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Abstract

The SBV regularity of weak entropy solutions to the Burgers-Poisson equation for
initial data in L1(R) is considered. We show that the derivative of a solution consists
of only the absolutely continuous part and the jump part.
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1 General setting

The Burgers-Poisson equation is given by the balance law obtained from Burgers’ equation
by adding a nonlocal source term

ut +

(
u2

2

)
x

= [G ∗ u]x . (1.1)

Here, G(x) = −1
2e
−|x| is the Poisson Kernel such that

[G ∗ f ](x) =

∫ +∞

−∞
G(x− y) · f(y) dy

solves the Poisson equation
ϕxx − ϕ = f . (1.2)

Equation (1.1) has been derived in [16] as a simplified model of shallow water waves
and admits conservation of both momentum and energy. For sufficiently regular initial
data u0, the local existence and uniqueness of solutions of (1.1) has been established in
[9]. Additionally, their analysis of traveling waves showed that the equation features wave
breaking in finite time. More generally, it has been demonstrated that (1.1) does not admit
a global smooth solution ([12]). Hence, it is natural to consider entropy weak solutions.

Definition 1.1. A function u ∈ L1
loc([0,∞[×R) ∩ L∞loc(]0,∞[,L∞(R)) is an entropy weak

solution of (1.1) if u satisfies the following properties:
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(i) the map t 7→ u(t, ·) is continuous with values in L1(R), i.e.,

‖u(t, ·)− u(s, ·)‖L1(R) ≤ L · |t− s| for all 0 ≤ s ≤ t

for some constant L > 0.

(ii) For any k ∈ R and any non-negative test function φ ∈ C1
c (]0,∞[×R,R) one has∫ ∫ [

|u−k|φt+ sign(u−k)
(u2

2
− k

2

2

)
φx+ sign(u−k)[Gx ∗u(t, ·)](x)φ

]
dx dt ≥ 0 .

Based on the vanishing viscosity approach, the existence result for a global weak solution
was provided for u0 ∈ BV (R) in [9]. However, this approach cannot be applied to the more
general case with initial data in L1(R). Moreover, there are no uniqueness or continuity
results for global weak entropy solutions of (1.1) established in [9]. Recently, the existence
and continuity results for global weak entropy solutions of (1.1) were established for L1(R)
initial data in [10]. The entropy weak solutions are constructed by a flux-splitting method.
Relying on the decay properties of the semigroup generated by Burgers equation and
the Lipschitz continuity of solutions to the Poisson equation, approximating solutions
satisfy an Oleinik-type inequality for any positive time. As a consequence, the sequence
of approximating solutions is precompact and converges in L1

loc(R). Moreover, using an
energy estimate, they show that the characteristics are Hölder continuous, which is used
to achieve the continuity property of the solutions. The Oleinik-type inequality gives that
the solution u(t, ·) is in BVloc(R) for every t > 0. In particular, this implies that the Radon
measure Du(t, ·) is divided into three mutually singular measures

Du(t, ·) = Dau(t, ·) +Dju(t, ·) +Dcu(t, ·)

where Dau(t, ·) is the absolutely continuous measure with respect to the Lebesgue measure,
Dju(t, ·) is the jump part which is a countable sum of weighted Dirac measures, and
Dcu(t, ·) is the non-atomic singular part of the measure called the Cantor part. For a
given w ∈ BVloc(R), the Cantor part of Dw does not vanish in general. A typical example
of Dcw is the derivative of the Cantor-Vitali ternary function. If Dcw vanishes then
we say the function w is locally in the space of special functions of bounded variation,
denoted by SBVloc(R). The space of SBVloc functions was first introduced in [11] and
plays important role in the theory of image segmentation and with variational problems
in fracture mechanics. Motived by results on SBV regularity for hyperbolic conservation
laws ([2, 15, 4, 13]), we show that

Theorem 1.2. Let u : [0,∞[×R → R be the unique locally BV -weak entropy solution of
(1.1) with initial data u0 ∈ L1(R). Then there exists a countable set T ⊂ R+ such that

u(t, ·) ∈ SBVloc(R) for all t ∈ R+ \ T .

