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Abstract. We prove rectifiability results for special singularities of non-Lipschitz
functions, namely for those points where the set of Fréchet horizon supergradients
contains a vector subspace.

1. Introduction

Since the celebrated result by H. Rademacher there has been a lot of interest in the

study of the set of singularities of real functions. Given a function f : Ω −→ R defined

on an open set Ω ⊆ RN , a singularity of f is a point where f is not differentiable.

Rademacher’s theorem states that, if f is locally Lipschitz, then the set of singularities

Σ(f) of f has null Lebesgue measure. In general, however, sets with null Lebesgue

measure can be very irregular and possess almost no structure. A natural question

is then that of investigating the properties of the singular set for special classes of

functions.

When f is convex or concave, the properties of Σ(f) were first investigated in [18]

and then developed in [30], [29], [27], [28], [2] and [3]. The basic approach in such

papers is that of estimating the size of Σ(f). We mention here a result which is

essentially due to L. Zaj́ıček and was later extended to semiconcave functions by G.

Alberti, L. Ambrosio and P. Cannarsa [1]. By ∂Ff(x) we denote here the Fréchet

supergradient of f at x (see Definition 2.3).

Theorem ([1]). Let f be locally semiconcave. Then, for any k = 1, . . . , N the singular

set Σk(f) := {x ∈ Ω | dim ∂Ff(x) = k} is countably (N−k)-rectifiable. In particular,

Σ(f) is countably (N − 1)-rectifiable and ΣN(u) is at most countable.

The importance of semiconcave/semiconvex functions arises evident in problems of

optimal control, see [7], [8], [9], [10]. In particular, the minimum time function T of

nonlinear smooth control dynamics with target satisfying internal sphere condition

is semiconcave [8]. In the same paper, the authors also proved that T is semiconvex

for the linear dynamics with convex target. In both cases, a strong controllability
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assumption on the systems (namely, T being locally Lipschitz) was demanded. How-

ever, as shown by simple examples (e.g., the well known rocket car), the Lipschitz

continuity of T does not hold in general.

In order to study the regularity of non Lipschitz functions the notion of set with

positive reach was used in [15]. This notion was first introduced by H. Federer [19] and

then analyzed independently by several authors under different names, for example ϕ-

convex [11], proximally smooth [12], and prox-regular sets [24]. More precisely, lower

(respectively, upper) semicontinuous functions whose epigraph (resp., hypograph) has

positive reach still enjoy some regularity property of semiconvex (resp. semiconcave)

functions, including the rectifiability of Σk(f) and almost everywhere second order dif-

ferentiability. However, the Hausdorff dimension of ΣP,∞(f) := {x ∈ Ω | ∂P,∞f 6= ∅}
can be close to N (see [15, Example 5.2]), where by ∂P,∞f we denote the set of prox-

imal horizon supergradients of f (see [15]). A natural idea for proving the positive

reach property for the epigraph/hypograph of f is the representation of generalized

sub/super gradient of f . By using this approach, the minimum time function T was

studied in [16] and [17] under a weak controllability condition requiring T to be only

continuous. In both papers, the wedgedness (see Rockafellar [26]) for normal cone to

the epigraph/hypograph of T is required. It was proved in [22] that the wedgedness

assumption guarantees positive reach for sets satisfying an exterior sphere condition.

This result was used in [23] to investigate the relationships among functions whose

hypograph satisfies the exterior sphere condition, functions with positive reach hypo-

graph and semiconcave functions. In general, however, the exterior sphere condition

is weaker than the positive reach property (see. [22] and [17]). Recently, the set

of bad points BPf (see Section 2 for the definition), in which wedgedness fails, was

studied in [20] under the exterior sphere condition on the hypograph of the function

f . More precisely, it was proved that BPf is closed in Ω and has zero Lebesgue mea-

sure. Consequently, the hypograph of f|Ω\BPf
has positive reach and thus f is twice

differentiable almost everywhere in Ω.

In this paper we prove some rectifiability result for the set of bad points BPf
of f . We partition the set BPf (see (2.6)) into sets BPf,k, k = 1, . . . , N , where,

roughly speaking, the suffix k corresponds to the dimension of the largest vector

space contained in the set ∂∞f of Fréchet horizon supergradients of f (see Definition

2.3). We are able to prove that BPf,k is countably (N − k)-rectifiable.

Theorem 1.1. Let Ω ⊆ RN be open and let f : Ω → R be upper semi-continuous.

