SBV regularity for Burgers-Poisson equation

Steven Gilmore and Khai T. Nguyen
Department of Mathematics, North Carolina State University,
e-mails: sjgilmo2@ncsu.edu, khai@math.ncsu.edu

December 15, 2020

Abstract

The SBV regularity of weak entropy solutions to the Burgers-Poisson equation for initial data in $\mathbf{L}^{1}(\mathbb{R})$ is considered. We show that the derivative of a solution consists of only the absolutely continuous part and the jump part.

Keywords: Burgers-Poisson equation, entropy weak solution, SBV regularity

1 General setting

The Burgers-Poisson equation is given by the balance law obtained from Burgers' equation by adding a nonlocal source term

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=[G * u]_{x} \tag{1.1}
\end{equation*}
$$

Here, $G(x)=-\frac{1}{2} e^{-|x|}$ is the Poisson Kernel such that

$$
[G * f](x)=\int_{-\infty}^{+\infty} G(x-y) \cdot f(y) d y
$$

solves the Poisson equation

$$
\begin{equation*}
\varphi_{x x}-\varphi=f \tag{1.2}
\end{equation*}
$$

Equation (1.1) has been derived in [16] as a simplified model of shallow water waves and admits conservation of both momentum and energy. For sufficiently regular initial data u_{0}, the local existence and uniqueness of solutions of (1.1) has been established in [9]. Additionally, their analysis of traveling waves showed that the equation features wave breaking in finite time. More generally, it has been demonstrated that (1.1) does not admit a global smooth solution ([12]). Hence, it is natural to consider entropy weak solutions.

Definition 1.1. A function $u \in \mathbf{L}_{\text {loc }}^{1}\left(\left[0, \infty[\times \mathbb{R}) \cap \mathbf{L}_{\text {loc }}^{\infty}(] 0, \infty\left[, \mathbf{L}^{\infty}(\mathbb{R})\right)\right.\right.$ is an entropy weak solution of (1.1) if u satisfies the following properties:
(i) the map $t \mapsto u(t, \cdot)$ is continuous with values in $\mathbf{L}^{1}(\mathbb{R})$, i.e.,

$$
\|u(t, \cdot)-u(s, \cdot)\|_{\mathbf{L}^{1}(\mathbb{R})} \leq L \cdot|t-s| \quad \text { for all } 0 \leq s \leq t
$$

for some constant $L>0$.
(ii) For any $k \in \mathbb{R}$ and any non-negative test function $\phi \in C_{c}^{1}(] 0, \infty[\times \mathbb{R}, \mathbb{R})$ one has

$$
\iint\left[|u-k| \phi_{t}+\operatorname{sign}(u-k)\left(\frac{u^{2}}{2}-\frac{k^{2}}{2}\right) \phi_{x}+\operatorname{sign}(u-k)\left[G_{x} * u(t, \cdot)\right](x) \phi\right] d x d t \geq 0 .
$$

Based on the vanishing viscosity approach, the existence result for a global weak solution was provided for $u_{0} \in B V(\mathbb{R})$ in [9]. However, this approach cannot be applied to the more general case with initial data in $\mathbf{L}^{1}(\mathbb{R})$. Moreover, there are no uniqueness or continuity results for global weak entropy solutions of (1.1) established in [9]. Recently, the existence and continuity results for global weak entropy solutions of (1.1) were established for $\mathbf{L}^{1}(\mathbb{R})$ initial data in [10]. The entropy weak solutions are constructed by a flux-splitting method. Relying on the decay properties of the semigroup generated by Burgers equation and the Lipschitz continuity of solutions to the Poisson equation, approximating solutions satisfy an Oleinik-type inequality for any positive time. As a consequence, the sequence of approximating solutions is precompact and converges in $\mathbf{L}_{\text {loc }}^{1}(\mathbb{R})$. Moreover, using an energy estimate, they show that the characteristics are Hölder continuous, which is used to achieve the continuity property of the solutions. The Oleinik-type inequality gives that the solution $u(t, \cdot)$ is in $B V_{\text {loc }}(\mathbb{R})$ for every $t>0$. In particular, this implies that the Radon measure $D u(t, \cdot)$ is divided into three mutually singular measures

$$
D u(t, \cdot)=D^{a} u(t, \cdot)+D^{j} u(t, \cdot)+D^{c} u(t, \cdot)
$$

where $D^{a} u(t, \cdot)$ is the absolutely continuous measure with respect to the Lebesgue measure, $D^{j} u(t, \cdot)$ is the jump part which is a countable sum of weighted Dirac measures, and $D^{c} u(t, \cdot)$ is the non-atomic singular part of the measure called the Cantor part. For a given $w \in B V_{\text {loc }}(\mathbb{R})$, the Cantor part of $D w$ does not vanish in general. A typical example of $D^{c} w$ is the derivative of the Cantor-Vitali ternary function. If $D^{c} w$ vanishes then we say the function w is locally in the space of special functions of bounded variation, denoted by $S B V_{\text {loc }}(\mathbb{R})$. The space of $S B V_{\text {loc }}$ functions was first introduced in [11] and plays important role in the theory of image segmentation and with variational problems in fracture mechanics. Motived by results on $S B V$ regularity for hyperbolic conservation laws ($2, ~ 15, ~ 4, ~ 13])$, we show that

Theorem 1.2. Let $u:[0, \infty[\times \mathbb{R} \rightarrow \mathbb{R}$ be the unique locally $B V$-weak entropy solution of (1.1) with initial data $u_{0} \in \mathbf{L}^{1}(\mathbb{R})$. Then there exists a countable set $\mathcal{T} \subset \mathbb{R}^{+}$such that

$$
u(t, \cdot) \in S B V_{\text {loc }}(\mathbb{R}) \quad \text { for all } t \in \mathbb{R}^{+} \backslash \mathcal{T}
$$