As a consequence, the slicing theory of BV functions and the chain rule of Vol’pert [3]
implies that the weak entropy solution u is in SBVloc([0,+∞[×R). This is the first ex-
ample of the SBV regularity for scalar conservation laws with nonlocal source term. A
common theme in the proofs of recent results on SBV regularity involve an appropriate
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geometric functional which has certain monotonicity properties and jumps at time t if
u(t, ·) does not belong to SBV (see e.g. in [2]). More precisely, let J (t) be the set of
jump discontinuities J (t) of u(t, ·). For each xj ∈ J (t), there are minimal and maximal
backward characteristics ξ−j (s) and ξ+

j (s) emanating from (t, xj) which define a nonempty

interval Ij(s) := ]ξ−j (s), ξ+
j (s)[ for any s < t. In this case, the functional Fs(t) defined as

the sum of the measures of Ij(s) is monotonic and bounded. Relying on a careful study
of generalized characteristics, one shows that if the measure Du(t, ·) has a non-vanishing
Cantor part then the function Fs “jumps” up at time t which implies that the Cantor part
is only present at countably many t. Due to the nonlocal source, u(t, ·) does not necessarily
have compact support. Thus, we approach the domain by first looking at compact sets
and then “glue” the sections together to recover the full domain.

2 Preliminaries

2.1 BV and SBV functions

Let us now introduce the concept of functions of bounded variation in R. We refer to [3]
for a comprehensive analysis.

Definition 2.1. Given an open set Ω ⊆ R, let w be in L1(Ω). We say that w is a function
of bounded variation in Ω (denoted by w ∈ BV (Ω)) if the distributional derivative of w is
representable by a finite Radon measure Du on Ω, i.e.,

−
∫

Ω
w · ϕ′ dx =

∫
Ω
ϕ dDw for all ϕ ∈ C∞c (Ω)

with total variation (denoted by ‖Dw‖) given by

‖Dw‖ (Ω) = sup

{∫
Ω
w · ϕ′ dx : ϕ ∈ C∞c (Ω), ‖ϕ‖L∞ ≤ 1

}
.

Moreover, w is of locally bounded variation on Ω (denoted by w ∈ BVloc(Ω)) if w ∈ L1
loc(Ω)

and w is in BV (U) for all U ⊂⊂ Ω.

Given w ∈ BVloc(R), we split Dw into the absolutely continuous part Daw and singular
part Dsw provided by the Radon-Nikodým theorem (see e.g. [3, Theorem 1.28]). In the
1-D case, the singular part is concentrated on the L1-negligible set

Sw =

{
t ∈ R

∣∣∣ lim
δ→0

|Dw|(t− δ, t+ δ)

|δ|
= +∞

}
.

We can further decompse Dsw by isolating the set of atoms Aw =
{
t ∈ R

∣∣ Dw({t}) 6= 0
}

,
contained in Sw. Hence, we can consider two mutually singular measures

Djw := Dsw Aw and Dcw := Dsw (Sw \Aw)

respectively called the jump part of the derivative and the Cantor part of the derivative.
Furthermore, we have the following structure result (see e.g. [3, Theorem 3.28])
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Proposition 2.2. Let Ω ⊆ R and w ∈ BV (Ω). Then, for any x ∈ Aw, the left and right
hand limits of w(x) exist and

Djw =
∑
x∈Aw

(w(x+)− w(x−)) δx

where w(x±) denote the one-sided limits of w at x. Moreover, Dcw vanishes on any sets
which are σ-finite with respect to H0.

Definition 2.3. Let w be in BVloc(R) then w is a special function of bounded variation
(denote by w ∈ SBV ) if the Cantor part Dcw vanishes.

We want to show that the weak entropy solutions of (1.1) belong to SBV .

2.2 Oleinik-type inequality and non-crossing of characteristics

The global existence and BV -regularity of (1.1) was studied extensively in [10]. For
convenience, we recall their main results here.

