implies that

µ
(
{x ∈ Rd : fε(x) 6= f(x)}

)
<

ε

2
+
ε

2
= ε

and the proof is complete.

Corollary 5.15 Let µ be a Radon measure on B(Rd) and let A be a Borel set with
µ(A) < +∞. Assume that f : A → R is a Borel function. Then for every ε > 0
there exists a compact set Kε ⊆ A with µ(A\Kε) < ε such that the restriction of f
on Kε, denote by f|Kε, is continuous.

Problem 34: Give an example of a Borel measurable function f : R → R such
that there does not exist a set B ⊂ R such that m (Bc) = 0 and f|B is a continuous
function on B

Problem 35: Let B ⊂ Rd be a set of finite Lebesgue measure, with bounded
support. Construct a function φε ∈ C∞c so that m({φε 6= χB}) < ε.
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6 Lebesgue Integration

6.1 Non-negative measurable function

Given a measure space (X,M, µ), we denote a class of non-negative simple functions

S+(X) =
{
ϕ : X → [0,+∞) : ϕ =

n∑
i=1

ai · χAi with ai ∈ [0,+∞) and

A1, A2, . . . , An are mutually disjoint sets in M
}
.

The Lebesgue integral of ϕ is defined as follows:

Definition 6.1 The (Lebesgue) integral of f over X w.r.t µ is defined by∫
X

ϕdµ(x) =

∫
X

ϕdµ =
n∑
i=1

ai · µ(Ai).

Remark 6.2 In the above definition, we use the convention that 0 · ∞ = 0, i.e., if
ai = 0 and µ(Ai) =∞ or ai =∞ and µ(Ai) = 0 then ai · µ(Ai) = 0. Thus, one can
verify that the integral is independent of how the simple function is represented as a
linear combination of characteristic functions.

Example 6.1 The χQ is not Riemann integral but∫
R
χQ dm = 1 ·m(Q) = 0.

Moreover,

∫
[0,1]

χ[0,1]\Q = 1 but the lower Riemann integral of χ[0,1]\Q on [0, 1] equals

to 0.

Example 6.2 Let µ be a counting measure on Z+. Given a sequence of nonnegative
number (ak)k≥1, consider the function f : Z+ → [0,+∞) such that

f(k) = bk for all k ≥ 1.

Then ∫
Z+

fdµ =
∞∑
k=1

bk.

Given two simple functions ϕ1, ϕ2 ∈ S+(X) and α, β ∈ [0,+∞], the followings hold:

(i)

∫
X

α · ϕ1 + β · ϕ2 dµ = α ·
∫
X

ϕ1dµ+ β ·
∫
X

ϕ2dµ;
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(ii)

∫
X

ϕ1dµ ≤
∫
X

ϕ2dµ if ϕ1 ≤ ϕ2.

Definition 6.3 If the function f : X → [0,+∞] is measurable then define∫
X

fdµ = sup

{∫
X

ϕdµ : ϕ ∈ S+(X) and ϕ ≤ f

}
.

We say that f is integrable if ∫
X

f dµ < +∞.

For any A ∈M, we define ∫
A

f dµ =

∫
X

f · χA dµ.

Basic properties: Given two integrable function f, g, the followings hold

(i).

∫
X

α · f = α ·
∫
X

f dµ for all α > 0;

(ii).

∫
X

f + g dµ =

∫
X

f dµ+

∫
X

g dµ;

(iii).

∫
X

f dµ ≤
∫
X

g dµ if f ≤ g;

(iv).

∫
X

f dµ =

∫
X

g dµ if f = g almost everywhere.

Notice that (ii) and (iv) are nontrivial. Indeed, ϕ, ψ ∈ S+(X) satisfy ϕ+ψ ≤ f + g
does not imply that ϕ ≤ f and ψ ≤ g. We will prove (ii) and (iv) later.

Theorem 6.4 (Monotone convergence theorem) Let (fn)n≥1 be a increasing
sequence of nonnegative measurable functions on X. Denote by

f(x) = lim
n→∞

fn(x) for all x ∈ X.

Then, ∫
X

f dµ = lim
n→∞

∫
X

fn dµ.

Proof. Since (fn(x))n≥1 is increasing, the function f is well-defined, measurable,
and

f(x) ≥ fn(x) for all x ∈ X,n ≥ 1.
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By the monotonicity, it holds∫
X

fn dµ ≤
∫
X

f dµ for all n ≥ 1,

and it yields

lim
n→∞

∫
X

fndµ ≤
∫
X

fdµ.

To conclude the proof, we will show that∫
X

fdµ ≤ lim
n→∞

∫
X

fndµ.

Equivalently,

(1− ε) ·
∫
X

fdµ ≤ lim
n→∞

∫
X

fndµ for all ε > 0.

For a fixed ε > 0, we claim that

lim
n→∞

∫
X

fndµ ≥ (1− ε) ·
∫
X

ϕdµ for all S+(X) 3 ϕ ≤ f.

Indeed, for any n ≥ 1, we consider the set

An = {x ∈ X : fn(x) ≥ (1− ε) · ϕ(x)}.

Since (fn)n≥1 is increasing and converges to f pointwise, the sequence of sets (An)n≥1

is increasing, i.e.,
A1 ⊆ A2 ⊆ · · · ⊆ An · · ·

and
lim
n→∞

An = X.

On the other hand, we have∫
X

fn dµ ≥
∫
An

fndµ ≥ (1− ε) ·
∫
An

ϕdµ.

Assume that

ϕ =
N∑
i=1

ai · χEi ,

we compute

lim
n→∞

∫
An

ϕdµ = lim
n→∞

(
N∑
i=1

ai · µ(Ei ∩ An)

)
=

N∑
i=1

ai · µ(Ei) =

∫
X

ϕdµ.

Thus,

lim
n→∞

∫
X

fndµ ≥ (1− ε) ·
∫
X

ϕdµ

and the proof is complete.
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Corollary 6.5 Let f : g : X → [0,+∞] be measurable. Then∫
X

f + gdµ =

∫
X

fdµ+

∫
x

gdµ

Proof. It is known that there exist increasing sequences of simple functions (ϕn)n≥1

and (ψn)n≥1 in S+(X) such that

lim
n→∞

ϕn(x) = f(x) and lim
n→∞

ψn(x) = g(x) for all x ∈ X.

This implies that (ϕn+ψn)n≥1 is a increasing sequence of simple functions in S+(X)
and

lim
n→∞

ϕn + ψn(x) = f(x) + g(x) for all x ∈ X.

Using the monotone convergence theorem, we obtain that∫
X

f + gdµ = lim
n→∞

(∫
X

ϕn(x) + ψn(x) dµ

)
= lim

n→∞

∫
X

ϕn(x)dµ+ lim
n→∞

∫
X

ψn(x)dµ =

∫
X

fdµ+

∫
X

gdµ

and the proof is complete.

Problem 36: Show that the monotone convergence theorem fails for decreasing se-
quences of function. Does it hold for decreasing sequences on finite measure spaces?

Problem 37: Show that the monotone convergence theorem fails if the hypothesis
that f1, f2, . . . are nonnegative functions is dropped.

Problem 38: Let µ be the counting measure on N. Use the monotone convergence
theorem to argue that for any an,k ≥ 0 that

∞∑
n=1

∞∑
k=1

an,k =
∞∑
k=1

∞∑
n=1

an,k.

Problem 39: Let (fn)n≥1 be a sequence of nonnegative measurable functions. Show
that ∫

X

∞∑
n=1

fn(x)dµ =
∞∑
n=1

∫
X

fn(x)dµ.

Problem 40: Let (fn)n≥1 be a sequence of nonnegative measurable functions such
that

∞∑
n=1

∫
X

fn(x)dµ < +∞.

Show that fn converges to 0 almost everywhere.
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Lemma 6.6 (Chebychev/Markov inequality) Let f : X → [0,+∞] be non-
negative. Then for all λ > 0, it holds

µ({x ∈ X : f(x) ≥ λ}) ≤ 1

λ
·
∫
X

fdµ.

Proof. Given λ > 0, we set

Xλ = {x ∈ X : f(x) ≥ λ} and ϕλ = λ · χXλ .

It is clear that
0 ≤ ϕλ ≤ f.

The monotonicity implies that∫
X

f dµ ≥
∫
X

ϕλdµ = λ · µ(Xλ)

and it yields

µ({x ∈ X | f(x) ≥ λ}) ≤ 1

λ
·
∫
X

fdµ.

Corollary 6.7 Let f : X → [0,+∞] be integrable, i.e.,∫
X

f dµ < +∞.

Then the function f is finite almost everywhere in X and {x ∈ X : f(x) > 0} is
σ-finite, i.e.,

{x ∈ X : f(x) > 0} ⊆ An with µ(An) < +∞.

Proof. Denote by
X∞ = {x ∈ X : f(x) = +∞}.

We have that

X∞ ⊆ Xn = {x ∈ X : f(x) ≥ n} for all n ≥ 1.

The monotonicity and the Chybechev’s inequality implies that

µ(X∞) ≤ µ(Xn) ≤ 1

n
·
∫
X

fdµ for all n ≥ 1.

Taking n to +∞, we obtain that

µ(X∞) = 0.
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To complete the proof, one observes that

{x ∈ X : 0 ≤ f(x) < +∞} ⊆
∞⋃
n=1

X1/n

with µ(X1/n) ≤ n ·
∫
X

fdµ < +∞.

Corollary 6.8 (Beppo Levi’s lemma) Let (fn)n≥1 be a increasing sequence of
nonnegative measurable functions on X. Assume that∫

X

fn dµ < M for all n ≥ 1

for some constant M . Then the function

f(x) = lim
n→∞

fn(x) for all x ∈ X

is almost finite and lim
n→∞

∫
X

fndµ =

∫
X

fdµ.

Lemma 6.9 (Fatou’s lemma) Assume that (X,M, µ) is a measure space. Let
(fn)n≥1 be a sequence of non-negative measurable functions such that fn

a.e.−−→ f .
Then ∫

X

f dµ ≤ lim inf
n→∞

∫
X

fndµ.

Proof. Consider the set of points where fn converges to f

X0 = {x ∈ X : lim
n→∞

fn(x) = f(x)}.

By the above assumption, it holds that µ(X\X0) = 0. Thus, we only need to prove
that

lim inf
n→∞

∫
X0

fndµ ≥
∫
X0

fdµ.

For every n ≥ 1, the following function

gn(x) = inf
k≥n

fk(x) for all x ∈ X0.

is increasing and satisfies

gn(x) ≤ fn(x) and lim
n→∞

gn(x) = f(x) for all x ∈ X0.

64



Apply the monotone convergence theorem, we obtain that∫
X0

f dµ = lim
n→∞

∫
X0

gndµ

and it yields ∫
X0

f dµ = lim inf
n→∞

∫
X0

gndµ ≤ lim inf
n→∞

∫
X0

fndµ

The proof is complete.

Corollary 6.10 For every sequence of non-negative measurable functions fn, it
holds ∫

X

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
X

fndµ.

Problem 41: Show that Fatou’s lemma does not hold for functions which take
negative values.

6.2 Integration of general measurable functions

Given a measure space (X,M, µ), let f : X → R be measurable. The functions

f+ = max{f, 0}, f− = max{−f, 0},

are measurable and satisfy

f = f+ − f− and |f | = f+ + f−.

Definition 6.11 The Lebesgue integral of f is defined by∫
X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ

provided that

∫
X

f+dµ < +∞ or

∫
X

f−dµ < +∞.

Notice that

∫
X

fdµ can take value +∞ or −∞. We say that f is integrable if and

only if ∫
X

|f |dµ =

∫
X

f+ + f−dµ < ∞.

Basic properties. Let f, g : X → R be integrable. Then the followings hold
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(i).

∫
X

αfdµ = α ·
∫
X

f dµ for all α ∈ R;

(ii).

∫
X

f + gdµ =

∫
X

fdµ+

∫
X

gdµ;

(iii).

∫
X

fdµ ≤
∫
X

gdµ if f ≤ g a.e.

(iv).
∣∣∣ ∫

X

fdµ
∣∣∣ ≤ ∫

X

|f | dµ.

Proof. (i), (iii) and (iv) are trivial. Let’s prove (ii) by setting h = f + g. We have

h+ − h− = f+ − f− + g+ − g−

Equivalently,
h+ + f− + g− = h− + f+ + g+.

and it yields ∫
X

h+ + f− + g−dµ =

∫
X

h− + f+ + g+ dµ.

The additive property of integral for non-negative function implies that∫
X

h+dµ+

∫
X

f−dµ+

∫
X

g−dµ =

∫
X

h−dµ+

∫
X

f+dµ+

∫
X

g+dµ.

Thus,∫
X

hdµ =

∫
X

h+dµ−
∫
X

h−dµ =

∫
X

f+dµ−
∫
X

f−dµ+

∫
X

g+dµ−
∫
X

g−dµ

=

∫
X

fdµ+

∫
X

gdµ

and the proof of (ii) is complete.

Proposition 6.11.1 (Additivity and continuity of integration) Let f : X →
R be a integrable function and let (Xn)n≥1 be a sequence of measurable sets. The
following hold

(i). If (Xn)n≥1 is mutually disjoint and cover X then∫
X

fdµ =
∞∑
n=1

∫
Xn

f dµ.

(ii). If (Xn)n≥1 is decreasing then∫
⋂∞
n=1Xn

fdµ = lim
n→∞

∫
Xn

fdµ.
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(iii). If (Xn)n≥1 is increasing and
∞⋃
n=1

Xn = X then

lim
n→∞

∫
Xn

fdµ =

∫
X

fdµ.

Proof. We only need to prove the above proposition for non-negative measurable
functions.

(i). For every n ≥ 1, denote by

fn =
n∑
i=1

f · χXi .

One has that (fn)n≥1 is increasing of non-negative measurable functions and con-
verges to f pointwise. By the monotone convergence theorem, it holds∫

X

f dµ = lim
n→∞

∫
X

fn dµ = lim
n→∞

n∑
i=1

∫
Xi

f dµ =
∞∑
n=1

∫
Xn

f dµ.

(ii). Set E =
∞⋃
n=1

Xn, denote by

g = f · χE and gn = f · χXn .