As a consequence, the slicing theory of $B V$ functions and the chain rule of Vol'pert [3] implies that the weak entropy solution u is in $S B V_{\text {loc }}([0,+\infty[\times \mathbb{R})$. This is the first example of the SBV regularity for scalar conservation laws with nonlocal source term. A common theme in the proofs of recent results on $S B V$ regularity involve an appropriate
geometric functional which has certain monotonicity properties and jumps at time t if $u(t, \cdot)$ does not belong to $S B V$ (see e.g. in [2]). More precisely, let $\mathcal{J}(t)$ be the set of jump discontinuities $\mathcal{J}(t)$ of $u(t, \cdot)$. For each $x_{j} \in \mathcal{J}(t)$, there are minimal and maximal backward characteristics $\xi_{j}^{-}(s)$ and $\xi_{j}^{+}(s)$ emanating from $\left(t, x_{j}\right)$ which define a nonempty interval $\left.I_{j}(s):=\right] \xi_{j}^{-}(s), \xi_{j}^{+}(s)$ [for any $s<t$. In this case, the functional $F_{s}(t)$ defined as the sum of the measures of $I_{j}(s)$ is monotonic and bounded. Relying on a careful study of generalized characteristics, one shows that if the measure $D u(t, \cdot)$ has a non-vanishing Cantor part then the function F_{s} "jumps" up at time t which implies that the Cantor part is only present at countably many t. Due to the nonlocal source, $u(t, \cdot)$ does not necessarily have compact support. Thus, we approach the domain by first looking at compact sets and then "glue" the sections together to recover the full domain.

2 Preliminaries

$2.1 \quad B V$ and $S B V$ functions

Let us now introduce the concept of functions of bounded variation in \mathbb{R}. We refer to [3] for a comprehensive analysis.

Definition 2.1. Given an open set $\Omega \subseteq \mathbb{R}$, let w be in $\mathbf{L}^{1}(\Omega)$. We say that w is a function of bounded variation in Ω (denoted by $w \in B V(\Omega)$) if the distributional derivative of w is representable by a finite Radon measure $D u$ on Ω, i.e.,

$$
-\int_{\Omega} w \cdot \varphi^{\prime} d x=\int_{\Omega} \varphi d D w \quad \text { for all } \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

with total variation (denoted by $\|D w\|$) given by

$$
\|D w\|(\Omega)=\sup \left\{\int_{\Omega} w \cdot \varphi^{\prime} d x: \varphi \in \mathcal{C}_{c}^{\infty}(\Omega),\|\varphi\|_{\mathbf{L}^{\infty}} \leq 1\right\}
$$

Moreover, w is of locally bounded variation on Ω (denoted by $\left.w \in B V_{\text {loc }}(\Omega)\right)$ if $w \in \mathbf{L}_{\text {loc }}^{1}(\Omega)$ and w is in $B V(U)$ for all $U \subset \subset \Omega$.

Given $w \in B V_{l o c}(\mathbb{R})$, we split $D w$ into the absolutely continuous part $D^{a} w$ and singular part $D^{s} w$ provided by the Radon-Nikodým theorem (see e.g. [3, Theorem 1.28]). In the 1 -D case, the singular part is concentrated on the \mathbf{L}^{1}-negligible set

$$
S_{w}=\left\{t \in \mathbb{R} \left\lvert\, \lim _{\delta \rightarrow 0} \frac{|D w|(t-\delta, t+\delta)}{|\delta|}=+\infty\right.\right\}
$$

We can further decompse $D^{s} w$ by isolating the set of atoms $A_{w}=\{t \in \mathbb{R} \mid D w(\{t\}) \neq 0\}$, contained in S_{w}. Hence, we can consider two mutually singular measures

$$
D^{j} w:=D^{s} w\left\llcorner A_{w} \quad \text { and } \quad D^{c} w:=D^{s} w\left\llcorner\left(S_{w} \backslash A_{w}\right)\right.\right.
$$

respectively called the jump part of the derivative and the Cantor part of the derivative. Furthermore, we have the following structure result (see e.g. [3, Theorem 3.28])

Proposition 2.2. Let $\Omega \subseteq \mathbb{R}$ and $w \in B V(\Omega)$. Then, for any $x \in A_{w}$, the left and right hand limits of $w(x)$ exist and

$$
D^{j} w=\sum_{x \in A_{w}}(w(x+)-w(x-)) \delta_{x}
$$

where $w(x \pm)$ denote the one-sided limits of w at x. Moreover, $D^{c} w$ vanishes on any sets which are σ-finite with respect to \mathcal{H}^{0}.

Definition 2.3. Let w be in $B V_{l o c}(\mathbb{R})$ then w is a special function of bounded variation (denote by $w \in S B V$) if the Cantor part $D^{c} w$ vanishes.

We want to show that the weak entropy solutions of (1.1) belong to $S B V$.

2.2 Oleinik-type inequality and non-crossing of characteristics

The global existence and $B V$-regularity of (1.1) was studied extensively in [10]. For convenience, we recall their main results here.

Theorem 2.4. The Cauchy problem (1.1)-(1.2) with initial data $u_{0}=u(0, \cdot) \in \mathbf{L}^{1}(\mathbb{R})$ admits a unique solution $u(t, x)$ such that for all $t>0$ the following hold:
(i) the \mathbf{L}^{1}-norm is bounded by

$$
\begin{equation*}
\|u(t, \cdot)\|_{\mathbf{L}^{1}(\mathbb{R})} \leq e^{t} \cdot\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})} \tag{2.1}
\end{equation*}
$$

(ii) the solution satisfies the following Oleinik-type inequality

$$
\begin{equation*}
u(t, y)-u(t, x) \leq \frac{K_{t}}{t} \cdot(y-x) \quad \text { for all } \quad y>x \tag{2.2}
\end{equation*}
$$

with $K_{t}=1+2 t+2 t^{2}+4 t^{2} e^{t} \cdot\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})} ;$
(iii) the \mathbf{L}^{∞}-norm is bounded by

$$
\begin{equation*}
\|u(t, \cdot)\|_{\mathbf{L}^{\infty}(\mathbb{R})} \leq \sqrt{\frac{2 K_{t}}{t}\|u(t, \cdot)\|_{\mathbf{L}^{1}(\mathbb{R})}} \leq \sqrt{\frac{2 K_{t} e^{t}}{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}} \tag{2.3}
\end{equation*}
$$