Theorem 2.4. The Cauchy problem (1.1)-(1.2) with initial data u0 = u(0, ·) ∈ L1(R)
admits a unique solution u(t, x) such that for all t > 0 the following hold:

(i) the L1-norm is bounded by

‖u(t, ·)‖L1(R) ≤ et · ‖u0‖L1(R) ; (2.1)

(ii) the solution satisfies the following Oleinik-type inequality

u(t, y)− u(t, x) ≤ Kt

t
· (y − x) for all y > x (2.2)

with Kt = 1 + 2t+ 2t2 + 4t2et · ‖u0‖L1(R);

(iii) the L∞-norm is bounded by

‖u(t, ·)‖L∞(R) ≤
√

2Kt

t
‖u(t, ·)‖L1(R) ≤

√
2Ktet

t
‖u0‖L1(R) . (2.3)

In particular, this implies that that for all t > 0, u(t, ·) is in BVloc(R) and satisfies

u(t, x−) ≥ u(t, x+) for all x ∈ R. (2.4)

We recall the definition and theory of generalized characteristic curves associated to (1.1).
For a more in depth theory of generalized characteristics, we direct the readers to [7].

Definition 2.5. For any (t, x) ∈]0,+∞[×R, an absolutely continuous curve ξ(t,x)(·) is
called a backward characteristic curve starting from (t, x) if it is a solution of differential
inclusion

ξ̇(t,x)(s) ∈
[
u
(
s, ξ(x,t)(s)+

)
, u
(
s, ξ(t,x)(s)−

)]
a.e. s ∈ [0, t] (2.5)

with ξ(t,x)(t) = x. If s ∈ [t,+∞[ in (2.5) then ξ is called a forward characteristic curve,

denoted by ξ(t,x)(·). The characteristic curve ξ is called genuine if u(t, ξ(t)−) = u(t, ξ(t)+)
for almost every t.
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The existence of backward (forward) characteristics was studied by Fillipov. As in [7] and
[15], the speed of the characteristic curves are determined and genuine characteristics are
essentially classical characteristics:

Proposition 2.6. Let ξ : [a, b] → R be a characteristic curve for the Burgers-Poisson
equation (1.1), associated with an entropy solution u. Then for almost every time t ∈ [a, b],
it holds that

ξ̇(t) =


u(t, ξ(t)) if u(t, ξ(t)+) = u(t, ξ(t)−) ,

u(t, ξ(t)+) + u(t, ξ(t)−)

2
if u(t, ξ(t)+) < u(t, ξ(t)−) .

(2.6)

In addition, if ξ is genuine on [a, b], then there exists v(t) ∈ C1([a, b]) such that

u(t, ξ(t)−) = v(t) = u(t, ξ(t)+) for all t ∈]a, b[

and (ξ(·), v(·)) solve the system of ODEsξ̇(t) = v(t)

v̇(t) = [G ∗ u(t, ·)]x(ξ(t))
for all t ∈]a, b[ . (2.7)

Backward characteristics ξ(t,x)(·) are confined between a maximal and minimal backward
characteristics, as defined in [7]

(
denoted by ξ(t,x+)(·) and ξ(t,x−)(·)

)
. Relying on the

above proposition and (2.4), we can obtain properties of generalized characteristics, asso-
ciated with entropy solutions of the Burgers-Poisson equation, including the non-crossing
property of two genuine characteristics.

Proposition 2.7. Let u be an entropy solution to (1.1). Then for any (t, x) ∈]0 +∞[×R,
the following holds:

(i) The maximal and minimal backward characteristics ξ(t,x±) are genuine and thus the
function u

(
τ, ξ(t,x±)(τ)

)
solves (2.7) for τ ∈]0, t[ with initial data u(t, ξ(t,x±)(t)).

(ii) [Non-crossing of genuine characteristics] Two genuine characteristics may intersect
only at their endpoints.

(iii) If u(t, ·) is discontinuous at a point x, then there is a unique forward characteristic
ξ(t,x) which passes though (t, x) and

u
(
τ, ξ(t,x)(τ)−

)
> u

(
τ, ξ(t,x)(τ)+

)
for all τ ≥ t .