We have that (gn)n≥1 is decreasing and converges to g pointwise. This implies that
the sequence (hn := f − gn)n≥1 is increasing of non-negative measurable functions
and converges pointwise to f − g. Thus, the monotone convergence theorem implies
that ∫

X

f − g dµ = lim
n→∞

∫
X

(f − gn)

Since f is integrable, one has that∫
X

g dµ = lim
n→∞

∫
x

gn dµ.

Thus, ∫
⋂∞
n=1Xn

fdµ = lim
n→∞

∫
Xn

fdµ.

(iii) is a consequence of (ii).

Problem 42: Consider the set X = [π,∞). Is f(x) =
sin(x)

x
Lebesgue integrable

on X? Does the improper Riemann integral of f exist?
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Theorem 6.12 (Lebesgue dominated convergence theorem) Let (X,M, µ) be
a measure space and let (fn)n≥1 be a sequence of measurable functions which con-
verges to a measurable function f almost everywhere. Assume that

|fn| ≤ g a.e x ∈ X

for some integrable function g. Then f is integrable and

lim
n→∞

∫
X

fndµ =

∫
X

f dµ.

Proof. Since |fn| ≤ g, it holds

g − fn, g + fn ≥ 0 a.e x ∈ X.

On the other hand, since fn converges to f almost everywhere, one has

g − fn
a.e.−−→ g − f and g + fn

a.e.−−→ g + f.

The Fatou’s lemma yields∫
X

g − f dµ ≤ lim inf
n→∞

∫
X

g − fn dµ

and ∫
X

g + f dµ ≤ lim inf
n→∞

∫
X

g + fn dµ.

Since g is integrable, one has

lim sup
n→∞

∫
X

fn dµ. ≤
∫
X

fdµ ≤ lim inf
n→∞

∫
X

fn dµ.

Thus,

lim
n→∞

∫
X

fndµ =

∫
X

f dµ.

and the proof is complete.

Example 6.3 Let fn : R→ R be such that

fn(x) =


n if 0 < x <

1

n

0 otherwise.

It is clear that (fn)n≥1 converges to f = 0 pointwise. However,∫
R
fndm = 1 does not converge to

∫
R
fdm = 0.
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In this case, the Lebesgue dominated convergence theorem can not be applied here.
Indeed,

g(x) ≥ sup
n≥1

fn(x) ≥ m for all x ∈
[

1

m+ 1
,

1

m

[
.

Thus, ∫
X

gdm ≥
∞∑
m=1

m ·
(

1

m
− 1

m+ 1

)
=

∞∑
m=1

1

m+ 1
= +∞

and g is not integrable.

Absolute continuity of the Lebesgue integral. Let’s recall some basis facts:

(i) If f : X → R is integrable then f is finite almost everywhere;

(ii) If

∫
X

|f |dm = 0 then f = 0 almost everywhere in X.

Proposition 6.12.1 (Absolute continuity) Suppose that f : X → R is inte-
grable. Then for every ε > 0, there exists δ > 0 such that for all A ∈ M with
µ(A) < δ, it holds ∫

A

|f | dµ ≤ ε.

Moreover, there exists X0 ∈M such that µ(X0) <∞ and∫
X\X0

|f |dµ ≤ ε.

Proof. It is sufficient to prove the above proposition for non-negative f . For any
n ≥ 1, we denote by

fn(x) =


n if f(x) ≥ n

f(x) if f(x) < n.

It is clear that (fn)n ≥ 1 is a increasing sequence of non-negative functions and
converges pointwise to f . Applying the monotone convergence theorem, we get

lim
n→∞

∫
X

fndµ =

∫
X

fdµ < +∞.

Thus, there exists n0 ∈ N such that∫
X

(f − fn0)dµ ≤
ε

2
.
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Thus, for any A ∈M, we have∫
A

fdµ =

∫
A

(f − fn0)dµ+

∫
A

fn0dµ ≤
∫
X

(f − fn0)dµ+ n0 · µ(A)

≤ ε

2
+ n0 · µ(A).

Choosing δ =
ε

2n0

, we obtain that∫
A

f dµ ≤ ε for all µ(A) < δ.

To prove the second part of the proposition, denote by

En =

{
x ∈ X : f(x) ∈

[
1

n+ 1
,

1

n

[}
,

we have
∞∑
n=1

∫
En

fdµ ≤
∫
X

fdµ < +∞.

This implies that there exists n1 ∈ N such that

∞∑
n=n1

∫
En

fdµ < ε.

Set

X0 =

{
x : f(x) >

1

n1

}
we have that

µ(X0) ≤ n ·
∫
X

f dµ < +∞

and ∫
X\X0

fdµ < ε.

The proof is complete

Remark 6.13 The above proposition fails if f is not integrable.

Indeed, let’s consider X = (0, 1) and µ Lebesgue measure on X. The function f =
1

x
is not integrable and ∫

(0,δ)

fdµ =

∫
(0,δ)

1

x
dµ = +∞.
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Problem 43: Use the dominated convergence theorem to argue that

lim
n→∞

∫ n

0

(
1− x

n

)n
xa−1 dx =

∫ ∞
0

e−xxa−1 dx.

Problem 44: For any C1 function f , prove the identity

d

dy

∫ 1

0

f(x, y)dx =

∫ 1

0

d

dy
f(x, y)dx,

Definition 6.14 Consider the sequence of integrable function (fn)n≥1. We say that

• (fn)n≥1 is uniformly integrable if for every ε > 0, there exists δ > 0 such that∫
E

|fn|dµ < ε for all n ≥ 1, E ∈M with µ(E) < δ;

• (fn)n≥1 is tight if for every ε > 0, there exists X0 ∈ M with µ(X0) < +∞
such that ∫

X\X0

|fn| dµ < ε for all n ≥ 1.

Theorem 6.15 (Vitali convergence theorem) Let (fn)n≥1 be a sequence of uni-
formly integrable and tight functions over X. Assume that

fn
a.e.−−→ f and f is integrable.

Then,

lim
n→∞

∫
X

|fn − f | dµ = 0.

Proof. 1. Let’s first prove the theorem in the case

µ(X) < +∞.

Since f is integrable, f is finite almost everywhere. Thus, one can apply the Egorov’s
theorem to obtain that (fn)n≥1 converges to f almost uniformly on X, i.e., for every
δ > 0 there exists Eδ > 0 such that

µ(Eδ) < δ and lim
n→∞

(
sup

x∈X\Eδ
|fn(x)− f(x)|

)
= 0.

71



This implies that

I = lim sup
n→∞

∫
X

|f−fn| dµ ≤ lim sup
n→∞

∫
Eδ

|f |+|fn| dµ+lim sup
n→∞

∫
X\Eδ

|f−fn| dµ

≤ lim sup
n→∞

∫
Eδ

|f |+ |fn| dµ+ µ(X) · lim
n→∞

sup
x∈X\Eδ

|fn(x)− f(x)|

= lim sup
n→∞

∫
Eδ

|f |+ |fn| dµ for all δ > 0.

The uniform integrability of (fn)n≥1 and the absolute continuity of f implies that

I = lim sup
n→∞

∫
X

|f − fn| dµ < ε for all ε > 0.

Thus, taking ε to 0+, we get

lim
n→∞

∫
X

|fn − f | dµ = 0.

2. Let’s now remove the boundedness of µ(X). Observe that

• The tightness property of (fn)n≥1 implies that for every ε > 0, there exists X1
ε

such that

µ(X1
ε ) < +∞ and

∫
X\X1

ε

|fn|dµ <
ε

2
.

• The absolute continuity of f implies that for every ε > 0, there exists X2
ε such

that

µ(X2
ε ) < +∞ and

∫
X\X2

ε

|f |dµ <
ε

2
.

Set Xε = X1
ε

⋃
X2
ε , we have

µ(Xε) < ∞ and

∫
X\Xε

|fn|+ |f |dµ <
ε

2
+
ε

2
= ε.

Therefore,

lim sup
n→∞

∫
X

|f − fn| dµ ≤ ε+ lim sup
n→∞

∫
Xε

|f − fn| dµ = ε

for all ε > 0, and the proof is complete.

Corollary 6.16 Let (fn)n≥1 be a sequence of non-negative integrable functions which
converges to 0 almost everywhere. Then

lim
n→∞

∫
X

fn dµ = 0

if any only if (fn)n≥1 is uniformly integrable and tight.
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The Vitali convergence theorem can be stated in a stronger way.

Theorem 6.17 A sequence of integrable fn converges in L1 to an integrable function
f if and only if

(a). fn converges to f in measure

(b). fn is uniformly integrable.

(c). For every ε > 0 there exists a set µ(E) <∞ so that for all n∫
X\E
|fn| dµ ≤ ε.

There are also other ways to characterize uniform integrability.

Theorem 6.18 Let F be a family of integrable functions. Consider the following
conditions.

1. F is uniformly integrable.

2. limt→∞ supF
∫
x:|f(x)|>t |f | dµ = 0.

3. (De la Vallée Poussin) There exists an increasing function γ : [0,∞)→ [0,∞],
with

lim
t→∞

γ(t)

t
=∞

such that

sup
f∈F

∫
X

γ(|f |) dµ <∞.

Then (2) and (3) are equivalent and imply (1). If, in addition, sup
f∈F

∫
X

|f | dµ < ∞,

then all three are equivalent.

Problem 45: For X = [0, 1], show that fn(x) = sin(nx) is uniformly integrable
and tight, but that it does not converge in L1.

Problem 46: For X = [0, 1] give an example of a sequence which converges in
measure to 0 but does not converge almost everywhere.

Problem 47: Let f : X → R be integrable. Show that

lim
n→+∞

∫
X

|f |1/n dµ = µ{x | f(x) 6= 0} .

Problem 48: Let f : X → R be integrable and |f | ≤ 1. Show that

lim inf
n→+∞

∫
X

|f |n dµ = µ{x | |f(x)| = 1} .
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6.2.1 The Radon-Nikodym theorem

For any f : X → [0,∞] measurable function, let ν :M→ [0,+∞] be such that

ν(E) =

∫
E

fdµ for all E ∈M.

It is easy to check that ν is a measure on (X,M). Thanks to the absolute continuity
of the integral, we have that

µ(E) = 0 =⇒
∫
E

fdµ = 0.

This leads to the following definition.

Definition 6.19 Given µ and ν measures on (X,M), we say that ν is absolutely
continuous with respect to µ, denote by ν � µ, if

µ(E) = 0 =⇒ ν(E) = 0.

In the other words, ν is absolutely continuous with respect to µ if for every ε > 0,
there exists δ > 0 such that

ν(E) < ε for all E ∈M with µ(E) < δ.

The following holds:

Theorem 6.20 (Radon-Nykodym theorem) Let (X,M, µ) be a σ-finite mea-
sure space, i.e.,

X =
∞⋃
n=1

An with µ(An) < +∞ for all n ≥ 1.

For every σ-finite measure ν on (X,M) such that ν � µ, there exists a unique
measurable function f : X → [0,∞) such that

ν(E) =

∫
E

f dµ for all E ∈M.

The function f is called the Radon-Nikodym derivative and is denoted by
dν

dµ
.

Proof. 1. Suppose that both µ and ν are finite measure. The following collection
of extended-value measurable functions

F =

{
f : X → [0,+∞] :

∫
A

fdµ ≤ ν(A) for all A ∈M
}

74



is non-empty and satisfies

max{f, g} ∈ F for all f, g ∈ F .

Since ν is finite, it holds that

sup
f∈F

(∫
X

fdµ

)
≤ ν(X) < ∞.

Let (fn)n≥1 ⊆ F be such that

lim
n→∞

∫
X

fndµ = sup
f∈F

(∫
X

fdµ

)
.

Thus, the sequence of functions

gn = max{f1, · · · , fn} ∈ F

is increasing and satisfies

lim
n→∞

gn(x) = ḡ(x) and lim
n→∞

∫
X

gndµ = sup
f∈F

(∫
X

fdµ

)
.

By Lebesgue’s monotone convergence theorem, one has∫
E

ḡ dµ = lim
n→∞

∫
E

gndµ ≤ ν(E) for all E ∈M (6.1)

and this implies that

ḡ ∈ F ,
∫
X

ḡdµ = sup
f∈F

(∫
X

fdµ

)
.

2. To obtain the equality in (6.1), we shall prove that the non-negative measure ν0

defined by

ν0(E) = ν(E)−
∫
E

ḡ dµ for all E ∈M

is 0. Suppose ν0 6= 0, then there exists a constant δ > 0 sufficiently small such that

ν0(X)− δ · µ(X) > 0.

By the Hahn decomposition theorem, there exists a set P,N ∈M with

P
⋂

N = ∅, P
⋃

N = X,
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satisfy the following properties
ν0(P ′)− δ · µ(P ′) ≥ 0 for all M3 P ′ ⊆ P,

ν0(N ′)− δ · µ(N ′) ≤ 0 for all M3 N ′ ⊆ N.

In particular, we have

ν0(P )− δ · µ(P ) =
[
ν0(X)− δµ(X)

]
−
[
ν0(N)− δµ(N)

]
> 0

and this implies that

ν(E) ≥ δ · µ(P ) +

∫
P

ḡdµ > δ · µ(P ).

Since ν � µ, one then gets that µ(P ) > 0.

To complete this step, we shall show that the function ḡ + δ · χP is in F . Indeed,
for every E ∈M, it holds

ν(E) =

∫
E

ḡdµ+ ν0(E) ≥
∫
E

ḡdµ+ ν0(E ∩ P )

≥
∫
E

ḡdµ+ δ · µ(E ∩ P ) =

∫
E

(ḡ + δ · χP ) dµ.

Thus,∫
X

gdµ+ δ · µ(P ) ≤
∫
X

(ḡ + δ · χP ) dµ ≤ sup
f∈F

(∫
X

fdµ

)
=

∫
X

gdµ

and this yields a contradiction.

3. Students should be able to prove the uniqueness and also remove the finite
measure assumption on µ, ν.

We remark that σ-finiteness in the previous theorem is in fact necessary, as
demonstrated by the following example:

Example 6.4 Let µ be the counting measure on (R,B(R)) and let ν be the Lebesgue
measure. It is easy to see that ν � µ. However, if we had a Radon Nikodym
derivative, we would have

ν(A) =

∫
A

f(x) dµ(x) for all A ∈ B(R).