Then the set BPf,k is countably (N − k)-rectifiable.

Moreover, we are able to refine the main result of [20], namely Theorem 3.1 therein.

Theorem 1.2. Let Ω ⊆ RN be open and let f : Ω → R be continuous. If the

hypograph of f satisfies the θ-exterior sphere condition for some θ > 0, then the set of
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bad points BPf is locally (N − 1)-rectifiable. In particular, HN−1(BPf ∩K) is finite

for any compact set K ⊂ Ω.

Finally, in Section 4 we provide an example showing that, in general, the set

BPf,k, k ≥ 2 may not have finite (N − k)-Hausdorff measure even under the exterior

sphere condition.

Acknowledgements. We are grateful to G. Colombo for his interest in the paper

and for many stimulating discussions.

2. Notations and preliminary results

Let Ω ⊆ RN be open and let f : Ω→ R be upper semi-continuous. The hypograph

of f is denoted by

(2.1) hypo(f) = {(x, β) | x ∈ Ω, β ≤ f(x)}.

The vector (−v, λ) ∈ RN × R is a Fréchet normal vector to hypo(f) at (x, f(x)) iff

(2.2) lim sup
hypo(f)3(y,β)→(x,f(x))

〈
(−v, λ) ,

(y, β)− (x, f(x))

|y − x|+ |β − f(x)|

〉
≤ 0.

We denote by NF
hypo(f)(x, f(x)) the set of Fréchet normal vectors to hypo(f) at

(x, f(x)).

Remark 2.1. If (−v, λ) ∈ NF
hypo(f)(x, f(x)) then λ ≥ 0.

We say that (−v, λ) is a proximal normal vector to hypo(f) at (x, f(x)) if there

exists a constant α such that〈
(−v, λ), (y, β)− (x, f(x))

〉
≤ α(‖y − x‖2 + |β − f(x)|2) ∀y ∈ Ω, β ≤ f(x) .

We denote by NP
hypo(f)(x, f(x)) the set of proximal normal vectors to hypo(f) at

(x, f(x)). Moreover, we say that (−v, λ) ∈ NP
hypo(f)(x, f(x)) is realized by a ball of

radius θ > 0 if〈
(−v, λ), (y, β)− (x, f(x))

〉
≤ ‖(−v, λ)‖

2θ
(‖y − x‖2 + |β − f(x)|2) ∀y ∈ Ω, β ≤ f(x) .

We say that hypo(f) satisfies the θ-exterior sphere condition if for any x ∈ Ω there

exists (−v, λ) ∈ NF
hypo(f)(x, f(x)) realized by a ball of radius θ.

Remark 2.2. It is easily seen that NP
hypo(f)(x, f(x)) ⊆ NF

hypo(f)(x, f(x))

Let us introduce some concepts of generalized differential for f at x ∈ Ω associated

with hypo(f).

Definition 2.3. Let x ∈ Ω and v ∈ RN . We say that v is a Fréchet supergradient

of f at x if (−v, 1) ∈ NF
hypo(f)(x, f(x)). We denote by ∂Ff(x) the set of Fréchet

supergradients of f at x.
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We say that v is a Fréchet horizon supergradient of f at x if (v, 0) ∈ NP
hypo(f)(x, f(x)).

The set of Fréchet horizon supergradients of f at x is denoted by ∂∞f(x).

The largest vector subspace contained in NF
hypo(f)(x, f(x)) will be denoted by

(2.3) NL(x) = { ξ ∈ NF
hypo(f)(x, f(x)) | − ξ ∈ NF

hypo(f)(x, f(x))}.

From Remark 2.1, one can see that NL(x) ⊆ {(v, 0) | − v ∈ ∂∞f(x)}. Let us define

(2.4) Vx := {v ∈ RN | (v, 0) ∈ NL(x)};

clearly, Vx is the largest vector space contained in ∂∞f(x) and dimVx = dimNL(x).

We say that v ∈ Vx is realized by a ball of radius θ if (v, 0) ∈ NP
hypo(f)(x, f(x)) is

realized by a ball of radius θ.

The set of bad points BPf of f is defined by

(2.5) BPf = {x ∈ Ω | NL(x) 6= {0}}.

According to the dimension of NL(x), for k = 1, . . . , N we introduce

(2.6) BPf,k = {x ∈ BPf | dimNL(x) = k} = {x ∈ BPf | dim Vx = k}.

It is clear that BPf =
⋃N
k=1BPf,k.