Throughout this paper, we shall denote by J (t) = {x ∈ R : u(t, x−) > u(t, x+)}, the
jump set of u(t, ·) for any t > 0. For any x ∈ J (t), the base of the backward characteristic
cone starting from (t, x) at time s ∈ [0, t[ is

I(t,x)(s) := ]ξ(t,x−)(s), ξ(t,x+)(s)[. (2.8)

By the non-crossing property, for any T > 0 and z1 < z2 ∈ R \ J (T ), the set

AT[z1,z2] :=
⋃

s∈[0,T ]

AT[z1,z2](s) with AT[z1,z2](s) := ]ξ(T,z1)(s), ξ(T,z2)(s)[ (2.9)
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confines all backward characteristics starting from (T, x) with x ∈]z1, z2[. For any 0 < s <
τ ≤ T , we denote by

Iτ,T[z1,z2](s) =
⋃

x∈AT
[z1,z2]

(τ)
⋂
J (τ)

I(τ,x)(s). (2.10)

Due to the no-crossing property of two genuine backward characteristics and the unique-
ness of forward characteristics in Proposition 2.7, the following holds:

Corollary 2.8. Given T > 0 and z1 < z2 ∈ R\J (T ), the map τ 7→ Iτ,T[z1,z2](s) is increasing

in the interval ]s, T ] in the following sense

Iτ1,T[z1,z2](s) ⊆ Iτ2,T[z1,z2](s) for all 0 ≤ s < τ1 ≤ τ2 ≤ T. (2.11)

Moreover, for any x ∈ AT[z1,z2](τ1) \ Iτ2,T[z1,z2](τ1) with 0 < τ1 < τ2 < t, the unique forward

characteristic ξ(τ1,x) passing through (τ1, x) is genuine in [τ1, τ2].

Proof. Let x ∈ J (τ1) ∩ AT[z1,z2](τ1) and let χ(·) be the unique forward characteristic eme-

nating from (τ1, x). By property (iii) of Proposition 2.7, for a fixed τ2 ∈ [τ1, T ] we have that
χ(τ2) ∈ J (τ2) and by the non-crossing property, χ(τ2) ∈ AT[z1,z2](τ2). Since the backward
characteristics that form the base of a characteristic cone are genuine, the non-crossing
property implies that

I(τ1,x)(s) ⊆ I(τ2,χ(τ2))(s) ⊂ AT[z1,z2](s) for all s ∈ [0, τ1]

yielding (2.11). The later statement follows directly.

3 SBV-regularity

Throughout this section, let u : [0,∞[×R → R be the unique locally BV -weak entropy
solution of (1.1) for some initial data u0 ∈ L1(R). The section aims to prove Theorem 1.2.
For simplicity, denote the jump and Cantor parts of Du(t, ·) by

νt = Dju(t, ·) and µt = Dcu(t, ·) for any t ∈]0,+∞[

which, by (2.2), are both non-positive. We will show that µt(R) < 0 for at most countable
positive times t > 0. In order to do so, let us first establish some basic bounds on backward
characteristics.

Lemma 3.1. For any given 0 < t0 < t and x1 ≤ x2, let ξi(·) be a genuine backward
characteristic starting from (t, xi) and

vi(s) = u(s, ξi(s)) for all s ∈ [0, t], i ∈ {1, 2}.

Then the followings hold:

|v2(s)− v1(s)|+ |ξ2(s)− ξ1(s)| ≤ ct(s) · (|v2(t)− v1(t)|+ |ξ2(t)− ξ1(t)|) (3.1)
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for all s ∈ [0, t] and

ξ2(t0)− ξ1(t0) ≥ x2 − x1 + (v1(t0)− v2(t0)) · (t− t0)

Γ[t0,t]
(3.2)

with
ct(s) = exp

{
2 ·
(√

2Ktet ‖u0‖L1(R) + (et ‖u0‖L1(R) + 1) ·
√
t
)
· (
√
t−
√
s)
}
,

Γ[t0,t] = 1 +

(√
2Kte

t

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

)
· e

Ktt

t0
· (t− t0)2.

(3.3)

Proof. 1. Let’s first proof (3.1). From Proposition 2.6, it holds thatξ̇i(s) = vi(s)

v̇i(s) = [G ∗ u(s, ·)]x(ξi(s))
for all s ∈]0, t[. (3.4)

In particular, this implies that

d

ds

∣∣ξ2(s)− ξ1(s)
∣∣ ≥ − |v2(s)− v1(s)|

and
d

ds

∣∣v2(s)− v1(s)
∣∣ ≥ −

∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))
∣∣∣.