If we let A = {a}, i.e. the set given by a singleton, we obtain that f(a) = 0. Since
this holds for all a, we have that f ≡ 0, and that hence ν ≡ 0. This is false, so such
a Radon Nikodym derivative does not exist.
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Example 6.5 Suppose that f is a non-decreasing, continuously differentiable func-
tion on [0, 1]. Consider the Lebesgue-Stieltjes measure Df and the Lebesge measure
m. We note that

Df(E) =

∫
E

f ′ dm,

where f ′ is continuous on [0, 1], and hence is integrable. This immediately implies
that Df is absolutely continuous with respect to m and that the Radon-Nikodym

derivative satisfies
dDf

dm
= f ′.

Theorem 6.21 (The Lebesgue decomposition theorem) Let µ and ν be σ-
finite measure on (X,M). Then,

ν = νa + νs

such that

• νa is absolutely continuous w.r.t µ.

• νs and µ are singular (denote by µ ⊥ νs), i.e., there exists A,B ∈ M such
that A ∩B = ∅, A ∪B = X, and

νs(A) = µ(B) = 0.

Proof. Observe that the following measure is σ-finite

λ = µ+ ν and µ � λ.

By the Radon-Nikodym theorem, there exists f : X → [0,∞) measurable such that

µ(E) =

∫
E

fdλ =

∫
E

fdµ+

∫
E

fdν for all E ∈M.

Denote by

X+ = {x ∈ X : f(x) > 0} and X0 = {x ∈ X : f(x) = 0},

we have that
X+

⋂
X0 = ∅, X+

⋃
X0 = X.

Define
νa(E) = ν(E ∩X+) and νs(E) = ν(E ∩X0).

It is easy to check that

νs(X+) = ν(X+ ∩X0) = ν(∅) = 0
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and

µ(X0) =

∫
X0

f dλ =

∫
X0

0dλ = 0.

Thus, µ and νs are singular.

To complete the proof, we will show that νa � µ. Indeed, for any E ∈ M with
µ(E) = 0, we have

µ(E) =

∫
E

fdµ+

∫
E

fdν = 0.

In particular, ∫
E

fdν =

∫
E∩X0

f dν +

∫
E∩X+

f dν = 0.

and this implies that ∫
E∩X+

f dν = 0.

Thus, νa(E) = ν(E ∩X+) = 0 and this complete the proof.

Corollary 6.22 As a consequence, it holds

ν(E) =

∫
E

g dµ+ νs with νs ⊥ µ.

Example 6.6 Let µ be the Lebesgue measure on [0, 1] and let

f(x) =


x if x ∈ [0, 1/2]

1 + 2x if x ∈ (1/2, 1]

.

Consider the Lebesgue-Stieltjes measure Df associated with f . By the Lebesgue
decomposition theorem, we can decompose

Df = νa + νs with

{
νa << µ

νs ⊥ µ.

In this case, we can also easily give explicit formulas for these measures. For every
E ∈M∩ [0, 1], it holds

νa(E) =

∫
E∩([0,1]\{1/2})

f ′(x) dx =

∫
E∩[0,1/2)

1 dx+

∫
E∩(1/2,1)

2 dx,

and

νs(E) = Df(E ∩ {1/2}) =
3

2
· δ1/2(E).
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Example 6.7 Consider f : [0, 1]→ R given by

f = x+ fC(x)

where C is be the Cantor set and fC is the Cantor function. Here f is continu-
ously differentiable on intervals which don’t intersect the Cantor set. Consider the
Lebesgue-Stieltjes measure Df , we have

Df(E\C) =

∫
E\C

f ′(x) dx =

∫
E\C

1 dx.

On the other hand, since the Lebesgue measure of C is zero, we can write

Df(E) = Df(E ∩ C) +Df(E\C) =: νs(E) + νa(E).

Here the Radon-Nikodym derivative of νa is exactly 1 (given the formula above using
the fundamental theorem of calculus). On the other hand, the support of νs is exactly
the Cantor set.

6.2.2 Signed measure

Let (X,M) be a measurable space. A signed measure ν : M → R satisfies the
following properties

(i). ν(∅) = 0;

(ii). ν attains at most one of the values ∞ or −∞;

(iii.) For all sequences of mutually disjoint sets (En)n≥1 in M, it holds

ν

(
∞⋃
n=1

En

)
=

∞∑
n=1

ν(En),

where the series
∞∑
n=1

ν(En) is absolutely convergent if ν

(
∞⋃
n=1

En

)
is finite.

Example 6.8 Let ν+, ν− be non-negative measure on (X,M) such that one of them
is finite. Then

ν = ν+ − ν− (∗)

is a signed measure.

Question: Given a signed measure ν, can we decompose ν at in (*)?

Definition 6.23 Let ν be a signed measure on (X,M). We say that
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• A ∈M is positive if

ν(B) ≥ 0 for all B ∈M, B ⊆ A;

• A ∈M is negative if

ν(B) ≤ 0 for all B ∈M, B ⊆ A;

• A ∈M is null if

ν(B) = 0 for all B ∈M, B ⊆ A;

Lemma 6.24 (Hahn Lemma) For any A ∈ M with 0 < ν(A) < ∞, there exists
a positive measurable set P ⊆ A with

0 < ν(P ) < ∞.

Proof. Assume that A contains sets of negative measure. Let n1 ∈ Z+ be the
smallest positive integer such that there exists M3 E1 ⊂ A such that

ν(E1) < − 1

n1

.

The set A1 = A\E1 ⊂ A satisfies

ν(A1) = ν(A)− ν(E1) > ν(A) +
1

n1

> 0.

If A1 is positive then the proof is complete. Inductively, if Ak := A\

(
k⋃
i=1

Ei

)
is not

positive, then let nk+1 ∈ Z+ be the smallest such that there exists M3 Ek+1 ⊂ Ak
with

ν(Ek+1) < − 1

nk+1

.

By the definition of nk+1, it holds

ν(B) ≥ − 1

nk+1 − 1
for all M3 B ⊆ Ak

If we never stop then the set

P = A\

(
∞⋃
i=1

Ei

)
⊂ A.

satisfies

0 < ν(P ) +
∞∑
i=1

ν(Ei) = ν(A) < +∞ and ν(P ) < +∞.
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In particular, we have

∞∑
i=1

1

ni
≤

∞∑
i=1

|ν(Ei)| = ν(P )− ν(A) < +∞

and this implies that lim
i→∞

ni = +∞. Thus, for every B ⊆ P , it holds that

B ⊆ Ak = A\

(
k⋃
i=1

Ei

)
for all k ≥ 1,

and this yields

ν(B) ≥ lim
k→∞

[
− 1

nk+1 − 1

]
= 0.

The proof is complete.

Theorem 6.25 (Hahn decomposition theorem) Let ν be a signed measure on
(X,M). Then there exists P ∈M positive and N ∈M negative such that

P
⋂

N = ∅ and P
⋃

N = X.

Proof. Assume that

ν(A) < +∞ for all A ∈M.

By Hahn lemma, we can define

γ = sup{ν(A) : A ∈M is positive}.

There exists a sequence of positive sets (An)n≥1 ⊆ M such that lim
n→∞

ν(An) = γ.

The following set

P :=
∞⋃
i=1

Ai ∈ M ,

is positive and
ν(P ) = ν(Ak) + ν(P\Ak) ≥ ν(Ak).

and this implies that
γ = ν(P ) < ∞.

Set N = X\P ∈M, we have that

P
⋂

N = ∅ and P
⋃

N = X.
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To complete the proof, we show that N is negative. Indeed, assume by a contradic-
tion that N is not negative. Then there exists a set E ⊆ N such that ν(E) > 0. In
this case, by Hahn lemma, there exists P ∈M such that

P ⊆ E, ν(P ) > 0 and P is positive.

Set P̃ = P
⋃
P , we have that P̃ is positive and

ν(P̃ ) = ν(P ) + ν(P ) > γ

and it yields a contradiction.

Theorem 6.26 (Jordan decomposition theorem) Let ν be a signed measure.
Then there exist two nonnegative measure ν+, ν− on (X,M) such that one of them
is finite and

ν = ν+ − ν− and ν+ ⊥ ν−. (6.2)

Proof. From Hahn’s theorem, there exist a positive measurable set P and a negative
measurable set N such that

X = P
⋃

N and P
⋂

N = ∅.

The following measure ν± :M→ [0,+∞]

ν+(E) = ν(E ∩ P ) and ν−(E) = − ν(E ∩N) for all E ∈M.

satisfy (6.2)

Notice that ν± is unique. We say that

• ν+ is the positive part of ν;

• ν− is the negative part of ν;

• |ν| = ν+ + ν− is the total variation of ν.

Corollary 6.27 Let ν and µ be σ-finite signed measures on (X,M). There exist
σ-finite measures νa and νs such that

ν = νa + νs with


νa � µ

νs ⊥ µ.
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Proof. Using Jordan decomposition theorem, we have

ν = ν+ − ν− with ν+ ⊥ ν−

and ν± positive. By the Lebesgue decomposition theorem, it holds

ν± = ν±a + ν±s with


ν±a � µ

ν±s ⊥ µ.

Set νa = ν+
a − ν−a and νs = ν+

s − ν−s , we have

νa � µ and νs ⊥ µ

and the proof is complete.

Problem 49: Let f : [a, b]→ R satisfy

sup
P∈P[a,b]

|f(xi+1)− f(xi)| <∞.

Define a function (mapping the set of closed subintervals of [a, b] to R) byDf([a, b]) =
f(b) − f(a). Argue that one can extend this function as a signed measure on the
Borel sets. How would we interpret Df? What would the Lebesgue decomposition
mean?

Example 6.9 Consider the function f(x) = cos(2πx) on the set x ∈ [0, 1]. Con-
sider the signed measure Df which satisfies Df([a, b]) = f(b)− f(a). By the Hahn
decomposition, there exist two positive measure such that

Df = Df+ −Df−, Df+ ⊥ Df−

Let us now seek for formulas of these measures in this explicit case. Observe that

• On the interval [0, 1/2], f is a decreasing function, and hence −Df is also a
Lebesgue-Stieltjes measure;

• On the interval (1/2, 1], f is an increasing function, and hence Df is exactly
the Lebesgue-Stieltjes measure.

Thus we may write

Df+(E) = Df(E ∩ (1/2, 1]), −Df−(E) = Df(E ∩ [0, 1/2]).

If we wanted we could make these measures even more explicit, by writing out their
Radon-Nikodym derivative:

Df+(E) = −
∫
E∩(1/2,1]

2π sin(2πx) dx.
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6.2.3 Relation between Riemann and Lebesgue integrals

Let f be a real valued function on [a, b]. We first show that

Lemma 6.28 If f is Riemann integrable, i.e., f is bounded and

sup
P∈P[a,b]

L(f, P ) = inf
P∈P[a,b]

U(f, P ) ,

then f is Lebesgue integrable and

(R)

∫
[a,b]

f(x) dx =

∫
[a,b]

fdm.

Proof. Assume that f is Riemann integrable. Then there exists (Pn)n≥1 an increas-
ing sequence of partitions of [a, b] such that

lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn) = (R)

∫
[a,b]

f(x) dx

For any n ≥ 1, assume that

Pn = {a = x0, x1, . . . , xm−1, xm = b},

we define

ϕn =
m−1∑
i=0

mi · χ[xi,xi+1], mi = inf
x∈[xi,xi+1[

f(x),

and

ψn =
m−1∑
i=0

Mi · χ[xi,xi+1], Mi = sup
x∈[xi,xi+1[

f(x).

It holds that (ϕn)n≥1 is increasing sequence of functions, (ψn)n≥1 is decreasing se-
quence of functions, and

ϕn ≤ f ≤ ψn for all n ≥ 1

and

lim
n→∞

∫
[a,b]

ϕndm = lim
n→∞

∫
[a,b]

ψndm = (R)

∫
[a,b]

f(x) dx.

The following functions

g = lim
n→∞

ϕn ≤ f ≤ G = lim
n→∞

ψn

are Lebesgue integrable. Using the dominated convergence theorem, we have∫
[a,b]

gdm = lim
n→∞

∫
ϕndm = (R)

∫
[a,b]

f(x) dx = lim
n→∞

ψndm =

∫
[a,b]

Gdm.
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and this yields∫
[a,b]

[G− g]dm = 0 =⇒ G(x) = f(x) = g(x) a.e x ∈ [a, b].

This implies that f is Lebesgue measurable and∫
[a,b]

fdm =

∫
[a,b]

gdm = (R)

∫
[a,b]

f(x) dx.

The proof is complete.

Theorem 6.29 Let f : [a, b]→ R be bounded. Then f is Riemann integrable if and
only if

Df = {x ∈ [a, b] : f is discontinuous}

has zero Lebesgue measure.

Sketch of proof. For any δ > 0, denote by

hδ(x) = inf
y∈[x−δ,x+δ]

f(y), Hδ(x) = sup
y∈[x−δ,x+δ]

f(y)

and
h(x) = lim

δ→0
hδ(x), H(x) = lim

δ→0
Hδ(x).

We have that

(i) h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b];

(ii) f is continuous at x if and only if h(x) = H(x);

(iii) h is lower semi-continuous and H is upper semi-continuous. Thus, h,H are
Lebesgue measurable.

Key point. For any simple functions such that

ϕ(x) ≤ f(x) ≤ ψ(x)

it holds
ϕ(x) ≤ h(x) ≤ H(x) ≤ ψ(x) a.e x ∈ [a, b].

• If f is Riemman integrable then there exist (ϕn)n≥1 and (ψn)n≥1 sequences of
simple functions

ϕn ≤ f ≤ ψn and lim
n→∞

∫
[a,b]

ϕndm = (R)

∫ b

a

f(x)dx = lim
n→∞

∫
[a,b]

ψndm.
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This implies that ∫
[a,b]

hdm =

∫
[a,b]

Hdm

and it yields h = H a.e. x ∈ [a, b].

• If Df has zero Lebesgue measure then f is continuous almost everywhere. Consider
the partition

Pn = {a = x0 < x1 < . . . < x2n−2 < x2n−1 = b}

with

xi = a+ i · b− a
2n

for all i ∈ {0, 1, . . . , 2n − 1}

and

ϕn =
2n−1∑
i=0

mi · χ[xi,xi+1[, ψn =
2n−1∑
i=0

Mi · χ[xi,xi+1[.