In particular, this implies that that for all $t>0, u(t, \cdot)$ is in $B V_{\text {loc }}(\mathbb{R})$ and satisfies

$$
\begin{equation*}
u(t, x-) \geq u(t, x+) \quad \text { for all } x \in \mathbb{R} . \tag{2.4}
\end{equation*}
$$

We recall the definition and theory of generalized characteristic curves associated to (1.1). For a more in depth theory of generalized characteristics, we direct the readers to [7].
Definition 2.5. For any $(t, x) \in] 0,+\infty\left[\times \mathbb{R}\right.$, an absolutely continuous curve $\xi_{(t, x)}(\cdot)$ is called a backward characteristic curve starting from (t, x) if it is a solution of differential inclusion

$$
\begin{equation*}
\dot{\xi}_{(t, x)}(s) \in\left[u\left(s, \xi_{(x, t)}(s)+\right), u\left(s, \xi_{(t, x)}(s)-\right)\right] \quad \text { a.e. } s \in[0, t] \tag{2.5}
\end{equation*}
$$

with $\xi_{(t, x)}(t)=x$. If $s \in[t,+\infty[$ in 2.5$]$ then ξ is called a forward characteristic curve, denoted by $\xi^{(t, x)}(\cdot)$. The characteristic curve ξ is called genuine if $u(t, \xi(t)-)=u(t, \xi(t)+)$ for almost every t.

The existence of backward (forward) characteristics was studied by Fillipov. As in [7] and [15], the speed of the characteristic curves are determined and genuine characteristics are essentially classical characteristics:

Proposition 2.6. Let $\xi:[a, b] \rightarrow \mathbb{R}$ be a characteristic curve for the Burgers-Poisson equation (1.1), associated with an entropy solution u. Then for almost every time $t \in[a, b]$, it holds that

$$
\dot{\xi}(t)=\left\{\begin{array}{lll}
u(t, \xi(t)) & \text { if } & u(t, \xi(t)+)=u(t, \xi(t)-) \tag{2.6}\\
\frac{u(t, \xi(t)+)+u(t, \xi(t)-)}{2} & \text { if } & u(t, \xi(t)+)<u(t, \xi(t)-)
\end{array}\right.
$$

In addition, if ξ is genuine on $[a, b]$, then there exists $v(t) \in C^{1}([a, b])$ such that

$$
u(t, \xi(t)-)=v(t)=u(t, \xi(t)+) \quad \text { for all } t \in] a, b[
$$

and $(\xi(\cdot), v(\cdot))$ solve the system of ODEs

$$
\left\{\begin{array}{l}
\dot{\xi}(t)=v(t) \tag{2.7}\\
\dot{v}(t)=[G * u(t, \cdot)]_{x}(\xi(t))
\end{array} \quad \text { for all } t \in\right] a, b[
$$

Backward characteristics $\xi_{(t, x)}(\cdot)$ are confined between a maximal and minimal backward characteristics, as defined in [7] (denoted by $\xi_{(t, x+)}(\cdot)$ and $\left.\xi_{(t, x-)}(\cdot)\right)$. Relying on the above proposition and 2.4 , we can obtain properties of generalized characteristics, associated with entropy solutions of the Burgers-Poisson equation, including the non-crossing property of two genuine characteristics.

Proposition 2.7. Let u be an entropy solution to (1.1). Then for any $(t, x) \in] 0+\infty[\times \mathbb{R}$, the following holds:
(i) The maximal and minimal backward characteristics $\xi_{(t, x \pm)}$ are genuine and thus the function $u\left(\tau, \xi_{(t, x \pm)}(\tau)\right)$ solves 2.7$)$ for $\left.\tau \in\right] 0, t\left[\right.$ with initial data $u\left(t, \xi_{(t, x \pm)}(t)\right)$.
(ii) [Non-crossing of genuine characteristics] Two genuine characteristics may intersect only at their endpoints.
(iii) If $u(t, \cdot)$ is discontinuous at a point x, then there is a unique forward characteristic $\xi^{(t, x)}$ which passes though (t, x) and

$$
u\left(\tau, \xi^{(t, x)}(\tau)-\right)>u\left(\tau, \xi^{(t, x)}(\tau)+\right) \quad \text { for all } \tau \geq t
$$

Throughout this paper, we shall denote by $\mathcal{J}(t)=\{x \in \mathbb{R}: u(t, x-)>u(t, x+)\}$, the jump set of $u(t, \cdot)$ for any $t>0$. For any $x \in \mathcal{J}(t)$, the base of the backward characteristic cone starting from (t, x) at time $s \in[0, t[$ is

$$
\begin{equation*}
\left.I_{(t, x)}(s):=\right] \xi_{(t, x-)}(s), \xi_{(t, x+)}(s)[\tag{2.8}
\end{equation*}
$$

By the non-crossing property, for any $T>0$ and $z_{1}<z_{2} \in \mathbb{R} \backslash \mathcal{J}(T)$, the set

$$
\begin{equation*}
\left.\mathcal{A}_{\left[z_{1}, z_{2}\right]}^{T}:=\bigcup_{s \in[0, T]} A_{\left[z_{1}, z_{2}\right]}^{T}(s) \quad \text { with } \quad A_{\left[z_{1}, z_{2}\right]}^{T}(s):=\right] \xi_{\left(T, z_{1}\right)}(s), \xi_{\left(T, z_{2}\right)}(s)[\tag{2.9}
\end{equation*}
$$

confines all backward characteristics starting from (T, x) with $x \in] z_{1}, z_{2}[$. For any $0<s<$ $\tau \leq T$, we denote by

$$
\begin{equation*}
I_{\left[z_{1}, z_{2}\right]}^{\tau, T}(s)=\bigcup_{x \in A_{\left[z_{1}, z_{2}\right]}^{T}(\tau) \cap \mathcal{J}(\tau)} I_{(\tau, x)}(s) . \tag{2.10}
\end{equation*}
$$

Due to the no-crossing property of two genuine backward characteristics and the uniqueness of forward characteristics in Proposition 2.7, the following holds:

Corollary 2.8. Given $T>0$ and $z_{1}<z_{2} \in \mathbb{R} \backslash \mathcal{J}(T)$, the map $\tau \mapsto I_{\left[z_{1}, z_{2}\right]}^{\tau, T}(s)$ is increasing in the interval $] s, T]$ in the following sense

$$
\begin{equation*}
I_{\left[z_{1}, z_{2}\right]}^{\tau_{1}, T}(s) \subseteq I_{\left[z_{1}, z_{2}\right]}^{\tau_{2}, T}(s) \quad \text { for all } 0 \leq s<\tau_{1} \leq \tau_{2} \leq T \tag{2.11}
\end{equation*}
$$

Moreover, for any $x \in A_{\left[z_{1}, z_{2}\right]}^{T}\left(\tau_{1}\right) \backslash I_{\left[z_{1}, z_{2}\right]}^{\tau_{2}, T}\left(\tau_{1}\right)$ with $0<\tau_{1}<\tau_{2}<t$, the unique forward characteristic $\xi^{\left(\tau_{1}, x\right)}$ passing through $\left(\tau_{1}, x\right)$ is genuine in $\left[\tau_{1}, \tau_{2}\right]$.

Proof. Let $x \in \mathcal{J}\left(\tau_{1}\right) \cap A_{\left[z_{1}, z_{2}\right]}^{T}\left(\tau_{1}\right)$ and let $\chi(\cdot)$ be the unique forward characteristic emenating from $\left(\tau_{1}, x\right)$. By property (iii) of Proposition 2.7 , for a fixed $\tau_{2} \in\left[\tau_{1}, T\right]$ we have that $\chi\left(\tau_{2}\right) \in \mathcal{J}\left(\tau_{2}\right)$ and by the non-crossing property, $\chi\left(\tau_{2}\right) \in A_{\left[z_{1}, z_{2}\right]}^{T}\left(\tau_{2}\right)$. Since the backward characteristics that form the base of a characteristic cone are genuine, the non-crossing property implies that

$$
I_{\left(\tau_{1}, x\right)}(s) \subseteq I_{\left(\tau_{2}, \chi\left(\tau_{2}\right)\right)}(s) \subset A_{\left[z_{1}, z_{2}\right]}^{T}(s) \quad \text { for all } s \in\left[0, \tau_{1}\right]
$$

yielding (2.11). The later statement follows directly.

3 SBV-regularity

Throughout this section, let $u:[0, \infty[\times \mathbb{R} \rightarrow \mathbb{R}$ be the unique locally $B V$-weak entropy solution of 1.1) for some initial data $u_{0} \in \mathbf{L}^{1}(\mathbb{R})$. The section aims to prove Theorem 1.2 . For simplicity, denote the jump and Cantor parts of $D u(t, \cdot)$ by

$$
\left.\nu_{t}=D^{j} u(t, \cdot) \quad \text { and } \quad \mu_{t}=D^{c} u(t, \cdot) \quad \text { for any } t \in\right] 0,+\infty[
$$

which, by (2.2), are both non-positive. We will show that $\mu_{t}(\mathbb{R})<0$ for at most countable positive times $t>0$. In order to do so, let us first establish some basic bounds on backward characteristics.

Lemma 3.1. For any given $0<t_{0}<t$ and $x_{1} \leq x_{2}$, let $\xi_{i}(\cdot)$ be a genuine backward characteristic starting from $\left(t, x_{i}\right)$ and

$$
v_{i}(s)=u\left(s, \xi_{i}(s)\right) \quad \text { for all } s \in[0, t], i \in\{1,2\}
$$

Then the followings hold:

$$
\begin{equation*}
\left|v_{2}(s)-v_{1}(s)\right|+\left|\xi_{2}(s)-\xi_{1}(s)\right| \leq c_{t}(s) \cdot\left(\left|v_{2}(t)-v_{1}(t)\right|+\left|\xi_{2}(t)-\xi_{1}(t)\right|\right) \tag{3.1}
\end{equation*}
$$

for all $s \in[0, t]$ and

$$
\begin{equation*}
\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right) \geq \frac{x_{2}-x_{1}+\left(v_{1}\left(t_{0}\right)-v_{2}\left(t_{0}\right)\right) \cdot\left(t-t_{0}\right)}{\Gamma_{\left[t_{0}, t\right]}} \tag{3.2}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
c_{t}(s)=\exp \left\{2 \cdot\left(\sqrt{2 K_{t} e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+\left(e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}+1\right) \cdot \sqrt{t}\right) \cdot(\sqrt{t}-\sqrt{s})\right\} \tag{3.3}\\
\Gamma_{\left[t_{0}, t\right]}=1+\left(\sqrt{\frac{2 K_{t} e^{t}}{t_{0}}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot \frac{e^{K_{t}} t}{t_{0}} \cdot\left(t-t_{0}\right)^{2}
\end{array}\right.
$$

Proof. 1. Let's first proof (3.1). From Proposition 2.6, it holds that

$$
\begin{cases}\dot{\xi}_{i}(s)=v_{i}(s) & \text { for all } s \in] 0, t[. \tag{3.4}\\ \dot{v}_{i}(s)=[G * u(s, \cdot)]_{x}\left(\xi_{i}(s)\right) & \end{cases}
$$

In particular, this implies that

$$
\frac{d}{d s}\left|\xi_{2}(s)-\xi_{1}(s)\right| \geq-\left|v_{2}(s)-v_{1}(s)\right|
$$

and

$$
\frac{d}{d s}\left|v_{2}(s)-v_{1}(s)\right| \geq-\left|[G * u(s, \cdot)]_{x}\left(\xi_{2}(s)\right)-[G * u(s, \cdot)]_{x}\left(\xi_{1}(s)\right)\right|
$$