Since ξ2(s) ≥ ξ1(s) for all s ∈]0, t], we estimate∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))
∣∣∣ ≤ 1

2
·
∫ ξ1(s)

−∞
|u(s, z)| ·

∣∣∣ez−ξ2(s) − ez−ξ1(s)
∣∣∣ dz

+
1

2
·
∫ ξ2(s)

ξ1(s)
|u(s, z)| ·

∣∣∣ez−ξ2(s) + eξ1(s)−z
∣∣∣ dz +

1

2
·
∫ +∞

ξ2(s)
|u(s, z)| ·

∣∣∣eξ1(s)−z − eξ2(s)−z
∣∣∣ dz

≤ 1

2
·
(

1− eξ1(s)−ξ2(s)
)∫

R\[ξ1(s),ξ2(s)]
|u(s, z)| dz +

∫
[ξ1(s),ξ2(s)]

|u(s, z)| dz

≤
(

1

2
· ‖u(s, ·)‖L1(R) + ‖u(s, ·)‖L∞(R)

)
·
∣∣ξ2(s)− ξ1(s)

∣∣ .
Hence, (2.1) and (2.3) imply that∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))

∣∣∣
≤

(√
2Ktet

s
‖u0‖L1(R) + et ‖u0‖L1(R)

)
·
∣∣ξ2(s)− ξ1(s)

∣∣. (3.5)

Setting Mt =
√

2Ktet ‖u0‖L1(R) + (et ‖u0‖L1(R) + 1) ·
√
t, we have

d

ds

(∣∣ξ2(s)− ξ1(s)
∣∣+
∣∣v2(s)− v1(s)

∣∣) ≥ − Mt√
s
·
(∣∣ξ2(s)− ξ1(s)

∣∣+
∣∣v2(s)− v1(s)

∣∣),
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for all s ∈]0, t], and Grönwall’s inequality yields (3.1).

2. To prove (3.2), we first apply (2.2) to (3.4) to get

ξ̇2(s)− ξ̇1(s) = u(s, ξ2(s))− u(s, ξ1(s)) ≤ Kt

s
· (ξ2(s)− ξ1(s)),

and this implies

ξ2(s)−ξ1(s) ≤ eKts

t0
· (ξ2(t0)−ξ1(t0)) ≤ eKtt

t0
· (ξ2(t0)−ξ1(t0)) for all s ∈ [t0, t]. (3.6)

Therefore, from (3.4) and (3.5), it holds for s ∈ [t0, t] that

v2(s)− v1(s) = v2(t0)− v1(t0) +

∫ s

t0

[G ∗ u(τ, ·)]x(ξ2(τ))− [G ∗ u(τ, ·)]x(ξ1(τ)) dτ

≤ v2(t0)− v1(t0) +

∫ s

t0

√2Ktet

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

 · (ξ2(τ)− ξ1(τ)
)
dτ

≤ v2(t0)− v1(t0) + γ[t0,t] · (ξ2(t0)− ξ1(t0))

with

γ[t0,t] =

√2Ktet

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

 · eKtt
t0
· (t− t0).

Integrating the first equation in (3.4) over [t0, t], we get

ξ2(t)− ξ1(t) = ξ2(t0)− ξ1(t0) +

∫ t

t0

v2(τ)− v1(τ) dτ

≤ (v2(t0)− v1(t0)) · (t− t0) +
(
1 + γ[t0,t] · (t− t0)

)
· (ξ2(t0)− ξ1(t0))

and this yields (3.2).

As a consequence, we obtain the following two corollaries. The first one provides an upper
bound on the base of characteristic cone C(t,x) at time s ∈]0, t[ for every x ∈ J (t).

Corollary 3.2. For any (t, x) ∈]0,+∞[×J (t), it holds that∣∣I(t,x)(s)
∣∣ ≤ − ct(s) · νt({x}) for all s ∈ [0, t[. (3.7)

Proof. Since x ∈ J (t), the inequality (2.4) implies that

νt{x} = u(t, x+)− u(t, x−) < 0.