Let k ≥ 0 and A ⊂ RN be fixed. The k-dimensional Hausdorff measure of A is

defined as

Hk(A) := lim
δ→0+

Hk
δ (A) = sup

δ>0
Hk
δ (A)

where for any δ > 0 we set

Hk
δ (A) := inf

{∑
i∈I

(diamAi)
k | A ⊂

⋃
i∈I

Ai, diamAi < δ

}
.

The Hausdorff dimension of A is

H-dim(A) := inf{k ≥ 0 | Hk(A) = 0} = sup{k ≥ 0 | Hk(A) =∞} .

It is well known (see e.g. [19, 21]) that Hk is a Borel measure on RN ; H0 is the

counting measure. Moreover, if k ∈ N and S is a k-dimensional Lipschitz surface,

then the surface measure of S coincides with 2k

ωk
Hk S.

Let k ∈ N; we say that A ⊂ RN is countably k-rectifiable if

A ⊂ N ∪
∞⋃
i=1

Si

where Si are suitable Lipschitz k-dimensional surfaces and N is a Hk-negligible set.

We say that A is k-rectifiable if it is countably k-rectifiable and Hk(A) <∞.

Any countably k-rectifiable set A satisfies H-dim(A) = k. It is well known that, if

f : A ⊂ Rk → RN is Lipschitz continuous, then f(A) is countably k-rectifiable; if A

is bounded, then f(A) is k-rectifiable.
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In what follows, given A ⊂ RN we define its ε-neighborhood (A)ε by

(A)ε := {x ∈ RN | there exists y ∈ A such that ‖x− y‖ < ε} .

Let K denote the set of closed subsets of SN−1 ⊂ RN ; for A,B ∈ K we introduce the

Hausdorff distance dH(A,B) by

dH(A,B) = inf{ε > 0 | A ⊂ (B)ε and B ⊂ (A)ε}.

It turns out (see e.g. [6]) that (K, dH) is a complete compact metric space.

We will denote by G(N, k) the Grassmann manifold of all k-dimensional vector sub-

spaces of RN ; we endow G(N, k) with the distance

dG(V1, V2) := dH(V1 ∩ SN−1, V2 ∩ SN−1).

The metric space (G(N, k), dG) is separable and, in particular, the following property

holds:

(2.7) ∀R > 0 ∃ V1, . . . , Vm ∈ G(N, k) s.t. G(N, k) ⊂
m⋃
i=1

BG(Vi, R)

where BG(Vi, R) denote the open ball (with respect to dG) with center Vi and radius

R.

3. Rectifiability results for the set of bad points

Let V ∈ G(N, k) be fixed; each z ∈ RN can be written in a unique way as z =

zV + zV ⊥ where zV ∈ V and zV ⊥ ∈ V ⊥. For α ∈ (0, 1) we denote by Cα(V ) the open

cone along V of aperture 1/α defined by

Cα(V ) := {z ∈ RN | ‖zV ‖ > α ‖z‖} .

If x ∈ RN we set

Cα(x, V ) := x+ Cα(V ) = {z ∈ RN | ‖(z − x)V ‖ > α ‖z − x‖} ;

It is easily seen that

(3.1) z ∈ Cα(x, V ) ⇐⇒ ∃ v ∈ V ∩ SN−1 such that 〈v, z − x〉 > α ‖z − x‖ .

We also point out the following implication:

(3.2) dG(V1, V2) < R =⇒ Cα+R(x, V1) ⊂ Cα(x, V2)

which holds provided α + R < 1. To prove (3.2) it is enough to notice that for any

z ∈ Cα+R(x, V1)

there exists v1 ∈ V1 ∩ SN−1 such that 〈v1, z − x〉 > (α +R) ‖z − x‖
there exists v2 ∈ V2 ∩ SN−1 such that ‖v1 − v2‖ ≤ R

whence

〈v2, z − x〉 = 〈v1, z − x〉 − 〈v1 − v2, z − x〉 > α ‖z − x‖ ,
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i.e., z ∈ Cα(x, V2).

For any fixed ρ > 0, let us introduce the sets

BP ρ
f,k =

{
x ∈ BPf,k |

〈
vx,

y − x
|y − x|+ |β − f(x)|

〉
≤ ‖vx‖

8

∀vx ∈ Vx, y ∈ B(x, ρ), β < f(y)
}
.

(3.3)

Remark 3.1. If ρ1 > ρ2 > 0 then BP ρ1

f,k ⊆ BP ρ2

f,k.