Since $\xi_{2}(s) \geq \xi_{1}(s)$ for all $\left.\left.s \in\right] 0, t\right]$, we estimate

$$
\begin{aligned}
& \left|[G * u(s, \cdot)]_{x}\left(\xi_{2}(s)\right)-[G * u(s, \cdot)]_{x}\left(\xi_{1}(s)\right)\right| \leq \frac{1}{2} \cdot \int_{-\infty}^{\xi_{1}(s)}|u(s, z)| \cdot\left|e^{z-\xi_{2}(s)}-e^{z-\xi_{1}(s)}\right| d z \\
& +\frac{1}{2} \cdot \int_{\xi_{1}(s)}^{\xi_{2}(s)}|u(s, z)| \cdot\left|e^{z-\xi_{2}(s)}+e^{\xi_{1}(s)-z}\right| d z+\frac{1}{2} \cdot \int_{\xi_{2}(s)}^{+\infty}|u(s, z)| \cdot\left|e^{\xi_{1}(s)-z}-e^{\xi_{2}(s)-z}\right| d z \\
& \quad \leq \frac{1}{2} \cdot\left(1-e^{\xi_{1}(s)-\xi_{2}(s)}\right) \int_{\left.\mathbb{R} \backslash \xi_{1}(s), \xi_{2}(s)\right]}|u(s, z)| d z+\int_{\left[\xi_{1}(s), \xi_{2}(s)\right]}|u(s, z)| d z \\
& \quad \leq\left(\frac{1}{2} \cdot\|u(s, \cdot)\|_{\mathbf{L}^{1}(\mathbb{R})}+\|u(s, \cdot)\|_{\mathbf{L}^{\infty}(\mathbb{R})}\right) \cdot\left|\xi_{2}(s)-\xi_{1}(s)\right|
\end{aligned}
$$

Hence, (2.1) and (2.3) imply that

$$
\begin{align*}
&\left|[G * u(s, \cdot)]_{x}\left(\xi_{2}(s)\right)-[G * u(s, \cdot)]_{x}\left(\xi_{1}(s)\right)\right| \\
& \leq\left(\sqrt{\frac{2 K_{t} e^{t}}{s}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot\left|\xi_{2}(s)-\xi_{1}(s)\right| \tag{3.5}
\end{align*}
$$

Setting $M_{t}=\sqrt{2 K_{t} e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+\left(e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}+1\right) \cdot \sqrt{t}$, we have

$$
\frac{d}{d s}\left(\left|\xi_{2}(s)-\xi_{1}(s)\right|+\left|v_{2}(s)-v_{1}(s)\right|\right) \geq-\frac{M_{t}}{\sqrt{s}} \cdot\left(\left|\xi_{2}(s)-\xi_{1}(s)\right|+\left|v_{2}(s)-v_{1}(s)\right|\right)
$$

for all $s \in] 0, t]$, and Grönwall's inequality yields (3.1).
2. To prove (3.2), we first apply (2.2) to (3.4) to get

$$
\dot{\xi}_{2}(s)-\dot{\xi}_{1}(s)=u\left(s, \xi_{2}(s)\right)-u\left(s, \xi_{1}(s)\right) \leq \frac{K_{t}}{s} \cdot\left(\xi_{2}(s)-\xi_{1}(s)\right)
$$

and this implies

$$
\begin{equation*}
\xi_{2}(s)-\xi_{1}(s) \leq \frac{e^{K_{t}} s}{t_{0}} \cdot\left(\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right)\right) \leq \frac{e^{K_{t}} t}{t_{0}} \cdot\left(\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right)\right) \quad \text { for all } s \in\left[t_{0}, t\right] \tag{3.6}
\end{equation*}
$$

Therefore, from (3.4) and (3.5), it holds for $s \in\left[t_{0}, t\right]$ that

$$
\begin{aligned}
v_{2}(s)-v_{1}(s) & =v_{2}\left(t_{0}\right)-v_{1}\left(t_{0}\right)+\int_{t_{0}}^{s}[G * u(\tau, \cdot)]_{x}\left(\xi_{2}(\tau)\right)-[G * u(\tau, \cdot)]_{x}\left(\xi_{1}(\tau)\right) d \tau \\
& \leq v_{2}\left(t_{0}\right)-v_{1}\left(t_{0}\right)+\int_{t_{0}}^{s}\left(\sqrt{\frac{2 K_{t} e^{t}}{t_{0}}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot\left(\xi_{2}(\tau)-\xi_{1}(\tau)\right) d \tau \\
& \leq v_{2}\left(t_{0}\right)-v_{1}\left(t_{0}\right)+\gamma_{\left[t_{0}, t\right]} \cdot\left(\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right)\right)
\end{aligned}
$$

with

$$
\gamma_{\left[t_{0}, t\right]}=\left(\sqrt{\frac{2 K_{t} e^{t}}{t_{0}}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{t}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot \frac{e^{K_{t}} t}{t_{0}} \cdot\left(t-t_{0}\right) .
$$

Integrating the first equation in (3.4) over $\left[t_{0}, t\right]$, we get

$$
\begin{aligned}
\xi_{2}(t)-\xi_{1}(t) & =\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right)+\int_{t_{0}}^{t} v_{2}(\tau)-v_{1}(\tau) d \tau \\
& \leq\left(v_{2}\left(t_{0}\right)-v_{1}\left(t_{0}\right)\right) \cdot\left(t-t_{0}\right)+\left(1+\gamma_{\left[t_{0}, t\right]} \cdot\left(t-t_{0}\right)\right) \cdot\left(\xi_{2}\left(t_{0}\right)-\xi_{1}\left(t_{0}\right)\right)
\end{aligned}
$$

and this yields (3.2).
As a consequence, we obtain the following two corollaries. The first one provides an upper bound on the base of characteristic cone $C_{(t, x)}$ at time $\left.s \in\right] 0, t[$ for every $x \in \mathcal{J}(t)$.

Corollary 3.2. For any $(t, x) \in] 0,+\infty[\times \mathcal{J}(t)$, it holds that

$$
\begin{equation*}
\left|I_{(t, x)}(s)\right| \leq-c_{t}(s) \cdot \nu_{t}(\{x\}) \quad \text { for all } s \in[0, t[\tag{3.7}
\end{equation*}
$$

Proof. Since $x \in \mathcal{J}(t)$, the inequality (2.4) implies that

$$
\nu_{t}\{x\}=u(t, x+)-u(t, x-)<0 .
$$

Thus, recalling (3.1), we obtain

$$
\left|\xi_{(t, x+)}(s)-\xi_{(t, x-)}(s)\right| \leq c_{t}(s) \cdot|u(t, x+)-u(t, x-)|
$$

and this yields (3.7).