Thus, recalling (3.1), we obtain∣∣ξ(t,x+)(s)− ξ(t,x−)(s)
∣∣ ≤ ct(s) · |u(t, x+)− u(t, x−)|

and this yields (3.7).
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In the next corollary, we show that two distinct characteristics are separated for all positive
time; moreover, the distance between them is proportional to the difference in the values
of the solution along the characteristics.

Corollary 3.3. Given x1 < x2 and σ and t, such that 0 < σ < t ≤ T , let ξi(·) be a
genuine backward characteristic starting from (t, xi) and

vi(s) = u(s, ξi(s)) for all s ∈ [0, t[, i ∈ {1, 2}.

Then it holds that
ξ2(σ/2)− ξ1(σ/2) ≥ κ[σ,T ] · (v1(t)− v2(t)) (3.8)

where

κ[σ,T ] =
σ

2

[
Γ[σ/2,T ] +

(√
4KT eT

σ
‖u0‖L1(R) + eT ‖u0‖L1(R)

)
· eKT T · (T − σ/2)

]−1

.

Proof. Integrating the second equation in (2.7) over [σ/2, t] yields

v1(t)− v2(t) = v1(σ/2)− v2(σ/2) +

∫ t

σ/2
[G ∗ u(τ, ·)]x(ξ1(τ))− [G ∗ u(τ, ·)]x(ξ2(τ)) dτ

≤ v1(σ/2)− v2(σ/2) +

∫ t

σ/2

∣∣∣[G ∗ u(τ, ·)]x(ξ2(τ))− [G ∗ u(τ, ·)]x(ξ1(τ))
∣∣∣ dτ

and by (3.5) and (3.6) it holds that

v1(t)− v2(t) ≤ v1(σ/2)− v2(σ/2)

+

(√
4KT eT

σ
‖u0‖L1(R) + eT ‖u0‖L1(R)

)
· 2eKT T

σ
· (T − σ/2) · (ξ2(σ/2)− ξ1(σ/2)) .

(3.9)
On the other hand, by (3.2) we have that

v1(σ/2)− v2(σ/2) ≤
Γ[σ/2,t]

t− σ/2
· (ξ2(σ/2)− ξ1(σ/2)) ≤

2Γ[σ/2,T ]

σ
· (ξ2(σ/2)− ξ1(σ/2)).

which, when applied to (3.9), implies (3.8).

The next lemma shows that, for a certain positive time s, if u(s, ·) is not in SBV , then
at future times s + ε the Cantor part of u(s, ·) gets transformed into jump singularities.
Following the main idea in [2, 15], for any s ∈]0, T [ and z1 < z2 ∈ R\J (T ), let us consider
the set of points ET[z1,z2](s) in AT[z1,z2](s) where the Cantor part of Dxu(s, ·) prevails, i.e.,

ET[z1,z2](s) =

{
x ∈ AT[z1,z2](s) : lim

η→0+

η + |Dxu(s, ·)− µs|([x− η, x+ η])

−µs([x− η, x+ η])
= 0

}
. (3.10)

Besicovitch differentiation theorem [3] gives that µs

(
AT[z1,z2](s) \ E

T
[z1,z2](s)

)
= 0 and

lim
η→0+

u−(s, x− η)− u+(s, x+ η)

−µs([x− η, x+ η])
= 1 for all x ∈ ET[z1,z2](s). (3.11)
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Moreover, for µs-a.e. x in ET[z1,z2](s), it holds that

lim
η→0

u(s, x+ η)− u(s, x)

η
= −∞. (3.12)

Lemma 3.4. Let 0 < s < t ≤ T and z1 < z2 ∈ R \ J (T ) be fixed. Then, it holds for
µs-a.e. x ∈ AT[z1,z2](s) that

]x− ηx, x+ ηx[ ⊂ It,T[z1,z2](s) for some ηx > 0.

Proof. Since It,T[z1,z2](s) is open, it is sufficient to prove that every point x ∈ ET[z1,z2](s)\J (s)

satisfying (3.12) is in It,T[z1,z2](s). Assume by a contradiction that

x ∈ AT[z1,z2](s) \ I
t,T
[z1,z2](s)

⋃
∂(It,T[z1,z2](s)).