As the following Lemma shows, the sets BP ρ
f,k give a partition of BPf,k.

Lemma 3.2. We have

(3.4) BPf,k = ∪ρ>0BP
ρ
f,k.

In particular, from Remark 3.1 it holds

(3.5) BPf,k = ∪i∈N\{0}BP
1/i
f,k .

Proof. Fix x ∈ BPf,k and let v1, v2, ..., vk be an orthonormal basis for Vx. By the

definition of Vx we have −vi ∈ Vx for all i ∈ {1, 2, ..., k}. Recalling (2.4), (2.3) and

(2.2), there exists a constant ρx > 0 such that B(x, ρx) ⊂ Ω and for all i ∈ {1, 2, ..., k}
one has〈

vi,
y − x

|y − x|+ |β − f(x)|

〉
≤ 1

8
√
k

and
〈
− vi,

y − x
|y − x|+ |β − f(x)|

〉
≤ 1

8
√
k

for all y ∈ B(x, ρx) and β ≤ f(y). Thus

(3.6)
∣∣∣〈vi, y − x

|y − x|+ |β − f(x)|

〉∣∣∣ ≤ 1

8
√
k

for all y ∈ B(x, ρx) and β ≤ f(y).

Fix vx ∈ Vx; we have vx =
∑k

i=1 αivi for suitable αi ∈ R. From (3.6), we get〈
vx,

y − x
|y − x|+ |β − f(x)|

〉
≤
∑k

i=1 |αi|
8
√
k

for all y ∈ B(x, ρx) and β ≤ f(y). On the other hand,

‖vx‖ =

( k∑
i=1

α2
i

)1/2

≥
∑k

i=1 |αi|√
k

.

Therefore 〈
vx,

y − x
|y − x|+ |β − f(x)|

〉
≤ ‖vx‖

8

for all y ∈ B(x, ρx) and β ≤ f(y). Thus x ∈ BP ρx

f,k and the proof is accomplished. �

In view of a rectifiability result for the sets BPf,k, we begin with a technical result.
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Lemma 3.3. Let a ∈ RN , ρ > 0 and x, y ∈ BP ρ
f,k ∩B(a, ρ

2
) be such that dG(Vx, Vy) <

1
8
; then

y ∈ RN\C 1
4
(x, Vx) .

Proof. Since x, y ∈ B(a, ρ
2
), we have x ∈ B(y, ρ) and y ∈ B(x, ρ). Therefore, from

(3.3) if vx ∈ Vx ∩ SN−1 we have

(3.7) 〈vx, y − x〉 ≤
1

8
(‖y − x‖+ |β − f(x)|) for all β ≤ f(y).

Similarly, for any vy ∈ Vy ∩ SN−1 we obtain

(3.8) 〈vy, y − x〉 ≤
1

8
(‖y − x‖+ |β − f(y)|) for all β ≤ f(x).

We have to distinguish two cases: if f(y) ≥ f(x), we choose β = f(x) in (3.7) to get

〈vx, y − x〉 ≤
1

8
‖y − x‖ ∀ vx ∈ Vx ∩ SN−1 .

Recalling (3.1), this implies that y /∈ C 1
4
(x, Vx), as desired.

If f(y) ≤ f(x), we choose β = f(y) in (3.8) to get

〈vy, y − x〉 ≤
1

8
‖y − x‖ ∀ vy ∈ Vy ∩ SN−1.

Since dG(Vx, Vy) <
1
8
, for any vx ∈ Vx ∩ SN−1 there exists vy = vy(vx) ∈ Vy ∩ SN−1

such that ‖vx − vy‖ < 1
8
. Therefore, for any vx ∈ Vx ∩ SN−1 it holds

(3.9) 〈vx, y − x〉 ≤ 〈vy, y − x〉+ |〈vx − vy, y − x〉| ≤
1

4
‖y − x‖

i.e. y /∈ C 1
4
(x, Vx), as desired. �

We now fix R := 1/16 and let V1, . . . , Vm ∈ G(N, k) be given by (2.7). We thus

divide BP ρ
f,k into m sets

(3.10) BP ρ
f,k =

m⋃
j=1

BP ρ,j
f,k

where

BP ρ,j
f,k = {x ∈ BP ρ

f,k | dG(Vx, Vj) < 1/16}.

For j = 1, . . . ,m we denote by πj the orthogonal projection Rn → V ⊥j ; clearly,

πj(z) = zV ⊥j = z − zVj
.