In the next corollary, we show that two distinct characteristics are separated for all positive time; moreover, the distance between them is proportional to the difference in the values of the solution along the characteristics.

Corollary 3.3. Given $x_{1}<x_{2}$ and σ and t, such that $0<\sigma<t \leq T$, let $\xi_{i}(\cdot)$ be a genuine backward characteristic starting from $\left(t, x_{i}\right)$ and

$$
v_{i}(s)=u\left(s, \xi_{i}(s)\right) \text { for all } s \in[0, t[, i \in\{1,2\}
$$

Then it holds that

$$
\begin{equation*}
\xi_{2}(\sigma / 2)-\xi_{1}(\sigma / 2) \geq \kappa_{[\sigma, T]} \cdot\left(v_{1}(t)-v_{2}(t)\right) \tag{3.8}
\end{equation*}
$$

where

$$
\kappa_{[\sigma, T]}=\frac{\sigma}{2}\left[\Gamma_{[\sigma / 2, T]}+\left(\sqrt{\frac{4 K_{T} e^{T}}{\sigma}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{T}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot e^{K_{T}} T \cdot(T-\sigma / 2)\right]^{-1}
$$

Proof. Integrating the second equation in 2.7 over $[\sigma / 2, t]$ yields

$$
\begin{aligned}
v_{1}(t)-v_{2}(t) & =v_{1}(\sigma / 2)-v_{2}(\sigma / 2)+\int_{\sigma / 2}^{t}[G * u(\tau, \cdot)]_{x}\left(\xi_{1}(\tau)\right)-[G * u(\tau, \cdot)]_{x}\left(\xi_{2}(\tau)\right) d \tau \\
& \leq v_{1}(\sigma / 2)-v_{2}(\sigma / 2)+\int_{\sigma / 2}^{t}\left|[G * u(\tau, \cdot)]_{x}\left(\xi_{2}(\tau)\right)-[G * u(\tau, \cdot)]_{x}\left(\xi_{1}(\tau)\right)\right| d \tau
\end{aligned}
$$

and by (3.5) and (3.6) it holds that

$$
\begin{align*}
v_{1}(t) & -v_{2}(t) \leq v_{1}(\sigma / 2)-v_{2}(\sigma / 2) \\
& +\left(\sqrt{\frac{4 K_{T} e^{T}}{\sigma}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+e^{T}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \cdot \frac{2 e^{K_{T} T}}{\sigma} \cdot(T-\sigma / 2) \cdot\left(\xi_{2}(\sigma / 2)-\xi_{1}(\sigma / 2)\right) \tag{3.9}
\end{align*}
$$

On the other hand, by (3.2) we have that

$$
v_{1}(\sigma / 2)-v_{2}(\sigma / 2) \leq \frac{\Gamma_{[\sigma / 2, t]}}{t-\sigma / 2} \cdot\left(\xi_{2}(\sigma / 2)-\xi_{1}(\sigma / 2)\right) \leq \frac{2 \Gamma_{[\sigma / 2, T]}}{\sigma} \cdot\left(\xi_{2}(\sigma / 2)-\xi_{1}(\sigma / 2)\right)
$$

which, when applied to (3.9), implies (3.8).
The next lemma shows that, for a certain positive time s, if $u(s, \cdot)$ is not in $S B V$, then at future times $s+\varepsilon$ the Cantor part of $u(s, \cdot)$ gets transformed into jump singularities. Following the main idea in [2, 15], for any $s \in] 0, T\left[\right.$ and $z_{1}<z_{2} \in \mathbb{R} \backslash \mathcal{J}(T)$, let us consider the set of points $E_{\left[z_{1}, z_{2}\right]}^{T}(s)$ in $A_{\left[z_{1}, z_{2}\right]}^{T}(s)$ where the Cantor part of $D_{x} u(s, \cdot)$ prevails, i.e.,

$$
\begin{equation*}
E_{\left[z_{1}, z_{2}\right]}^{T}(s)=\left\{x \in A_{\left[z_{1}, z_{2}\right]}^{T}(s): \lim _{\eta \rightarrow 0+} \frac{\eta+\left|D_{x} u(s, \cdot)-\mu_{s}\right|([x-\eta, x+\eta])}{-\mu_{s}([x-\eta, x+\eta])}=0\right\} \tag{3.10}
\end{equation*}
$$

Besicovitch differentiation theorem [3] gives that $\mu_{s}\left(A_{\left[z_{1}, z_{2}\right]}^{T}(s) \backslash E_{\left[z_{1}, z_{2}\right]}^{T}(s)\right)=0$ and

$$
\begin{equation*}
\lim _{\eta \rightarrow 0^{+}} \frac{u^{-}(s, x-\eta)-u^{+}(s, x+\eta)}{-\mu_{s}([x-\eta, x+\eta])}=1 \quad \text { for all } x \in E_{\left[z_{1}, z_{2}\right]}^{T}(s) \tag{3.11}
\end{equation*}
$$

Moreover, for μ_{s}-a.e. x in $E_{\left[z_{1}, z_{2}\right]}^{T}(s)$, it holds that

$$
\begin{equation*}
\lim _{\eta \rightarrow 0} \frac{u(s, x+\eta)-u(s, x)}{\eta}=-\infty . \tag{3.12}
\end{equation*}
$$

Lemma 3.4. Let $0<s<t \leq T$ and $z_{1}<z_{2} \in \mathbb{R} \backslash \mathcal{J}(T)$ be fixed. Then, it holds for μ_{s}-a.e. $x \in A_{\left[z_{1}, z_{2}\right]}^{T}(s)$ that

$$
] x-\eta_{x}, x+\eta_{x}\left[\subset I_{\left[z_{1}, z_{2}\right]}^{t, T}(s) \quad \text { for some } \eta_{x}>0\right.
$$