By the definition of h and H, one has

ϕn
a.e.−−→ h and ψn

a.e.−−→ H.

Thus,
ϕn, ψn

a.e.−−→ f.

The dominated convergence theorem implies that

lim
n→∞

∫
[a,b]

ϕndm = lim
n→∞

∫
[a,b]

ψndm =

∫
[a,b]

fdm

and it yields

(R)

∫ b

a

fdx =

∫
[a,b]

fdm.

The proof is complete.

7 Lp-spaces

7.1 Lp-spaces with 1 ≤ p < +∞
Let (X,M, µ) be a measure space. For every given p ≥ 1, we define

Lp(X,µ) =

{
f : X → R is measurable :

∫
X

|f |pdµ < +∞
}

and

‖f‖p =

(∫
X

|f |pdµ
) 1

p

for all f ∈ Lp(X,µ).
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Every function f ∈ Lp(X,µ) is finite almost everywhere. Moreover, LP (X,µ) is a
vector space since

α · f, f + g ∈ LP (X,µ) for all f, g ∈ LP (X,µ), α ∈ R.

Indeed,
‖α · f‖p = |α| · ‖f‖p < +∞

and

‖f + g‖pp =

∫
X

(|f + g|p) dµ ≤ 2p−1 ·
(∫

X

|f |pdµ+

∫
X

|g|pdµ
)

< +∞.

Notice that
(
LP (X,µ), ‖ · ‖p

)
is NOT a normed space. Indeed, the function

f =


0 x ∈ X\{a}

1 x = a

is not 0 but ‖f‖p = 0.

Equivalent relation in Lp(X,µ): For any f, g ∈ Lp(X,µ), we say that

f ∼ g ⇐⇒ f = g a.e x ∈ X.

Denote by
Lp(X,µ) = LP (X,µ)

/
∼

and for any f ∈ LP (X,µ)

f̃ = {g ∈ LP (X,µ) : g = f a.e}.

It is clear that
‖f‖p = ‖g‖p for all g ∈ f̃ .

The function ‖ · ‖p : Lp(X,µ)→ [0,+∞) such that

‖f̃‖p := ‖f‖p

is well-defined.

We claim that (Lp(X,µ), ‖ · ‖p) is a norm space. Indeed, one can see that

(i). ‖f‖p = 0 if any only if f = 0 ∈ Lp(X,µ);

(ii). For any α ∈ R and f ∈ Lp(X,µ), it holds

‖α · f‖p = |α| · ‖f‖p.
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Therefore, we only need to show that

‖f + g‖p ≤ ‖f‖p + ‖g‖p f, g ∈ Lp(X,µ).

In order to do so, let us recall some basic inequalities.

Lemma 7.1 (Holder’s inequality) Let p, q ∈ [1,+∞) be conjugate. If f ∈ Lp(X,µ)
and g ∈ Lq(X,µ) then fg ∈ L1(X,µ) and

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (∗)

Proof. If f or g is 0 then it is trivial. Otherwise, we define

F (x) =
f(x)

‖f‖p
and G(x) =

g(x)

‖g‖q
.

One has that
‖F‖p = ‖G‖q = 1

and (∗) is equivalent to
‖FG‖1 ≤ 1.

Using Young’s inequality, we have

|F (x) ·G(x)| ≤ |F (x)|p

p
+
|G(x)q

q|
.

Thus, ∫
X

|FG|dµ ≤ 1

p
·
∫
X

|F |pdµ+
1

q
·
∫
X

|G|qdµ =
1

p
+

1

q
= 1

and the proof is complete

Corollary 7.2 If µ(X) < +∞ then it holds

Lp2(X,µ) ⊂ Lp1(X,µ) for all 1 ≤ p1 < p2 < +∞.

Proof. Consider the conjugate pair

(p, q) =

(
p2

p1

,
p2

p2 − p1

)
.

For any f ∈ Lp2(X,µ), it holds

|f |p1 ∈ Lp(X,µ) and 1 ∈ Lq(X,µ).

Applying the Holder’s inequality, we get∫
X

|f |p1dµ ≤ ‖|f |p1‖p · ‖1‖q = µ(X)
1− 1

p2 · ‖f‖p1p2 < +∞

and it yields f ∈ Lp1(X,µ).
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Lemma 7.3 (Minskowki’s inequality) Let p ∈ [1,+∞) and f, g ∈ Lp(X,µ).
Then f + g ∈ Lp(X,µ) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. It is easy to prove the lemma for p = 1. Assume that p > 1 and q is its
conjugate. Since pq = pq(1/p+ 1/q) = p+ q, it holds

|f + g|p−1 ∈ Lq(X,µ) for all f, g ∈ Lp(X,µ).

Applying the Hölder’s inequality, we get∫
X

|f + g|p−1 · |f |dµ ≤
∥∥|f + g|p−1

∥∥
q
· ‖f‖p = ‖f + g‖p−1

p · ‖f‖p

and ∫
X

|f + g|p−1 · |g|dµ ≤
∥∥|f + g|p−1

∥∥
q
· ‖g‖p = ‖f + g‖p−1

p · ‖g‖p.

Thus, ∫
X

|f + g|pdµ ≤ (‖f‖p + ‖g‖p) · ‖f + g‖p−1
p .

Dividing by ‖f + g‖p−1
p , and noting that the left hand side is ‖f + g‖p, we then

obtain
‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The proof is complete.

Problem 50: Assume that p ≥ 2. Use the triangle inequality and the convexity of
xp to show that ∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤ 1

2
(‖f‖pp + ‖g‖pp).

This inequality is related to the uniform convexity of the Lp norm. Note that the
p = 2 case is related to the parallelogram identity.

Problem 51: Use Hölder’s inequality (several times) to prove the following:∫
Rd

∫
Rd
f(x)g(x− y)h(y) dx dy ≤ ‖f‖p‖g‖q‖h‖r,

where
1

p
+

1

q
+

1

r
= 2.

Problem 52: Suppose that f ∈ Lp ∩ Lr, with 1 ≤ p < s < r ≤ ∞. Show that

‖f‖s ≤ ‖f‖θp‖f‖1−θ
r .

Minkowski’s inequality shows that (Lp(X,µ), ‖ · ‖p) is a normed space. We are
now going to show that it is actually a Banach space.
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Theorem 7.4 (Riesz-Fischer) Let (fn)n≥1 be a Cauchy sequence in Lp(X,µ).
Then there exists f ∈ Lp(X,µ) such that

(i) There exists a subsequence (fnk)k≥1 of (fn)n≥1 which converges to f almost
everywhere.

(ii) fn converges to f in Lp(X,µ), i.e.,

lim
n→∞

‖fn − f‖p = 0.

Proof. Since (fn)n≥1 is Cauchy, we can find (fnk)k≥1 ⊆ (fn)n≥1 such that

‖fnk+1
− fnk‖p ≤ 2−k for all k ≥ 1.

Denote by

gk(x) :=
k∑
i=1

|fni+1
(x)− fni(x)| and g(x) =

∞∑
i=1

|fni+1
(x)− fni(x)|,

we have 
‖gk‖p ≤

k∑
i=1

‖fni+1
− fni‖p ≤

k∑
i=1

2−i ≤ 1,

(gn)n≥1 is increasing and gn
a.e.−−→ g.

Thus, the monotone convergence theorem implies that∫
X

|g|pdµ = lim
n→∞

∫
X

|gn|pdµ ≤ 1

and it yields g ∈ Lp(X,µ). In particular,

g(x) =
∞∑
k=1

|fnk+1
(x)− fnk(x)|

is finite almost everywhere. Thus,

fn1(x) +
∞∑
k=1

[
fnk+1

(x)− fnk(x)
]

is convergent a.e.

and we define

f(x) := fn1(x) +
∞∑
k=1

[
fnk+1

(x)− fnk(x)
]
.

It is clear that fnk
a.e.−−→ f and

‖f‖p ≤ ‖fn1‖p + ‖g‖p < +∞ =⇒ f ∈ Lp(X,µ).
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To complete the proof, since (fn)n≥1 is Cauchy, we only to show that fnk converges
to f in Lp(X,µ). For any k ≥ 1, consider the function

hk(x) = |fnk(x)− f(x)|p

we have that hk
a.e.−−→ 0, and

|hk| ≤ (|f |+ |fn1|+ |g|)
p ∈ L1(X,µ).

The dominated convergence theorem implies that

lim
k→∞

∫
X

|fnk − f |pdµ = lim
k→∞

∫
X

|hk|pdµ = 0

and the proof is complete.

As a consequence of Fatou’s lemma, dominated convergence theorem, the Vitali
convergence theorem, and the previous proposition we have the following:

Corollary 7.5 Let (fn)n≥1 be a sequence in Lp(X,µ). Assume that

fn
a.e.−−→ f.

(i) If (fn)n≥1 is bounded in Lp(X,µ) then f ∈ Lp(X,µ) and

‖f‖p ≤ lim inf
n→∞

‖fn‖p.

(ii) If there exists g ∈ Lp(X,µ) such that

|fn(x)| ≤ g(x) for all a.e. x ∈ X, for all n ≥ 1,

then fn converges to f in Lp(X,µ).

(iii) (fn)n≥1 is uniformly integrable and tight then fn converges to f in Lp(X,µ).

Notice that
fn

Lp−→ f =⇒ ‖fn‖p → ‖f‖p.

Proposition 7.5.1 Let (fn)n≥1 be a sequence in Lp(X,µ). If

fn
a.e.−−→ f ∈ Lp(X,µ) and ‖fn‖p → ‖f‖p

then fn
Lp−→ f .
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Proof. Consider the function

gn(x) =
|fn(x)|p + |f(x)|p

2
− |fn(x)− f(x)|p

2p
.

By convexity of tp, we have that

g ≥ 0 and gn
a.e.−−→ |f |p.

The Fatou’s lemma implies

lim inf
n→∞

∫
X

|gn|dµ ≥
∫
X

|f |pdµ.

Recalling that ‖fn‖p → ‖f‖p, we then obtain that

lim sup
n→∞

∫
X

|fn − f |pdµ ≤ 0.

and it yields fn
Lp−→ f .

7.2 L∞-space

Given a measure space (X,M, µ), let f : X → R be Borel. We define the essential
supremum of f as the following:

• If µ({|f | > M}) > 0 for all M > 0 then ‖f‖∞ =∞.

• Otherwise,

‖f‖∞ = inf{M > 0 : µ (|f | > M) = 0} < +∞

We say that f is essentially bounded if ‖f‖∞ is finite. In this case, we write

f ∈ L∞ (X,µ) .

Notice that for any f ∈ L∞ (X,µ), it holds

(a). |f(x)| ≤ ‖f‖∞ for a.e. x ∈ X;

(b). The essential supremum of f can be defined by

‖f‖∞ := min{M > 0 : |f(x)| ≤M a.e.}.

Example 7.1 Consider f : [0, 1]→ R to be the Dirichlet function (i.e. the function
which is 1 on the rationals and 0 on the irrationals). Then ‖f‖∞ = 0, but f is not
equal to the zero function.
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We denote by
L∞(X,µ) = L∞ (X,µ)

/
∼,

the following holds:

Proposition 7.5.2 (L∞(X,µ), ‖ · ‖∞) is a Banach space.

Proof. Given any Cauchy sequence (fn)n≥1 in L∞(X,µ), we set

An = {x ∈ X : |fn(x)| > ‖fn‖∞}

and
Bn,m = {x ∈ X : |fm(x)− fn(x)| > ‖fm − fn‖∞}.

By the definition of ‖ · ‖∞, it holds

µ(An) = µ(Bn,m) = 0 for all n,m ≥ 1,

and thus the set

X0 :=

(
∞⋃
n=1

An

) ⋃ (
∞⋃

n,m=1

Bn,m

)
has a zero measure. Set X̃ := X\X0, we have

|fm(x)− fn(x)| ≤ ‖fm − fn‖∞ for all x ∈ X̃.

In particular, (fn(x))n≥1 is a Cauchy sequence in X̃. Thus, it is converges. Define

f(x) =


lim
n→∞

fn(x) if x ∈ X̃,

0 if x ∈ X0.

One can easily check that

‖f‖∞ ≤ lim sup
n→∞

‖fn‖∞ < +∞

and it yields f ∈ L∞(X,µ). To complete the proof, we will show that

lim
n→∞

‖fn − f‖∞ = 0

Observe that

|fn(x)− f(x)| ≤ ‖fm − fn‖∞ + |fm(x)− f(x)| for all x ∈ X̃.

Since (fn)n≥1 is Cauchy in L∞(X,µ) , there exists Nε > 0 such that

‖fm − fn‖∞ ≤ ε for all m,n ≥ Nε,
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and this implies that

|fn(x)− f(x)| ≤ ε+ |fm(x)− f(x)| for all m,m ≥ Nε.

For any x ∈ X̃, we take m to +∞ and obtain that

|fn(x)− f(x)| ≤ ε for all n ≥ Nε

and it yields
‖fn − f‖∞ ≤ ε for all n ≥ Nε.

The proof is complete.

Proposition 7.5.3 (Relation between ‖ · ‖∞ and ‖ · ‖p) Assume that f ∈ Lp ∩
L∞ for some 1 ≤ p < +∞. Then,

f ∈
⋂
q≥p

Lq and lim
q→+∞

‖f‖q = ‖f‖∞.

Proof. For any p ≤ q, we have∫
X

|f |qdµ =

∫
X

|f |p · |f |q−pdµ ≤ ‖f‖q−p∞ ·
∫
X

|f |pdµ

and it yields

‖f‖q ≤ ‖f‖
1− p

q
∞ · ‖f‖

p
q
p < +∞.

Thus, f is in Lq and

lim sup
q→∞

‖f‖q ≤ lim sup
q→∞

(
‖f‖

1− p
q

∞ · ‖f‖
p
q
p

)
= ‖f‖∞.

To complete the proof, we need to show that

‖f‖∞ ≤ lim inf
q→∞

‖f‖q .

Equivalently, for any a < ‖f‖∞, it holds that

lim inf
q→∞

‖f‖q ≥ a.