1. If x ∈ AT[z1,z2](s) \ I
t,T
[z1,z2](s) then

]x− η0, x+ η0[
⋂

It,T[z1,z2](s) = ∅ for some η0 > 0. (3.13)

Given any η ∈ [0, η0[, let ξη1 (·) and ξη2 (·) be the unique forward characteristics emanating
from x− η and x+ η at time τ0. From Corollary 2.8, both ξη1 (·) and ξη2 (·) are genuine in
[t0, t] and

ξη2 (τ)− ξη1 (τ) ≥ 0 for all τ ∈ [s, t] (3.14)

Thus, (3.2) in Lemma 3.1 implies

2η = ξη2 (s)− ξη1 (s) ≥ ξη2 (t)− ξη1 (t) + (u(s, x− η)− u(s, x+ η)) · (t− s)
Γ[s,t]

≥ − (u(s, x+ η)− u(s, x− η)) · (t− s)
Γ[s,t]

which yields a contradiction to (3.12) when η is sufficiently small.

2. Suppose that x ∈ ∂(It,T[z1,z2](s)). In this case, ξ(s,x)(·) is either a minimal or max-

imal backward characteristic in [s, t]. Moreover, for every η > 0 there exists xη ∈
]x−η, x[

⋃
]x, x+η[ such that xη /∈ It,T[z1,z2](s) and the unique forward characteristics ξ(s,xη)(·)

emenating from xη at time s is genuine and does not cross ξ(s,x)(·) in the time interval
[s, t]. With the same computation in the previous step, we get

u(s, xη)− u(s, x)

xη − x
≥ −

Γ[s,t]

t− s

and this also yields a contradiction to (3.12) when η is sufficiently small.
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We are now ready to prove our first main theorem.

Proof of Theorem 1.2. The proof is divided into two steps:

Step 1. Fix T > 0 and z1, z2 ∈ R \ J (T ) with z1 < z2 and, recalling (2.9) and (2.10) let

A = AT[z1,z2], At = AT[z1,z2](t) and It(s) = It,T[z1,z2](s) (3.15)

for all 0 < s < t ≤ T . We claim that the set

T[z1,z2] := {t ∈ [0, T ] : µt (At) does not vanish} (3.16)

is at most countable.

(i). Fix σ ∈]0, T [. By Proposition 2.6 and (2.3), one has

|At| ≤ |z2 − z1|+ 2

√
2KT eT

σ
‖u0‖L1(R) · T for all t ∈ [σ, T ],

and the Oleinik-type inequality (2.2) yields

|Du(t, ·)|
(
At
)
≤ MT

σ for all t ∈ [σ, T ]

with

MT
σ = 2

√
2KT eT

σ
‖u0‖L1(R) +

2KT

σ
·

(
|z2 − z1|+ 2

√
2KT eT

σ
‖u0‖L1(R) · T

)
.

Let the geometric functional Fσ : [σ, T ]→ [0,∞[ be defined by

Fσ(t) =

∣∣∣∣∣∣
⋃

x∈J (t)
⋂
At

I(t,x) (σ/2)

∣∣∣∣∣∣ =
∑

x∈J (t)
⋂
At

∣∣I(t,x) (σ/2)
∣∣ for all t ∈ [σ, T ]

where the second equality follows by the non-crossing property. By Corollaries 2.8 and
3.2, the map t 7→ Fσ(t) is non-decreasing in [σ, T ] and uniformly bounded

sup
t∈[σ,T ]

Fσ(t) ≤ cT (σ/2) · sup
t∈σ,T

(|νt|(At)) ≤ cT (σ/2) ·MT
σ (3.17)

with cT (σ/2) defined in (3.3).