Proof. Since $I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)$ is open, it is sufficient to prove that every point $x \in E_{\left[z_{1}, z_{2}\right]}^{T}(s) \backslash \mathcal{J}(s)$ satisfying 3.12 is in $I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)$. Assume by a contradiction that

$$
x \in A_{\left[z_{1}, z_{2}\right]}^{T}(s) \backslash \overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)} \bigcup \partial\left(\overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)}\right) .
$$

1. If $x \in A_{\left[z_{1}, z_{2}\right]}^{T}(s) \backslash \overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)}$ then

$$
\begin{equation*}
] x-\eta_{0}, x+\eta_{0}\left[\bigcap \overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)}=\emptyset \quad \text { for some } \eta_{0}>0\right. \tag{3.13}
\end{equation*}
$$

Given any $\eta \in\left[0, \eta_{0}\left[\right.\right.$, let $\xi_{1}^{\eta}(\cdot)$ and $\xi_{2}^{\eta}(\cdot)$ be the unique forward characteristics emanating from $x-\eta$ and $x+\eta$ at time τ_{0}. From Corollary 2.8, both $\xi_{1}^{\eta}(\cdot)$ and $\xi_{2}^{\eta}(\cdot)$ are genuine in $\left[t_{0}, t\right]$ and

$$
\begin{equation*}
\xi_{2}^{\eta}(\tau)-\xi_{1}^{\eta}(\tau) \geq 0 \quad \text { for all } \tau \in[s, t] \tag{3.14}
\end{equation*}
$$

Thus, (3.2) in Lemma 3.1 implies

$$
\begin{aligned}
2 \eta & =\xi_{2}^{\eta}(s)-\xi_{1}^{\eta}(s) \geq \frac{\xi_{2}^{\eta}(t)-\xi_{1}^{\eta}(t)+(u(s, x-\eta)-u(s, x+\eta)) \cdot(t-s)}{\Gamma_{[s, t]}} \\
& \geq-\frac{(u(s, x+\eta)-u(s, x-\eta)) \cdot(t-s)}{\Gamma_{[s, t]}}
\end{aligned}
$$

which yields a contradiction to 3.12 when η is sufficiently small.
2. Suppose that $x \in \partial\left(\overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)}\right)$. In this case, $\xi_{(s, x)}(\cdot)$ is either a minimal or maximal backward characteristic in $[s, t]$. Moreover, for every $\eta>0$ there exists $x_{\eta} \in$ $] x-\eta, x[\bigcup] x, x+\eta\left[\right.$ such that $x_{\eta} \notin \overline{I_{\left[z_{1}, z_{2}\right]}^{t, T}(s)}$ and the unique forward characteristics $\xi^{\left(s, x_{\eta}\right)}(\cdot)$ emenating from x_{η} at time s is genuine and does not $\operatorname{cross} \xi_{(s, x)}(\cdot)$ in the time interval $[s, t]$. With the same computation in the previous step, we get

$$
\frac{u\left(s, x_{\eta}\right)-u(s, x)}{x_{\eta}-x} \geq-\frac{\Gamma_{[s, t]}}{t-s}
$$

and this also yields a contradiction to 3.12 when η is sufficiently small.

We are now ready to prove our first main theorem.
Proof of Theorem 1.2. The proof is divided into two steps:
Step 1. Fix $T>0$ and $z_{1}, z_{2} \in \mathbb{R} \backslash \mathcal{J}(T)$ with $z_{1}<z_{2}$ and, recalling (2.9) and (2.10) let

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}_{\left[z_{1}, z_{2}\right]}^{T}, \quad A_{t}=A_{\left[z_{1}, z_{2}\right]}^{T}(t) \quad \text { and } \quad I^{t}(s)=I_{\left[z_{1}, z_{2}\right]}^{t, T}(s) \tag{3.15}
\end{equation*}
$$

for all $0<s<t \leq T$. We claim that the set

$$
\begin{equation*}
\mathcal{T}_{\left[z_{1}, z_{2}\right]}:=\left\{t \in[0, T]: \mu_{t}\left(A_{t}\right) \text { does not vanish }\right\} \tag{3.16}
\end{equation*}
$$

is at most countable.
(i). Fix $\sigma \in] 0, T[$. By Proposition 2.6 and (2.3), one has

$$
\left|A_{t}\right| \leq\left|z_{2}-z_{1}\right|+2 \sqrt{\frac{2 K_{T} e^{T}}{\sigma}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}} \cdot T \quad \text { for all } t \in[\sigma, T]
$$

and the Oleinik-type inequality (2.2) yields

$$
|D u(t, \cdot)|\left(A_{t}\right) \leq M_{\sigma}^{T} \quad \text { for all } t \in[\sigma, T]
$$

with

$$
M_{\sigma}^{T}=2 \sqrt{\frac{2 K_{T} e^{T}}{\sigma}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}}+\frac{2 K_{T}}{\sigma} \cdot\left(\left|z_{2}-z_{1}\right|+2 \sqrt{\frac{2 K_{T} e^{T}}{\sigma}\left\|u_{0}\right\|_{\mathbf{L}^{1}(\mathbb{R})}} \cdot T\right) .
$$