Applying Markov’s inequality, we get

0 < µ({|f | > a}) = µ ({|f |q > aq}) ≤ 1

aq
·
∫
X

|f |qdµ = a−q · ‖f‖qq

and this implies that

‖f‖q ≥ a · µ({|f | > a})
1
q .

Taking q to +∞, we then obtain

lim inf
q→∞

‖f‖q ≥ a · lim inf
q→∞

µ({|f | > a})
1
q = a.

The proof is complete
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Definition 7.6 (Convergence in measure) Let (fn)n≥1 and f be measurable func-
tions from X to R. We say that (fn)n≥1 converges in measure to f if for every η > 0,
it holds

lim
n→∞

µ ({x ∈ X : |fn − f | > η}) = 0.

Proposition 7.6.1 Let (fn)n≥1 and f be Borel functions from X to R. The follow-
ing statements hold:

(i). If µ(X) < ∞ and {fn}n≥1 converges point-wise a.e. on X to a measurable
function f then {fn}n≥1 converges in measure to f .

(ii). If {fn}n≥1 converges in measure to f , then there exists a subsequences of
{fn}n≥1 converges point-wise a.e. on X to f .

Proof. (i). By the Severini–Egorov theorem, for any ε > 0, there exists some set
Eε such that

µ(Eε) < ε and lim
n→∞

sup
x∈X\Eε

|fn(x)− f(x)| = 0 (1)

For any η > 0, set
Anη = {x ∈ X : |fn(x)− f(x)| > η} ,

we have

µ(Anη ) = µ(Anη ∩ Eε) + µ(Anη\Eε) ≤ ε+ µ(Anη ∩ (X\Eε))

From (1), there exists Nη > 0 such that

|fn(x)− f(x)| < η for all n > Nη, x ∈ X\Eε .

Thus,
Anη ∩ (X\Eε) = ∅ for all n > Nη

and it yields

lim sup
n→+∞

µ(Anη ) ≤ ε+ lim sup
n→∞

µ(Anη ∩ (X\Eε)) = ε .

Taking ε to 0+, we obtain that

lim sup
n→+∞

µ(Anη ) = 0

and the proof is complete.
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7.3 Dense subsets in Lp

In this subsection, we will show that the set of simple functions and the set of of
continuous functions with compact support are dense in Lp.

Proposition 7.6.2 Assume that

S = {ϕ : X → R : ϕ is simple} .

For any 1 ≤ p < +∞, it holds
S = Lp.

Proof. For any f ∈ Lp, it holds that f is finite almost everywhere, and

f = f+ − f−

where f+ = max{f, 0} and f− = max{−f, 0} are non-negative functions. Thus,
we can assume that f is non-negative. Recalling the approximation theorem, there
exists a increasing sequence of simple functions (ϕn)n≥1 ⊂ S such that

ϕn
a.e.−−→ f and ϕn(x) ≤ f(x) a.e. x ∈ X.

Thus, the dominated convergence theorem implies that ϕn converges to f in Lp.

Let Ω be an open subset in Rd. The set

Cc(Ω) =
{
f : Ω→ R continuous functions with supp(f) compact

}
is a vector space.

Theorem 7.7 Let µ : B(Ω)→ [0,+∞] be a Radon measure, i.e.,

µ(K) < +∞ for all K ⊂ Ω compact.

The set Cc(Ω) is dense in Lp(Ω, µ).

Proof. It is sufficient to show that for any f ∈ Lp(Ω, µ) non-negative and ε > 0,
there exists fε ∈ Cc(Ω) such that

‖fε − f‖p ≤ ε.

This is divided into several steps:

1. Assume that Ω = Rd and

0 ≤ ‖f‖∞ ≤ M and supp(f) ⊂ B(0, r).
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Since µ is radon, we have that

µ(B(0, r)) ≤ µ(B(0, r)) < +∞.

By Lusin’s theorem, there exists fε ∈ Cc(Rd) such that

‖fε‖∞ ≤ M and µ
(
Eε :=

{
x ∈ Rd : fε(x) 6= f(x)

})
≤ εp

2pMp
.

Thus, ∫
Rd
|fε − f |pdµ =

∫
Eε

|fε − f |pdµ ≤ (2M)p · µ(Eε) = εp

and it yields
‖fε − f‖p ≤ ε.

2. Let’s now remove the assumption

supp(f) ⊆ B(0, r).

For every n ≥ 1, we set
gn = f · χB(0,n).

Using the dominated convergence theorem, one can show that

lim
n→∞

‖gn − f‖p = 0.

In particular, there exists nε > 0 sufficiently large such that

‖gnε − f‖p ≤
ε

2
.

From the previous step, on can find fε ∈ Cc(Rd) such that

‖fε − gnε‖p ≤
ε

2

and it yields

‖fε − f‖p ≤
ε

2
.

3. To remove the assumption

0 ≤ ‖f‖∞ ≤ M,

we consider the sequence of functions

gn = f · χEn with En = {x ∈ X : f(x) ≤ n}.
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which converges to f in Lp. Thus, there exists nε > 0 sufficiently large such that

‖gnε − f‖p ≤
ε

2
.

From the previous step, on can find fε ∈ Cc(Rd) such that

‖fε − gnε‖p ≤
ε

2
=⇒ ‖fε − f‖p ≤

ε

2
.

4. Let’s go back to the case Ω ⊂ Rd open. We denote by

f̄ =


f(x), x ∈ Ω

0, x ∈ Ωc

and µ̄ : B(Rd)→ [0,+∞] such that

µ̄(A) = µ(A ∩ Ω) for all A ∈ B(Rd).

From the previous steps, there exists fε ∈ Cc(Rd) such that

‖f̄ε − f̄‖p ≤
ε

2
=⇒

∥∥∥(f̄ε)|Ω − f
∥∥∥
p
≤ ε

2
.

To complete the proof, we modify f̄ε so that its support is contained in Ω. Let
(Vn)n≥1 be a sequence of open bounded subsets of Ω such that

V n ⊆ Vn+1 and
∞⋃
n=1

Vn = Ω.

We set

gn(x) = f̄ε(x) ·
dV cn+1

(x)

dV cn+1
(x) + dVn(x)

.

It is clear that

supp(gn) ⊂ Vn+1, |gn| ≤ f̄ε and gn
a.e.−−→ fε ∈ Ω.

Hence, gn converges to f̄ε in Lp(Ω, µ). In particular, there exists nε > 0 sufficiently
large such that

‖gnε − f̄‖p ≤
ε

2
.

Therefore, set fε = gnε we have that fε ∈ Cc(Ω) and

‖fε − f‖p ≤ ε

and the proof is complete.

98



Corollary 7.8 (Translation continuity in Lp) Let f be in Lp(Rd), 1 ≤ p < ∞.
Then

lim
|h|→0

∫
Rd
|f(x+ h)− f(x)|pdx = 0

Proof. From the above theorem, for every ε > 0 there exists fε ∈ Cc(Rd) such that

‖fε − f‖p ≤
ε

4
.

Let Kε be the compact support of fε. Consider the compact set

Kε ⊆ K̃ε = {x ∈ Rd : dKε(x) ≤ 1},

we have
supp(fε(·+ h)) ⊆ K̃ε for all |h| ≤ 1.

For every |h| ≤ 1, one estimates∫
Rd
|fε(x+ h)− fε(x)|pdx =

∫
K̃ε

|fε(x+ h)− fε(x)|pdx

≤

(
sup

|x−y|≤|h|
|fε(x)− fε(y)|p

)
· Ld(K̃ε).

Notice that fε is uniformly continuous in Rd, we have

lim
h→0+

∫
Rd
|fε(x+ h)− fε(x)|pdx = 0.

In particular, there exists δε > 0 small such that |h| < δε

‖fε(·+ h)− fε(·)‖p ≤
ε

4

and this implies that

‖f(·+ h)− f(·)‖p ≤ ‖fε(·+ h)− fε(·)‖p + 2 · ‖fε − f‖p ≤
3ε

4
.

The proof is complete.

Problem 53: Assume that µ(X) < ∞ and 1 < p, q < +∞ are a conjugate pair.
Show that if f : X → R is a Borel function such that

fg ∈ L1(X,µ) for all g ∈ Lp(X,µ)

then f is in Lr(X,µ) for r ∈ [1, q].
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Problem 54: Let 1 ≤ p < ∞. Show that if f ∈ Lp(Rd, µ) (µ is the d-Lebesgue
measure) and f is uniformly continuous, then

lim
‖x‖→∞

f(x) = 0 .

Is it still true if f is just continuous?

Problem 55: Let {fn}n≥1 be the sequence defined by

fn(x) =
n

en
√
x − 1

for all x ∈ (0, 1) .

Show that fn ∈ Lp((0, 1),m) and fn → 0 in Lp for every 1 ≤ p < 2.

Problem 56: Prove Hardy’s inequality, namely that if F (t) = t−1

∫ t

0

f(t) dt then

for 1 < p <∞
‖F‖Lp([0,∞)) ≤

p

p− 1
· ‖f‖Lp([0,∞)).

Problem 57: One can define the Fourier transform of an L1 function via

F(f)(λ) =
1√
2π

∫
R
f(t)e−iλt dt.

This definition makes sense for any λ by Holder’s inequality. However, one often
would like to make sense of the Fourier transform of an L2 function, and this point-
wise definition does not make sense. However, one can directly compute that

〈F(χ[b,c]),F(χ[d,e])〉 = 〈χ[b,c], χ[d,e]〉.

Argue that this formula allows us to define a Fourier transform on L2 and that the
Fourier transform is an isometry on L2.

7.4 Dual space of Lp

Given a real Banach space (B, ‖ · ‖), the dual space of B is defined by

B∗ = {T : B → R : T is linear and bounded}

with norm

‖T‖∗ = sup
B\{0}

|T (x)|
‖x‖

= sup
‖x‖=1

|T (x)|
‖x‖

.

Notice that if T ∈ B∗ then T is continuous.

Goal: Given a measure space (X,M, µ) and 1 ≤ p < +∞, find [Lp(X,µ)]∗.
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Let f ∈ Lq(X,µ) where q is the conjugate of p, i.e.,

1

p
+

1

q
= 1 ⇐⇒ p+ q = pq.

Consider the linear functional Tf : Lp(X,µ)→ R such that

Tf (g) =

∫
X

f · g dµ for all g ∈ Lp(X,µ).

The followings hold:

Proposition 7.8.1 Given any f ∈ Lq with p > 1, the map Tf is bounded and

‖Tf‖∗ = ‖f‖q.

If X is σ-finite then the same result holds for p = 1 and q =∞.

Proof. Two cases are considered:

1. Assume that p > 1. From Holder’s inequality, we have

|Tf (g)| ≤
∫
X

|fg|dµ ≤ ‖f‖q · ‖g‖p for all g ∈ Lp

Thus, the map Tf is bounded and

‖Tf‖∗ ≤ ‖f‖q. (7.1)

We need to show that ‖f‖q ≤ ‖Tf‖∗. If f = 0 then it is trivial. Otherwise, we
consider we consider

g = sign(f) ·
(
|f |
‖f‖q

) q
p

∈ Lp with ‖g‖p = 1.

We compute that

Tf (g) =
1

‖f‖
q
p
q

·
∫
X

|f |1+ q
pdµ =

1

‖f‖
q
p
q

·
∫
X

|f |qdµ =
‖f‖qq
‖f‖

q
p
q

= ‖f‖q

and this yields (7.1).

2. Assume that p = 1, q = +∞ and X is σ-finite. In this case, we also have that

|Tf (g)| ≤
∫
X

|fg|dµ ≤ ‖f‖∞ ·
∫
X

|g|dµ for all g ∈ L1.

Thus, the map Tf is bounded with ‖Tf‖∗ ≤ ‖f‖∞. To compute the proof, we need
to show that

‖Tf‖∗ ≥ ‖f‖∞. (7.2)
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Notice that the function
g = sign(f) /∈ L1.

For every ε > 0, one needs to find gε ∈ L1 such that

‖g‖1 = 1 and |Tf (gε)| > ‖f‖∞ − ε.

By the definition of ‖ · ‖∞, the following set

Aε = {x ∈ X : |f(x)| > ‖f‖∞ − ε}

have a positive measure. Since µ is σ-finite, there exists Bε ⊆ Aε such that

0 < µ(Bε) < +∞.

Consider the function gε : X → R such that

gε = sign(f) · χBε
µ(Bε)

.

We compute

‖gε‖1 =

∫
X

χBε
µ(Bε)

dµ = 1

and

|Tf (gε)| =

∣∣∣∣∫
X

fgdµ

∣∣∣∣ =
1

µ(Bε)

∫
Bε

|f |dµ ≥ ‖f‖∞ − ε.

Thus,
‖Tf‖∗ > ‖f‖∞ − ε for all ε > 0,

and this yields (7.2).

As a consequence, the linear map T : Lq → [Lp]∗ defined by

T [f ] = Tf for all f ∈ Lq

is isometry, .i.e.,

‖f‖q = ‖T [f ]‖∗ = ‖Tf‖∗ for all f ∈ Lq.

In particular, it is linear, bounded and injective. The next theorem will show that
T is actually onto for p > 1.

Theorem 7.9 (Riesz representation theorem for (Lp)∗) Given any p > 1, the
map T : Lq → [Lp]∗ such that

T [f ](g) =

∫
X

fgdµ for all f ∈ Lq, g ∈ Lp

is an isometric isomorphism of Lq onto [Lp]∗, i.e., T is bijective and

‖T [f1]− T [f2]‖∗ = ‖f1 − f2‖q.
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Proof. From the previous proposition, we only need to show that T is onto, i.e.,
for any F ∈ [Lp]∗, find f ∈ Lq such that

T [f ] = F.

Equivalently,

T [f ](g) =

∫
X

f · gdµ = F (g) for all g ∈ Lp. (∗)

The proof of (*) is divided into several steps:

1. Assume that µ(X) < +∞. Recalling that the set

S = {ϕ : X → R : ϕ is a simple function}

is dense in Lp. Thus, by the continuity of T [f ] and F , it is sufficient to check (∗)
for all g = ϕ ∈ S. Indeed, if (∗) holds for all g = ϕ ∈ S then for every g ∈ Lp, there
exists (ϕn)n≥1 ⊂ Sp such that

ϕn converges to g in Lp.

and thus
T [f ](g) = lim

n→∞
T [f ](ϕn) = lim

n→∞
F (ϕn) = F (g).