Lemma 3.4. The projection πj : BP ρ,j
f,k ∩ B(a, ρ/2) → πj(BP

ρ,j
f,k ∩ B(a, ρ/2)) is

invertible and its inverse map is Lipschitz continuous with Lipschitz constant at most

2.
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Proof. Let x, y ∈ BP ρ,j
f,k ∩ B(a, ρ/2) be fixed. We have dG(Vx, Vy) < 1/8 and Lemma

3.3 ensures that y /∈ C1/4(x, Vx). Since dG(Vx, Vj) < 1/16, by (3.2) we deduce that

C1/2(x, Vj) ⊆ C5/16(x, Vj) ⊆ C1/4(x, Vx) and, in particular, that y /∈ C1/2(x, Vj). This

implies that ‖(y − x)Vj
‖ ≤ 1

2
‖y − x‖, whence

‖πj(y)− πj(x)‖ = ‖πj(y − x)‖ =
∥∥(y − x)− (y − x)Vj

∥∥ ≥ 1
2
‖y − x‖ .

This is enough to conclude. �

The rectifiability of the sets BP ρ
f,k is now a consequence of Lemma 3.4.

Theorem 3.5. The set BP ρ
f,k∩K is (N−k)-rectifiable for any ρ > 0 and any compact

set K ⊂ RN ; in particular

(3.11) HN−k(BP ρ
f,k ∩K) < +∞.

Proof. It will be sufficient to show that for any j = 1, . . . ,m the set BP ρ,j
f,k ∩ K is

k-rectifiable. Since K is compact, there exist a1, . . . , ah ∈ RN such that

BP ρ,j
f,k ∩K ⊂

h⋃
i=1

(
BP ρ,j

f,k ∩B(ai, ρ/2)
)
.

By Lemma 3.4, for any i = 1, . . . , h the set BP ρ,j
f,k ∩B(ai, ρ/2) is the image of

π−1
j : πj

(
BP ρ,j

f,k ∩B(ai, ρ/2)
)
→ RN ,

i.e. of a Lipschitz map defined on a bounded subset of V ⊥j ≡ RN−k with Lipschitz

constant at most 2. In particular, BP ρ,j
f,k ∩ B(ai, ρ/2) is (N − k)-rectifiable and this

allows to conclude. �

We can finally pass to the proof of our main results.

Proof of Theorem 1.1. It is an easy consequence of Lemma 3.2 and Theorem 3.5. �

Before passing to the proof of Theorem 1.2, we would like to discuss the relation

between BPf and the set of bad points BP P
f considered in [20], namely,

BP P
f := {x ∈ Ω |NLP (x) 6= {0}},

where NLP (x) = { ξ ∈ NP
hypo(f)(x, f(x)) | − ξ ∈ NP

hypo(f)(x, f(x))}. From Remark

2.2 it is clear that BP P
f ⊆ BPf , but in general the two sets do not coincide.

However, the equality BPf = BP P
f holds under the assumptions of Theorem 1.2.

Indeed, from Corollary 3.1 in [20] it follows that the hypograph of f|ΩP
has positive

reach, where ΩP is the open set defined by ΩP := Ω\BP P
f . Therefore (see [14,

Proposition 6.2 and 4.2] and [19, Theorem 4.8 (12)]) one has

NP
hypo(f|ΩP

)(x, f|ΩP
(x)) = NF

hypo(f|ΩP
)(x, f|ΩP

(x)) for all x ∈ ΩP .
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and thus

NP
hypo(f)(x, f(x)) = NF

hypo(f)(x, f(x)) for all x ∈ ΩP .

Consequently, NL(x) = NLP (x) for all x ∈ ΩP . By the definition of BP P
f , we have

NLP (x) = {0} for all x ∈ ΩP . This implies that NL(x) = {0} for all x ∈ ΩP , i.e.

BPf ∩ ΩP = ∅. Thus, BPf ⊆ BP P
f , as claimed.

Proof of Theorem 1.2. Recalling 1.1, we haveHN−1(BPf,k) = 0 for all k ∈ {2, 3..., N}.
Since

BPf = BPf,1 ∪
N⋃
k=2

BPf,k,

the proof will be accomplished after proving that the set BPf,1 is locally (N − 1)-

rectifiable. From the definition (2.6), for every x ∈ BPf,1 the set

Vx = {tvx | vx ∈ RN , ‖vx‖ = 1 and t ∈ R}

is a line along vx. Therefore by [20, Lemma 4.3], (±vx, 0) ∈ NP
hypo(f)(x, f(x)) is

realized by a ball of radius θ, i.e.〈
± vx, y − x

〉
≤ 1

2θ
(‖y − x‖2 + |β − f(x)|2) ∀y ∈ Ω, β ≤ f(x).