(ii). Assume that a Cantor part is present in A at time t ∈]σ, T [, i.e.,

µt (At) ≤ − α for some α > 0, (3.18)

which by (3.10) is concentrated on Et := ET[z1,z2](t). We will show that

Fσ(t+)− Fσ(t) ≥
κ[σ,T ]

2
· α (3.19)

where κ[σ,T ] is defined in Corollary 3.3. It is sufficient to prove that

Fσ(t+ ε)− Fσ(t) =
∣∣It+ε(σ/2) \ It(σ/2)

∣∣ ≥ κ[σ,T ]

2
· α

11



for any given ε ∈]0, T − t[. By Lemma 3.4, for µt-a.e. x ∈ Et there exists ηx > 0 such that

]x− ηx, x+ ηx[ ⊂ It+ε(t). (3.20)

On the other hand, given x ∈ Et and η > 0, we denote the interval

Jσ/2x,η = ]ξ(t,x−η) (σ/2) , ξ(t,x+η) (σ/2) [ ,

and Corollaries 3.2 and 3.3 imply that∣∣∣Jσ/2x,η \ It(σ/2)
∣∣∣ = ξ(t,x+η)(σ/2)− ξ(t,x−η)(σ/2)−

∣∣∣Jσ/2x,η ∩ It(σ/2)
∣∣∣

≥ κ[σ,T ] · (u(t, x− η)− u(t, x+ η)) + cT (σ/2)νt(]x− η, x+ η[) .

Furthermore, by (3.11) and the definition of Et, there exists η0 > 0 such that∣∣∣Jσ/2x,η \ It(σ/2)
∣∣∣ ≥ −

κ[σ,T ]

2
µt(]x− η, x+ η[) for all η ∈]0, η0] . (3.21)

By the Besicovitch covering lemma, we can cover µt-a.e. Et with countably many pairwise
disjoint intervals [xj−ηj , xj +ηj ] where ηj is chosen such that both (3.20)and (3.21) hold.

Proposition 2.7 (ii) implies that the intervals J
σ/2
xj ,ηj are pairwise disjoint and by (3.20) we

have that J
σ/2
xj ,ηj is contained in Aσ/2. Therefore, it holds that

Fσ(t+ ε)− Fσ(t) =
∣∣It+ε(σ/2) \ It(σ/2)

∣∣ ≥ ∑
j

∣∣∣Jσ/2xj ,ηj \ I
t(σ/2)

∣∣∣ .
Applying (3.21) and then (3.18) to the above inequality yields

Fσ(t+ ε)− Fσ(t) ≥ −
κ[σ,T ]

2

∑
j

µt ([xj − ηj , xj + ηj ]) ≥ −
κ[σ,T ]

2
µt (Et) ≥

κ[σ,T ]

2
α ,

and therefore (3.19) holds.

(iii). By the monotonicity of Fσ and (3.17), Fσ has at most countable many discontinuities
on [σ, T ]. Thus, for any given σ ∈]0, T [, (3.18)-(3.19) imply that the set⋃

n∈N

{
t ∈ [σ, T ] : µt(At) ≤ −2−n

}
= {t ∈ [σ, T ] : µt(At) < 0}

is at most countable and therefore,⋃
n∈N

{
t ∈ [2−n, T ] : µt(At) < 0

}
= T[z1,z2] is countable.

Step 2. To complete the proof, it is sufficient to show that for any given T > 0, there
exists an at most countable subset TT of [0, T ] such that

u(t, ·) ∈ SBVloc(R) for all t ∈ [0, T ] \ TT . (3.22)
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For any k ∈ Z, we pick a point z̄k ∈]k, k + 1[\J (T ). Let ξk(·) be the unique genuine
backward characteristic starting at point (T, z̄k) for every k ∈ Z and define

ATk = AT[z̄k,z̄k+1]

⋃
{(ξk(t), t) : t ∈ [0, T ]} and ATk (t) = AT[z̄k,z̄k+1](t)

⋃
{ξk(t)} .

Due to the no-crossing property of two genuine backward characteristics in Proposition
2.7, it holds that⋃

k∈Z
ATk = [0, T ]× R and

⋃
k∈Z

ATk (t) = R for all t ∈ [0, T ].

From Step 1, it holds that, for every k ∈ Z, the set

{t ∈ [0, T ] : µt(A
T
k (t)) 6= 0} is countable.

Hence,

TT = {t ∈ [0, T ] : µt(A
T
k (t)) 6= 0 for some k ∈ Z} is also countable.

and this yields (3.22).
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