On the other hand, since Tf and F are linear, (∗) holds for all simple functions if
any only if it holds for all measurable characteristic functions. Therefore, we need
to find f ∈ Lq such that∫

X

f · χA dµ = F (χA) for all A ∈M.

Let ν :M→ R be such that

ν(A) = F (χA) for all A ∈M.

One can check that ν is a sign measure on (M, µ). Indeed,

ν(∅) = F (0) = 0 and ν(A) < +∞ for all A ∈M.

Given (An)n≥1 a disjoint sequence of sets, we have

χA =
∞∑
i=1

χAi , A =
∞⋃
n=1

An.

Using the dominated convergent theorem, we get

lim
n→∞

∥∥∥∥∥
n∑
i=1

χAi − χA

∥∥∥∥∥
p

= 0.
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and this implies that

ν(A) = F (χA) = lim
n→∞

F

(
n∑
k=1

χAk

)
= lim

n→∞

n∑
k=1

F (χAk)

= lim
n→∞

n∑
k=1

ν(Ak) =
∞∑
k=1

ν(Ak).

On the other hand, if µ(A) = 0 then χA = 0 in Lp and this implies that

ν(A) = F (χA) = 0.

The measure ν is absolutely continuous with respect to µ. Using Radon-Nikodym
theorem, there exists f : X → R measurable such that

F (χA) = ν(A) =

∫
X

f · χAdµ for all A ∈M

and it yields

F (ϕ) =

∫
X

f · ϕ dµ for all ϕ ∈ S.

Choosing ϕ = sign(f) ∈ S, we have∫
X

|f | dµ = F (ϕ) ≤ ‖F‖∗ · ‖ϕ‖p = ‖F‖∗ · µ(X)
1
p < +∞

and thus f ∈ L1. To show that f ∈ Lq, we consider a sequence of simple functions
(ϕn)n≥1 ∈ S such that

ϕn
a.e.−−→ f and |ϕn| ≤ |f |.

The following function

gn = sign(f) ·
(
|ϕn|
‖ϕn‖q

) q
p

is in L∞ and satisfies

‖gn‖p = 1, f · gn = |f · gn| and

∫
X

|ϕn · gn| dµ = ‖ϕn‖q .

Using the Fatou’s lemma, one gets

‖f‖q ≤ lim inf
n→∞

‖ϕn‖q = lim inf
n→∞

∫
X

|ϕn · gn|dµ ≤ lim inf
n→∞

∫
X

|f · gn|dµ

= lim inf
n→∞

∣∣∣∣∫
X

f · gndµ
∣∣∣∣ = lim inf

n→∞
|F (gn)| ≤ ‖F‖∗.
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Thus,
f ∈ Lq and ‖f‖q ≤ ‖F‖∗.

Using the previous proposition, we obtain that

‖F‖∗ = ‖f‖q.

2. X is σ-finite. Then there exists (An)n≥X increasing such that

X =
∞⋃
n=1

An and µ(An) < +∞.

From step 1, let fn ∈ Lq(An, µ) be such that

F (g) =

∫
An

fn · gdµ for all g ∈ Lp(An, µ).

Since (An)n≥1 is increasing, one has that

fm = fn a.e. x ∈ An,m ≥ n.

Denote by
f(x) = lim

n→∞
fn(x) a.e. x ∈ X

The Fatou’s lemma implies that

‖f‖q ≤ lim inf
n→∞

‖fn‖q ≤ ‖F‖∗

and the dominated convergence theorem yields

F (g) =

∫
X

f · gdµ for all g ∈ Lp.

3. In general, X is non σ-finite then for any σ-finite set A, let fA ∈ Lq(A, µ) be
such that

F (g) =

∫
A

fA · gdµ for all g ∈ Lp(A, µ).

Introduce the constant

M = sup {‖fA‖q : A ⊂ X is σ−finite} ≤ ‖F‖∞.

Choosing (An)n≥1 increasing sequence of sets such that lim∞ ‖fAn‖q = M , and we
define

B =
∞⋃
n=1

An, fB = lim
n→∞

fAn .

By a contradiction argument, one can show that

F (g · χX\B) = 0 for all g ∈ Lp
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and this implies that ∫
X

fB · g dµ = F (g) for all g ∈ Lp.

The proof is complete.

Corollary 7.10 Given (X,M, µ) a measure space, and 1 < p <∞, then Lp(X,µ)
is reflexive, i.e.,

[Lp(X,µ)]∗∗ ' Lp(X,µ).

It means that the identical map

i : Lp(X,µ) → [Lp(X,µ)]∗∗

such that
i(f)(F ) = F (f) for all F ∈ [Lp(X,µ)]∗

is isometric isomorphism.

7.5 Weak convergence

Given p ≥ 1, let q is its conjugate, i.e., 1/p+ 1/q = 1.

Definition 7.11 (Weak convergence) We say that a sequence (fn)n≥1 ⊂ Lp(X,µ)

converges weakly to f ∈ Lp(X,µ) (denote by fn
Lp−⇀ f) if

lim
n→∞

∫
X

fnϕ dµ =

∫
X

fϕ dµ for all ϕ ∈ Lq(X,µ).

Example 7.2 Let fn be an orthonormal sequence in L2(X,µ). Then, fn converges
weakly to zero.

Lemma 7.12 (The Riemann-Lebesgue lemma) For any f ∈ L1(R), it holds

lim
a→∞

∫ ∞
−∞

f(t) sin(at) dt = 0.

Sketch of proof. 1. Suppose f is an indicator function of an interval [b, c]. Then,
by explicit computation

lim
a→∞

∫
R
f(t) · sin(at)dt = lim

a→∞

1

a
· (− cos(ab) + cos(ac)) = 0.

Given any set E with finite Lebesgue measure, for any ε > 0, there exists a finite

collection of find disjoint intervals Ii such that m
(
E∆

(⋃K
j=1 Ij

))
≤ ε. This then

gives ∣∣∣∣∫ χE(t) sin(at) dt

∣∣∣∣ ≤ ∣∣∣∣∫ (χE − χ∪Ij) sin(at) dt

∣∣∣∣+

∣∣∣∣∫ χ∪Ij sin(at) dt

∣∣∣∣ .
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The first term is bounded by ε, while the second goes to zero by the explicit com-
putation above. Hence we have Riemann Lebesgue for indicator functions. By
linearity, we also have the Riemann-Lebesgue lemma for simple functions.

2. By linearity, we also have the Riemann-Lebesgue lemma for simple functions.
Now let fn be a sequence of simple functions converging to f in L1. We then have∣∣∣∣∫ f(t) sin(at) dt

∣∣∣∣ ≤ ∣∣∣∣∫ (f(t)− fn(t)) sin(at) dt

∣∣∣∣+

∣∣∣∣∫ fn(t) sin(at) dt

∣∣∣∣ .
The first term goes to zero in n (uniformly in a), while by what we’ve already proven
we know that the second term goes to zero as a→∞. This then proves the desired
result.

As a consequence, the following holds:

Example 7.3 The sequence fn = sin(nx) converges weakly to zero in L∞(R).

Problem 58: Prove that the sequence fn(x) = einx, n ∈ Z, is a maximal orthogonal
sequence in L2

C((−π, π)) (complex-valued, L2 functions on the interval (−π, π)).

Some basis facts.

(a) If (fn)n≥1 converges to f in Lp(X,µ) then (fn)n≥1 converges weakly to f in
Lp(X,µ).

Indeed, using Holder’s inequality, we have

lim sup
n→∞

∣∣∣∣∫
X

(fn − f) · ϕ dµ

∣∣∣∣ ≤ lim sup
n→∞

‖fn − f‖p · ‖ϕ‖q = 0

for all ϕ ∈ Lq. Thus,

lim
n→∞

∫
X

(fn − f) · ϕ dµ = 0.

(b) If (fn)n≥1 converges weakly to f in Lp(X,µ) then

lim inf
n→∞

‖fn‖p ≥ ‖f‖p.

Indeed, using Riesz-representation theorem, we have

‖f‖p = ‖T [f ]‖∗ = sup
‖ϕ‖q=1

∣∣∣∣∫
X

fϕdµ

∣∣∣∣ = sup
‖ϕ‖q=1

(
lim
n→∞

∣∣∣∣∫
X

fnϕdµ

∣∣∣∣)
≤ sup

‖ϕ‖q=1

(
lim inf
n→∞

‖fn‖p‖ϕ‖q
)

= lim inf
n→∞

‖fn‖p .
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(c) If (fn)n≥1 converges weakly to f in Lp(X,µ) then the sequence (fn)n≥1 is
bounded.

Recalling that Lp(X,µ) is Banach and reflexive, the Banach Alaoglu’s lemma yields
the following compactness result.

Theorem 7.13 (Weak compactness in Lp) If 1 < p < ∞ and (fn)n≥1 is a
bounded sequence in Lp, i.e.,

sup
n≥1
‖fn‖p ≤ M < +∞.

Then there exists f ∈ Lp and a subsequence (fnk)k≥1 of (fn)n≥1 such that fnk
Lp−⇀ f .

Remark 7.14 The weak compactness theorem does not hold when p = 1. For
example, if we consider the sequence in L1(R) given by fn(x) = nφ(x/n), where φ

is a non-negative function satisfying

∫
φ = 1, then fn is bounded in L1 but does

not converge weakly to anything. In particular, we have, for g ∈ L∞, which is also
continuous, we get ∫

fng → g(0).

This cannot be represented as the integral of g times an L1 function. This indicates
that fn actually converges weakly to a measure: namely the Dirac mass centered at
zero. Indeed, it is possible to recover a sort of compactness for L1 functions if one
is willing to relax to consider measures.

Let’s provide a sufficient condition of convergence in Lp.

Proposition 7.14.1 (Radon-Riesz Theorem) For 1 < p <∞, assume that

fn
Lp−⇀ f and ‖fn‖p → ‖f‖.

Then, fn converges to f in Lp.

Proof. 1. To get an idea, let us start with p = 2. In this case, we have

‖fn − f‖2
2 = ‖fn‖2

2 + ‖f‖2
2 − 2〈fn, f〉,

where 〈fn, f〉 =

∫
fnfdµ is the L2 inner product. Taking n → ∞ and using both

fn ⇀ f and ‖fn‖ → ‖f‖, we obtain that

lim
n→∞

(
‖fn‖2

2 + ‖f‖2
2 − 2〈fn, f〉

)
= 2 · ‖f‖2

2 − 2〈f, f〉 = 0.

2. Two sources for the proof of the case 1 < p <∞ are page 78 in Riesz’s functional
analysis book, or at this link. Two cases are considered:
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• If p ≥ 2 then one can show that

|1 + t|p ≥ 1 + pt+ C1|t|p

for some constant C1 > 0. In particular, applying this inequality for t = fn−f
f

,
we have ∣∣∣∣1 +

fn − f
f

∣∣∣∣p ≥ 1 + p · fn − f
f

+ C1 ·
∣∣∣∣fn − ff

∣∣∣∣p .
Thus,

|fn|p ≥ |f |p + p(fn − f)|f |p−1sign(f) + C1 · |fn − f |p

and this yields∫
X

|fn|pdµ ≥
∫
X

|f |pdµ+ p ·
∫
X

(fn − f) · |f |p−1sign(f)dµ+ C1

∫
X

|fn − f |pdµ.

Taking n→ +∞, and using both fn ⇀ f and ‖fn‖ → ‖f‖, we obtain that∫
X

|f |pdµ ≥
∫
X

|f |pdµ+ 0 + C1 · lim sup
n→∞

∫
X

|fn − f |pdµ.

This implies that

lim
n→∞

∫
X

|fn − f |pdµ = 0.

• To complete the proof, we will consider the case 1 < p < 2. In this case, we
have the inequality (for some c1 > 0)

|1 + t|p − 1− pt ≥


c1|t|p for |t| > 1,

c1t
2 for |t| ≤ 1.

Applying this inequality to t =
fn − f
f

, and then multiplying by |f |p, we obtain

– If |fn − f | < f then

|fn|p ≥ |f |p + p(fn − f)|f |p−2f + c1 · |fn − f |2|f |p−2

– If |fn − f | ≥ f then

|fn|p ≥ |f |p + p(fn − f)|f |p−2f + c1 · |fn − f |p

This implies that∫
|fn−f |<f

|fn − f |pdµ ≤
∫
|fn−f |<f

|f |p−1|fn − f |dµ
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≤
(∫
|fn−f |<f

|f |p
) 1

2

·
(∫
|fn−f |<f

|f |p−2 · |fn − f |2
) 1

2

≤ C2 · ‖f‖p/2p ·
(∫
|fn−f |<f

|fn|p − |f |p − p(fn − f)|f |p−2f

) 1
2

On the set where |fn − f | > f , we obtain the same integral inequality as in
the case where p > 2, namely∫
|fn−f |>f

|fn|pdµ ≥
∫
|fn−f |>f

|f |pdµ+ p ·
∫
|fn−f |>f

(fn − f) · |f |p−1sign(f)dµ

+ c1

∫
|fn−f |>f

|fn − f |pdµ.

Hence,∫
X

|fn − f |pdµ ≤ C3 · max
s∈{1,1/2}

(∫
X

|fn|p − |f |p − p(fn − f)|f |p−2fdµ

)s
and it yields

lim
n→∞

∫
X

|fn − f |pdµ = 0.

The proof is complete.

Theorem 7.15 Let Ω ⊆ Rd is open and bounded, with µ(Ω) <∞ and 1 < p <∞.
Assume that (fn)n≥1 converges to f almost everywhere in Ω and

sup
n≥1
‖fn‖p < M for some M > 0.

Then, fn converges weakly to f in Lp(Ω).

Proof. Using Egoroff’s theorem, for every ε > 0 there exists Eε ⊆ Ω such that

µ(Eε) ≤ ε and lim
n→∞

(
sup

x∈Ω\Eε
|fn(x)− f(x)|

)
= 0.

For any g ∈ Lq, we have∫
Ω

(fn − f)gdx ≤
∫
Eε

|fn − f ||g|dx+

∫
Ω\Eε
|fn − f ||g|dx.