From the above inequality, reasoning as in the proof of Lemma 3.3 one can obtain

that the following holds. If a ∈ RN , ρ ∈ (0, θ/8], x, y ∈ BPf,1 ∩B(a, ρ
2
) are such that

dG(Vx, Vy) <
1
8
, then

y ∈ RN\C 1
4
(x, Vx) .

From this fact, the local (N − 1)-rectifiability of BPf,1 follows (up to considering

BPf,1 instead of BP ρ
f,k) as in the proof of Theorem 3.5. �

4. A counterexample

By virtue of Theorem 1.2, the set of bad points BPf is locally (N − 1)-rectifiable

provided the θ-exterior sphere condition holds. On the contrary, an analogous (N−k)-

rectifiability result does not hold for BPf,k; in other words, Theorem 1.1 cannot be

refined to show that HN−k(BPf,k ∩ K) < ∞ for any compact set K ⊂ RN . We

are going to provide an example of a continuous function f : (−1, 1) × (−1, 1) → R
satisfying the θ-exterior sphere condition with θ = 1 and such that H0(BPf,2 ∩K) =

+∞ for any neighbourhood K of the origin. It will be clear from the construction

that what is missing is a uniform control on the radii of exterior balls (recall that, by

Theorem 3.5, BP ρ
f,k is locally (N − k)-rectifiable for any ρ > 0).

Let Ω := (−1, 1)× (−1, 1); for n ∈ N, n ≥ 0 let us define x+
n , x

−
n ∈ Ω by

x+
n := (2−n, 0), x−n := (−2−n, 0) .
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We also set

c+
n :=

x+
n + x+

n+1

2
= (3·2−n−2, 0) ∈ Ω, c−n :=

x−n + x−n+1

2
= (−3·2−n−2, 0) ∈ Ω

and

rn :=
‖x+

n − xn+1‖
2

=

∥∥x−n − x−n+1

∥∥
2

= 2−n−2 .

Notice that the closed balls B(c±n , rn) are pairwise disjoint except for the case of

consecutive balls, which instead are tangent, i.e., for any n ≥ 1 one has

B(c+
n , rn) ∩B(c+

n−1, rn−1) = {x+
n }, B(c−n , rn) ∩B(c−n−1, rn−1) = {x−n } .

Define f1 : Ω→ R by

f1(x) =


−
√
r2
n − ‖x− c+

n ‖
2 if x ∈ B(c+

n , rn)

−
√
r2
n − ‖x− c−n ‖

2 if x ∈ B(c−n , rn)

0 if x ∈ Ω \
(⋃

nB(c+
n , rn) ∪

⋃
nB(c−n , rn)

)
.

It is easily seen that f1 is continuous and that {x+
n , x

−
n : n ≥ 1} ⊂ BPf1 ; more

precisely

(4.1)

(1, 0) ∈ ∂∞f1(x+
n ) is realized by a ball of radius rn−1

(−1, 0) ∈ ∂∞f1(x+
n ) is realized by a ball of radius rn

(1, 0) ∈ ∂∞f1(x−n ) is realized by a ball of radius rn
(−1, 0) ∈ ∂∞f1(x−n ) is realized by a ball of radius rn−1.

For any x = (ξ, η) ∈ Ω we also define

f2(x) = −
√
η2 − |η| = −

√
1− (1− |η|)2 .

One can easily check that f2 is continuous on Ω and that BPf2 = {(ξ, 0) : ξ ∈ (−1, 1)};
more precisely, for any ξ ∈ (−1, 1)

(4.2) (0, 1), (−1, 0) ∈ ∂∞f2(ξ, 0) are realized by balls of radius 1.

Notice also that f1(x±n ) = f2(x±n ) = 0 for any n ≥ 1. Therefore, the function f :=

inf{f1, f2} is continuous on Ω and f(x±n ) = f1(x±n ) = f2(x±n ) = 0. Taking (4.1) and

(4.2) into account we obtain that

(1, 0), (−1, 0), (0, 1), (0,−1) ∈ ∂∞f(x±n ) for any n ≥ 1

whence

{x+
n , x

−
n : n ≥ 1} ⊂ BPf,2

which in turn implies H0(BPf,2) =∞, as desired.
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