Since fn converges uniformly to f in Ω\Eε, we have that

sup
x∈Ω\Eε

|fn(x)− f(x)| ≤ ε for all n ≥ Nε.
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Using the Hölder’s inequality, we get∫
Ω\Eε

|fn − f | · |g|dµ ≤
(∫

Ω\Eε
|fn − f |pdµ

) 1
p

· ‖g‖q

≤ µ(Ω)1/p · ‖g‖q · ε for all n ≥ Nε.

On the other hand, using the Fatou’s lemma, we have

‖f‖p ≤ lim inf
n→∞

‖fn‖p ≤ M

and this implies that ‖fn − f‖p ≤ 2M . Thus,∫
Eε

|f − fn| · |g|dµ ≤ 2M ·
(∫

Eε

|g|qdµ
) 1

q

.

By the continuity property of Lebesgue integral, we have

lim
ε→0

∫
Eε

|g|qdµ = 0.

and this yields

lim
n→∞

∫
Ω

(f − fn) · gdµ = 0 for all g ∈ Lq.

Therefore, fn converges weakly to g.

Problem 59: Suppose that un ∈ C1([0, 1]) satisfy un ⇀ u and u′n ⇀ u′, both in
L2, and u ∈ C1. Argue that un converges strongly to u in L2.

Problem 60: Show that if fn converges strongly to f in Lp and gn converges weakly
to g in Lq, with p and q Holder conjugate, then

lim
n→∞

∫
fngn dµ =

∫
fg dµ

8 Product measures

8.1 Product measures and Fubini’s theorem

Given (X,M) and (Y,N ) measurable spaces, denote by

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

For any A ∈M and B ∈ N , a set

A×B is a measurable rectangle.
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Let R be a collection of E ⊂ X × Y such that

E =
M⋃
n=1

An ×Bn,


An ∈M, Bn ∈ N ,

An ×Bn

⋂
Am ×Bm = ∅.

One can easily check that R is an algebra.

Definition 8.1 (Product σ-algebra) The collection

M×N := σ(R)

is called the product σ-algebra of M and N

Proposition 8.1.1 Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. If E ∈
M×N then

(i). For any (x, y) ∈ X × Y , it holds

Ex = {y ∈ Y : (x, y) ∈ E} and Ey = {x ∈ X : (x, y) ∈ E}

are measurable.

(ii). The following functions

x 7→ ν(Ex) and y 7→ µ(Ey)

are Borel. Moreover, ∫
X

ν(Ex)dµ =

∫
Y

µ(Ey) dν.

Proof. It is divided into several steps:

(i). Let’s consider

E =
N⋃
i=1

Ai ×Bi ∈ R .

For any (x, y) ∈ X × Y , it holds

Ex =
N⋃
i=1

(Ai ×Bi)x and Ey =
N⋃
i=1

(Ai ×Bi)y

where

(Ai×Bi)x =


Bi if x ∈ Ai

∅ if x /∈ Ai
and (Ai×Bi)y =


Ai if y ∈ Bi

∅ if y /∈ Bi .
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This implies that Ex ∈ N and Ey ∈M and

R ⊆ F = {E ∈M×N : Ex ∈ N , Ey ∈M for all (x, y) ∈ X × Y } .

Since F is a σ-algebra, one has that F =M×N .

(ii). Assume that µ and ν are finite measure. Set

G = {E ∈M×N : E satisfies (ii)}.

we need show that
G = M×N .

We first claim that
R ⊆ G.

Indeed, for any set E =
N⋃
i=1

Ai × Bi ∈ R, it holds that the functions x 7→ ν(Ex)

and y 7→ µ(Ey) defined by

ν(Ex) = ν

(
N⋃
i=1

(Ai ×Bi)x

)
=

N∑
i=1

ν(Bi) · χAi(x)

and

µ(Ey) = µ

(
N⋃
i=1

(Ai ×Bi)y

)
=

N∑
i=1

µ(Ai) · χBi(y)

are Borel and satisfies∫
X

ν(Ex)dµ =
N∑
i=1

ν(Bi) · µ(Ai) =

∫
Y

µ(Ey)dν.

By Halmos’s theorem, if G is monotone, i.e., for any monotone sequence of sets
(En)n≥1 ⊆ G converges to E, it holds that E ∈ G. Then,

σ(R) ⊆ G =⇒ M×N = G.

To complete this part, we show that G is monotone. Two cases are considered:

• If (En)n≥1 ⊆ G is increasing and converges to E then both (En
x )n≥1 and (En

y )n≥1

are increasing and converge to Ex and Ey respectively. This implies that µ(En
y )

and ν(En
x ) are also increasing and

lim
n→∞

µ(En
y ) = µ(Ey), lim

n→∞
ν(En

x ) = ν(Ex). (8.1)

In particular, the functions

x 7→ ν(Ex) and y 7→ µ(Ey)
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are Borel. Using the monotone convergent theorem, we obtain that∫
X

ν(Ex) dµ = lim
n→∞

∫
X

ν(En
x )dµ = lim

n→∞

∫
Y

ν(En
y )dν =

∫
Y

Eydν

and E is in G.

• With a similar argument, we can show that if (En)n≥1 ⊆ G is decreasing and
converges to E. In this case, we need to use the finite property of µ and ν to
verify (8.1).

(iii). Assume that µ and ν are σ-finite. Then there exists increasing sequence of
sets (Xn)n ≥ 1 and (Yn)n≥1 such that

X =
∞⋃
n=1

Xn, Y =
∞⋃
n=1

Yn and µ(Xn), ν(Yn) < +∞ for all n ≥ 1.

Denote by
µn = µ|Xn and νn = ν|Yn .

For any E ∈M×N , we have that

νn(Ex) = ν(Ex ∩ Yn) ↑→ ν(Ex)

and
µn(Ey) = µ(Ey ∩Xn) ↑→ µ(Ey).

Thus, the functions

x 7→ ν(Ex) and y 7→ µ(Ey)

are Borel. Again, using the monotone convergent theorem, we get∫
X

ν(Ex)dµ = lim
n→∞

∫
X

νn(Ex) dµ = lim
n→∞

∫
Xn

νn(Ex)dµn

= lim
n→∞

∫
Yn

µn(Ey)dνn = lim
n→∞

∫
X

µn(Ey) dν =

∫
Y

µ(Ey)dν

and the proof is complete.

Theorem 8.2 Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. The map
µ⊗ ν :M×N → [0,+∞] such that

(µ⊗ ν)(E) =

∫
X

ν(Ex)dµ =

∫
Y

µ(Ey)dν for all E ∈M×N

is an σ-finite measure. Moreover, µ⊗ ν is a unique measure satisfied

(µ⊗ ν)(A×B) = µ(A) · ν(B)

for all A ∈M and B ∈ N .
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Proof. Let’s show that µ ⊗ ν is σ-additive. For any mutually disjoint sequence of
sets (En)n≥1 ⊆M×N , we have

(µ⊗ ν)

(⋃
n≥1

En

)
=

∫
X

ν

([
∞⋃
n=1

En

]
x

)
dµ =

∫
X

∞∑
n=1

ν((En
x )dµ

=
∞∑
n=1

∫
X

ν(En
x )dµ =

∞∑
n=1

(µ⊗ ν)(En) .

Thus, µ⊗ ν is a measure.

To show that µ⊗ ν is σ-finite. Let (Xn)n ≥ 1 and (Yn)n≥1 be such that

X =
∞⋃
n=1

Xn, Y =
∞⋃
n=1

Yn and Xn, Yn < +∞ for all n ≥ 1.

Denote by Zn := Xn × Yn, we have

X × Y =
∞⋃
n=1

Zn and µ⊗ ν(Zn) = µ(Xn)× ν(Yn) < +∞

and the proof is complete.

Corollary 8.3 Let E ∈M×N be such that

(µ⊗ ν)(E) = 0.

Then it holds 
µ(Ey) = 0 ν a.e. y ∈ Y

ν(Ex) = 0 µ a.e. x ∈ X.

Theorem 8.4 (Tonelli’s theorem) Let (X,M, µ) and (Y,N , ν) be σ-finite mea-
sure spaces. Let f : X × Y → [0,∞] be measurable (on the product space). Then all
of the following integrals are well-defined and the following equalities hold:∫

X×Y
f(x, y)d(µ⊗ ν) =

∫
X

∫
Y

f(x, y)dνdµ =

∫
Y

∫
X

f(x, y)dµdν. (8.2)

Proof. Assume that f = χE for E ∈M×N . By the previous theorem, we have∫
X×Y

f(x, y)d(µ⊗ ν) = (µ⊗ ν)(E) =

∫
X

ν(Ex)dµ =

∫
Y

µ(Ey)dν

=

∫
X

∫
Y

f(x, y)dνdµ =

∫
Y

∫
X

f(x, y)dµdν.
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Thus, (8.2) holds for simple functions. For a general f , we can approximate f by
an increasing of simple sequence fn : X × Y → [0.+∞] such that

lim
n→∞

fn(x, y) = f(x, y) for all (x, y) ∈ X × Y.

By the monotone converging theorem, it holds that∫
X×Y

f(x, y)d(µ⊗ ν) = lim
n→∞

∫
X×Y

fn(x, y)d(µ⊗ ν).

On the other hand, for any x ∈ X, the sequence fn(x, ·) is increasing and con-

verges pointwise to f(x, ·). Thus, y 7→ f(x, y) is Borel and x 7→
∫
Y

fn(x, y)dν is an

increasing sequence of Borel functions such that

lim
n→∞

∫
Y

fn(x, y)dν =

∫
Y

f(x, y)dν for all x ∈ X.

Again, the monotone converging theorem, one has

lim
n→∞

∫
X

∫
Y

fn(x, y)dνdµ =

∫
X

∫
Y

f(x, y)dνdµ

and this yields ∫
X×Y

f(x, y)d(µ⊗ ν) =

∫
X

∫
Y

f(x, y)dνdµ.

Similarly, we can also show that∫
X×Y

f(x, y)d(µ⊗ ν) =

∫
Y

∫
X

f(x, y)dµdν.

The proof is complete.

Using the above theorem and decompose the function f = f+ − f− with f+ =
max{0, f} and f− = max{0,−f}, we can prove the following theorem.

Theorem 8.5 (Fubini’s theorem) Let (X,M, µ) and (Y,N , ν) be σ-finite mea-
sure spaces. A measurable function

f : X × Y → R

is integrable if

min

{∫
Y

(∫
X

|f y|dµ
)
dν,

∫
X

(∫
Y

|fx|dν
)
dµ

}
< ∞

where f y(x) = fx(y) = f(x, y). In this case,∫
X×Y

fd (µ⊗ ν) =

∫
Y

∫
X

f ydµdν =

∫
X

∫
Y

fxdνdµ.
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Proof. I would leave it to students to read.

Example 8.1 Consider the space X = Y = [0, 1], where X is equipped with the
Lebesgue measure m and Y is equipped with the counting measure µ. Consider the
function f(x, y) = χx=y. Then∫
X

∫
Y

f(x, y) dµ(y) dm(x) =

∫
X

1 dm(x) = 1 6= 0 =

∫
Y

0 dµ(y) =

∫
Y

∫
X

f(x, y) dm(x) dµ(y).

This demonstrates why one needs σ-finite measure spaces in order to have a Fubini
theorem (indeed µ is not σ-finite).

Example 8.2 Consider the function

f(x, y) =
x2 − y2

(x2 + y2)2
,

on the set E = [0, 1]× [0, 1]. The integrand is precisely ∂x∂ytan
−1(y/x). Hence one

can integrate explictly, and one gets that∫ 1

0

∫ 1

0

f(x, y) dx dy = −π
4
6= π

4
=

∫ 1

0

∫ 1

0

f(x, y) dy dx.

Hence the assumption on integrability is essential in Fubini’s theorem.

Example 8.3 Consider X = Y = N both equipped with the counting measure µ.
Consider the function f(i, j) = χi=j − χi=j+1. Then∫

X

∫
Y

fdµdµ =
∑
i

∑
j

f(i, j) = 1 6= 0 =
∑
j

∑
i

f(i, j) =

∫
Y

∫
X

fdµdµ.

This example again reiterates the need for absolute integrability in Fubini’s theorem.

8.2 Convolution and Approximation

Let f and g be Borel function from Rd to R. Assume that the map y 7→ f(x−y)·g(y)
is in L1(Rd) for every x ∈ Rd. The convolution product f ∗ g is defined by

(f ∗ g)(x) =

∫
Rd
f(x− y) · g(y) dy for all x ∈ Rd.

The following holds:

Lemma 8.6 Let p and q be conjugated. For any f ∈ Lp(Rd) and g ∈ Lq(Rd), it
holds that f ∗ g is continuous and

‖f ∗ g‖∞ ≤ ‖f‖p · ‖g‖q.
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Proof. For any x ∈ Rd, we have that

|f ∗ g(x)| =

∣∣∣∣∫
Rd
f(x− y) · g(y) dy

∣∣∣∣ ≤ ‖f(x− ·)‖p · ‖g‖q = ‖f‖p · ‖g‖q

and it yields
‖f ∗ g‖∞ ≤ ‖f‖p · ‖g‖q <∞.

To show that f ∗ g is continuous, we estimate

|(f ∗ g)(x+ h)− (f ∗ g)(x)| ≤
∫
Rd
|f(x+ h− y)− f(x− y)| · g(y) dy

≤ ‖f(x+ h− ·)− f(x− ·)‖p · ‖g‖q

The translation continuity in Lp implies that

lim sup
|h|→0

|(f ∗ g)(x+ h)− (f ∗ g)(x)| ≤ ‖g‖q · lim
|h|→0

‖f(x+ h− ·)− f(x− ·)‖p = 0

and it yields the continuity of f ∗ g.

Some basic properties:

(a) (f ∗ g)(x) = (g ∗ f)(x) for all x ∈ Rd.

(b) Let 1 ≤ p, q, r ≤ +∞ be such that

1

p
+

1

q
= 1 +

1

r
.

For any f ∈ Lp and g ∈ Lq, one has that

‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q.

In particular, if f ∈ L1 and g ∈ Lq then

‖f ∗ g‖q ≤ ‖f‖1 · ‖g‖q .

(c) If f, g and h are in L1 then (by Fubini’s theorem) it holds

(f ∗ g) ∗ h = f ∗ (g ∗ h) .

Proposition 8.6.1 (Smoothness) Let f ∈ Lp(Rd) and K ∈ Cm
c (Rd). Then the

function f ∗K is in Cm(Rd) and

Dα(f ∗K) = f ∗DαK

where α = (α1, α2, · · · , αd) with
d∑
i=1

αi ≤ m and

Dαg =
∂|α|f

∂xα1
1 · · · ∂αdxd

.
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Idea of proof. We have that

(f ∗K)(x) =

∫
Rd
f(x− y) ·K(y)dy =

∫
Rd
f(y) ·K(x− y)dy.

For any i ∈ 1, d, one has

∂(f ∗K)

∂xi
(x) =

∫
Rd
f(y) · ∂K(x− y)

∂xi
dy.

Since f ∈ Lp and
∂K(x− y)

∂xi
∈ Lq, the map

∂(f ∗K)

∂xi
(x) is continuous and this

implies that f ∗K is in C1. By induction, one can show that f ∗K is in Cm(Rd)

Approximation by smooth functions. Consider (ϕε)ε>0 ⊆ L1(Rd) such that

(i). ϕε ≥ 0 and

∫
Rd
ϕε(x)dx = 1 for all ε > 0;

(ii) For every δ > 0, it holds

lim
ε→0

∫
‖x‖≥δ

ϕε(x)dx = 0.

Proposition 8.6.2 The followings holds

(i) If f ∈ L∞ is continuous at x0 then

lim
ε→0

(f ∗ ϕε)(x0) = f(x0).

In addition, if f ∈ L∞ is uniformly continuous then

lim
ε→0
‖f ∗ ϕε − f‖∞ = 0.

(ii) If f ∈ Lp then
lim
ε→0
‖f ∗ ϕε − f‖p = 0 .

Proposition 8.6.3 Let Ω ⊆ Rd be open. Then C∞c (Ω) is dense in Lp(Ω) for every
1 ≤ p < +∞.

Proof. Since Cc(Ω) is dense in Lp, we only need to prove that

Cc(Ω) ⊆ C∞c (Ω).

Given any f ∈ Cc(Ω), we need to construct {fm}m≥1 ⊆ C∞c (Ω) such that fm con-
verges to f in Lp.

119



In order to do so, we extend f to Rd such that

f(x) =


f(x) x ∈ Ω

0 x ∈ Rd\Ω.

Introduce a standard modifier

ρε(x) =


C · ε−d · e

ε2

|x|2−ε2 |x| < ε

0 |x| ≥ ε

with

C =
1∫

|x|≤1

e
1

|x|2−1dx

.

The function ρε satisfies the following properties

(i) ρε ∈ C∞c (Rd) supp(ρε) ⊆ B(0, ε);

(ii) ρε ≥ 0 and

∫
Rd
ρε(x)dx = 1;

(iii) For every ε > 0, one has

lim
ε→∞

∫
‖x‖≥δ

ρε(x)dx = 0.

For any m ≥ 1, denote by

fm(x) := f ∗ ρ 1
m

(x) =

∫
Rd
f(x− y) · ρ 1

m
(y)dy

From the previous proposition, it holds

fm ∈ C∞(Ω) and supp(fm) ⊆ supp(f) + supp
(
ρ 1
m

)
⊆ K̃ ⊆ Ω

for some compact set K̃ and m ≥ 1 sufficiently large. On the other hand, since f is
uniformly continuous, we have that

lim
m→∞

‖fm − f‖∞ = lim
m→∞

‖f ∗ ρ1/m − f‖∞ = 0.

This implies that for m ≥ 1 sufficiently large it holds∫
Ω

|fm − f |pdx =

∫
K̃

|fm − f |pdx ≤ |m(K̃)| · ‖fm − f‖p∞.
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Thus, fm converges to f in Lp.

Recalling the Weierstrass theorem, for all f ∈ Cc(Rd), there exists a sequence of
polynomials (Pk)k≥1 which converges to f uniformly on all compact subsets of Rd,
we obtain the following.

Corollary 8.7 Given any X ∈ B(Rd) bounded, define

PX = {P : X → R : P is a polynomial} .

Then, the set PX is dense in Lp for all 1 ≤ p <∞.

9 A tour of Calculus topics for measure theory

Here we’re going to review a few ideas from calculus in the context of measure
theory. This is meant to expose us to ideas and techniques, rather than to develop
anything fully. The proofs are small modifications of Giovanni Leoni’s lecture notes
on measure theory.

The first goal will be to create an analog of the formula

d

dt

∫ t

0

f(s) ds = f(t),

which holds in some measure theoretic sense. The appropriate version is as follows:

Theorem 9.1 (Lebesgue differentiation) Let µ be a Radon measure on Rd (over
the Borel sets), and let f : Rd → R be a locally integrable function, i.e.,∫

K

|f(x)|dµ(x) < +∞ for all K compact.

Then there exists a Borel set E with µ(E) = 0 so that for any x ∈ Ec we have

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dµ(y) = 0.

Any point where the above limit is zero is known (when µ is the Lebesgue measure)
as a Lebesgue point of f . Essentially f is locally well-behaved, in a very controlled
sense, near Lebesgue points. The previous theorem is sometimes stated as “almost
every point is a Lebesgue point of f”. Any Lebesgue point will satisfy

f(x) = lim
r→0+

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y).

This can be interpreted as saying that locally integrable functions actually are equal
to local averages at most places.

The proof of this theorem requires some machinery. In particular, it uses the
(Hardy-Littlewood) maximal function:
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Definition 9.2 (Maximal function) Given a locally integrable function f , the
maximal function M(f) of f is given by

M(f)(x) :=

0 if µ(B(x, r)) = 0 for some r > 0,

sup
r>0

1

µ(B(x, r)

∫
B(x,r)

|f | dµ otherwise.

Maximal functions are important technical tools in several topics, in particular in
the study of Fourier analysis and singular integrals (which are important for classical
solution formulas for differential equations).

Theorem 9.3 Let µ be a Radon measure over the Borel sets in Rd. Then

1. If f ∈ Lp, 1 < p ≤ ∞, then

‖M(f)‖p ≤ C(d, p)‖f‖p

2. If f ∈ L1 then for t > 0,

µ({x : M(f) > t}) ≤ C(d)

t

∫
Rd
|f | dµ.

Note that M(f) will not necessarily be in L1 if f ∈ L1. The inequality that the
theorem gives is known as a weak L1 inequality.

Proof of Lebesgue differentiation theorem (L1 case): By the density theorem,
we can approximate f be a function gε ∈ Cc(Rd) such that∫

Rd
|f(x)− gε(x)|dµ ≤ ε.

Since it is continuous on a compact set, gε is uniformly continuous, i.e., η > 0 there
exists a δ > 0 so that

|gε(x)− gε(y)| ≤ η for all |x− y| < δ.

Hence, for any 0 < r < δ, we have

1

µ(B(x, r))

∫
B(x,r)

|gε(x)− gε(y)| dµ(y) ≤ 1

µ(B(x, r))

∫
B(x,r)

η dµ(y) = η.

and this implies that

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)

|gε(x)− gε(y)| dµ(y) = 0.
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In turn, we may write

lim sup
r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dµ(y)

≤ lim sup
r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− gε(y)| dµ(y) + |gε(x)− f(x)|

≤ M(f − gε)(x) + |gε(x)− f(x)|.

Thus, if we set

Gt :=

{
x ∈ Rd : lim sup

r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dµ(y) > t

}
and

Et,ε := {x : M(f − gε)(x) > t} , Ft,ε := {x : |gε(x)− f(x)| > t} ,

then
G2t ⊂ Et,ε ∪ Ft,ε for all t > 0.

Using the weak L1 inequality for maximal functions and Markov’s inequality, we get

µ(Et,ε) ≤
C(n)ε

t
, µ(Ft,ε) ≤

ε

t
.

and this implies that

µ(G2t) ≤
C(d) + 1

t
· ε.

Taking ε→ 0 gives that µ(G2t) = 0. Finally, let E =
⋃
n

G1/n. Then µ(E) = 0, and

furthermore for any x ∈ Ec and any n we have

lim sup
r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dµ(y) ≤ 1

n
.

This concludes the proof.

Corollary 9.4 For a continuous function, every point is a Lebesgue point.

Example 9.1 Consider the space X = [−1, 1] equipped with the Lebesgue measure,
and let f = χx>0. Then any point except x = 0 is a Lebesgue point (as f is
continuous at all other points). However, f is not a Lebesgue point. Indeed, we may
compute

1

2t

∫ t

−t
|χx>0 − a| dx = |a|+ |1− a| 6= 0.

This means that even if we redefine f however we like at the point zero, it cannot
be a Lebesgue point of f .
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Example 9.2 Consider a measure ν � µ, with µ being a Radon measure on Rn.
Then by the Radon-Nikodym theorem, letting f = dν

dµ

ν(E) =

∫
E

f(x)dµ(x).

Now if we let E = B(x, r), and take a limit as r → 0+, by the Lebesgue differentiation
theorem for µ almost every x

f(x) = lim
r→0+

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) = lim
r→0+

ν(B(x, r))

µ(B(x, r))

This gives a formula for computing the Radon-Nikodym derivative.

One crucial concept in multi-variable calculus is the change of variables formula.
This formula continues to hold under Lebesgue integration. We begin by stating
(without proof) a lemma:

Lemma 9.5 Let L : Rd → Rd be a linear map. Then for every Lebesgue measurable
set E, we have that L(E) is Lebesgue measurable and that

Ld(L(E)) = |det(L)|Ld(E).

Proof. The proof relies on reducing to the case of elementary matrix transforma-
tions, and using the fact that the Lebesgue measure is (up to a constant) the only
translation invariant measure on Rd.

We now state the change of variables formula:

Theorem 9.6 (The change of variables) Let U, V ⊂ Rd be open sets, and Ψ :
U → V be invertible such that both Ψ and Ψ−1 are differentiable. Then for any
integrable function f ∫

V

f(y) dy =

∫
U

f(Ψ(x))| det∇Ψ(x)| dx.

Proof. We define a measure µ :M→ [0,+∞] such that

µ(E) = Ld(Ψ(E)) for all E ∈M.

Using the smoothness of Ψ, one can show that µ is a Radon measure, which is
absolutely continuous with respect to the Lebesgue measure. Thus, we can write

µ(E) =

∫
E

dµ

dLd
(x) dx for all E ∈M.

124



Now, given a Lebesgue measurable set H, the set E = Ψ−1(H) is also Lebesgue
measurable, and so we can write∫

Ψ(U)

χHdLd = Ld(H) = Ld(Ψ(E)) =

∫
E

dµ

dLd
(x) dx =

∫
U

χH(Ψ(x))
dµ

dLd
(x) dx.

By the linearity, the identity will also hold for simple functions, and hence using the
monotone convergence theorem it will also hold for non-negative functions. In turn
for any integrable function we have∫

V

f(y) dy =

∫
U

f(Ψ(x))
dµ

dLd
(x) dx.

By the Lebesgue differentiation theorem, we have that

dµ

dLd
(x) = lim

r→0+

µ(B(x, r))

Ld(B(x, r))
Ld a.e. x.

On the other hand, by the differentiability of Ψ, for any given ε > 0, there exists
r > 0 small enough such that

−Ψ(x) + Ψ(B(x, r)) ⊂ ∇Ψ(x)(B(0, r(1 + ε))).

In turn

µ(B(x, r)) = Ld(Ψ(B(x, r))) ≤ Ld(∇Ψ(x)(B(0, r(1 + ε)))).

Thus, from the previous Lemma, we get

µ(B(x, r)) ≤ | det(∇Ψ(x))|(1 + ε)dLd(B(x, r))

Taking r to zero and the ε to zero, we find that

dµ

dLd
(x) ≤ | det(∇Ψ(x))|.

This establishes the change of variables formula as an inequality. Switching U, V
and Ψ,Ψ−1, one can then prove the opposite inequality, which concludes the proof.

The coarea formula can be seen as a specialized sort of change of variables:

Theorem 9.7 Let u be Lipschitz and g ∈ L1, both on Ω ⊂ Rd open. Then∫
Ω

g(x)|∇u(x)| dx =

∫
R

∫
u−1(t)

g(x) dHd−1(x) dt.
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9.1 Weak derivatives

For a smooth function f and a function φ ∈ C∞c , we have the identity∫
Rd
f∂xiφ dx = −

∫
∂xifφ dx.

The first of these integrals is well-defined for any integrable function f . Hence we
can define a weak derivative of a function f in the following way:

Definition 9.8 We say that an integrable function v is the weak derivative of f (in
the xi direction) if ∫

Rd
f∂xiφ dx = −

∫
vφ dx

for all φ ∈ C∞c (Rd).

Often, we will just write v = ∂xif . This function is not a classical derivative, it’s
only a derivative in an integrated sense. However, it can be associated with the
classical derivative in an almost everywhere sense. Similarly, we can say that

• a measure µxi is a derivative of f in the sense of distributions if∫
Rn
f∂xiφ dx = −

∫
φ dµxi

for all φ ∈ C∞c (Rd).

Using these, we can then define Sobolev spaces and BV spaces:

Definition 9.9 The Sobolev space W1,p(Ω), Ω ⊂ Rd open, is the space such that f
and its weak first partial derivatives (with respect to all of the inputs xi) are all Lp

functions. W1,p is a Banach space (after considering equivalence classes) under the
norm

‖f‖1,p = ‖f‖p +
d∑
i=1

‖∂if‖p.

Definition: The space BV (Ω), Ω ⊂ Rd open, of functions of bounded variation
is the space of L1 functions which whose first partial derivatives, in the sense of
distributions, all have finite total variation. The BV norm is given by

‖f‖BV = ‖f‖1 +
d∑
i=1

|µxi |(Ω).

These spaces show up in many applications. One very convenient property about
these spaces is their compactness:

Theorem 9.10 Suppose, for 1 < p < ∞, that un is bounded in W 1,p. Then it is
compact in Lp, and the limit point lies in W1,p. Similarly, if un is bounded in BV
then it is compact in L1 with limit point in BV .
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