Let the geometric functional $F_{\sigma}:[\sigma, T] \rightarrow[0, \infty[$ be defined by

$$
F_{\sigma}(t)=\left|\bigcup_{x \in \mathcal{J}(t) \cap A_{t}} I_{(t, x)}(\sigma / 2)\right|=\sum_{x \in \mathcal{J}(t) \cap A_{t}}\left|I_{(t, x)}(\sigma / 2)\right| \quad \text { for all } t \in[\sigma, T]
$$

where the second equality follows by the non-crossing property. By Corollaries 2.8 and 3.2, the map $t \mapsto F_{\sigma}(t)$ is non-decreasing in $[\sigma, T]$ and uniformly bounded

$$
\begin{equation*}
\sup _{t \in[\sigma, T]} F_{\sigma}(t) \leq c_{T}(\sigma / 2) \cdot \sup _{t \in \sigma, T}\left(\left|\nu_{t}\right|\left(A_{t}\right)\right) \leq c_{T}(\sigma / 2) \cdot M_{\sigma}^{T} \tag{3.17}
\end{equation*}
$$

with $c_{T}(\sigma / 2)$ defined in (3.3).
(ii). Assume that a Cantor part is present in \mathcal{A} at time $t \in] \sigma, T$ [, i.e.,

$$
\begin{equation*}
\mu_{t}\left(A_{t}\right) \leq-\alpha \quad \text { for some } \alpha>0 \tag{3.18}
\end{equation*}
$$

which by 3.10 is concentrated on $E_{t}:=E_{\left[z_{1}, z_{2}\right]}^{T}(t)$. We will show that

$$
\begin{equation*}
F_{\sigma}(t+)-F_{\sigma}(t) \geq \frac{\kappa_{[\sigma, T]}}{2} \cdot \alpha \tag{3.19}
\end{equation*}
$$

where $\kappa_{[\sigma, T]}$ is defined in Corollary 3.3. It is sufficient to prove that

$$
F_{\sigma}(t+\varepsilon)-F_{\sigma}(t)=\left|I^{t+\varepsilon}(\sigma / 2) \backslash I^{t}(\sigma / 2)\right| \geq \frac{\kappa_{[\sigma, T]}}{2} \cdot \alpha
$$

for any given $\varepsilon \in] 0, T-t\left[\right.$. By Lemma 3.4 , for μ_{t}-a.e. $x \in E_{t}$ there exists $\eta_{x}>0$ such that

$$
\begin{equation*}
] x-\eta_{x}, x+\eta_{x}\left[\subset I^{t+\varepsilon}(t)\right. \tag{3.20}
\end{equation*}
$$

On the other hand, given $x \in E_{t}$ and $\eta>0$, we denote the interval

$$
\left.J_{x, \eta}^{\sigma / 2}=\right] \xi_{(t, x-\eta)}(\sigma / 2), \xi_{(t, x+\eta)}(\sigma / 2)[
$$

and Corollaries 3.2 and 3.3 imply that

$$
\begin{aligned}
\left|J_{x, \eta}^{\sigma / 2} \backslash I^{t}(\sigma / 2)\right| & =\xi_{(t, x+\eta)}(\sigma / 2)-\xi_{(t, x-\eta)}(\sigma / 2)-\left|J_{x, \eta}^{\sigma / 2} \cap I^{t}(\sigma / 2)\right| \\
& \geq \kappa_{[\sigma, T]} \cdot(u(t, x-\eta)-u(t, x+\eta))+c_{T}(\sigma / 2) \nu_{t}(] x-\eta, x+\eta[)
\end{aligned}
$$

Furthermore, by (3.11) and the definition of E_{t}, there exists $\eta_{0}>0$ such that

$$
\begin{equation*}
\left.\left.\left|J_{x, \eta}^{\sigma / 2} \backslash I^{t}(\sigma / 2)\right| \geq-\frac{\kappa_{[\sigma, T]}}{2} \mu_{t}(] x-\eta, x+\eta[) \quad \text { for all } \eta \in\right] 0, \eta_{0}\right] \tag{3.21}
\end{equation*}
$$

By the Besicovitch covering lemma, we can cover μ_{t}-a.e. E_{t} with countably many pairwise disjoint intervals $\left[x_{j}-\eta_{j}, x_{j}+\eta_{j}\right]$ where η_{j} is chosen such that both (3.20) and (3.21) hold. Proposition 2.7 (ii) implies that the intervals $J_{x_{j}, \eta_{j}}^{\sigma / 2}$ are pairwise disjoint and by (3.20) we have that $J_{x_{j}, \eta_{j}}^{\sigma / 2}$ is contained in $A_{\sigma / 2}$. Therefore, it holds that

$$
F_{\sigma}(t+\varepsilon)-F_{\sigma}(t)=\left|I^{t+\varepsilon}(\sigma / 2) \backslash I^{t}(\sigma / 2)\right| \geq \sum_{j}\left|J_{x_{j}, \eta_{j}}^{\sigma / 2} \backslash I^{t}(\sigma / 2)\right|
$$

Applying (3.21) and then (3.18) to the above inequality yields

$$
F_{\sigma}(t+\varepsilon)-F_{\sigma}(t) \geq-\frac{\kappa_{[\sigma, T]}}{2} \sum_{j} \mu_{t}\left(\left[x_{j}-\eta_{j}, x_{j}+\eta_{j}\right]\right) \geq-\frac{\kappa_{[\sigma, T]}}{2} \mu_{t}\left(E_{t}\right) \geq \frac{\kappa_{[\sigma, T]}}{2} \alpha
$$

and therefore (3.19) holds.
(iii). By the monotonicity of F_{σ} and (3.17), F_{σ} has at most countable many discontinuities on $[\sigma, T]$. Thus, for any given $\sigma \in] 0, T[,(3.18)-(\sqrt[3.19)]{ }$ imply that the set

$$
\bigcup_{n \in \mathbb{N}}\left\{t \in[\sigma, T]: \mu_{t}\left(A_{t}\right) \leq-2^{-n}\right\}=\left\{t \in[\sigma, T]: \mu_{t}\left(A_{t}\right)<0\right\}
$$

is at most countable and therefore,

$$
\bigcup_{n \in \mathbb{N}}\left\{t \in\left[2^{-n}, T\right]: \mu_{t}\left(A_{t}\right)<0\right\}=\mathcal{T}_{\left[z_{1}, z_{2}\right]} \text { is countable. }
$$

Step 2. To complete the proof, it is sufficient to show that for any given $T>0$, there exists an at most countable subset \mathcal{T}_{T} of $[0, T]$ such that

$$
\begin{equation*}
u(t, \cdot) \in S B V_{\mathrm{loc}}(\mathbb{R}) \quad \text { for all } t \in[0, T] \backslash \mathcal{T}_{T} \tag{3.22}
\end{equation*}
$$

For any $k \in \mathbb{Z}$, we pick a point $\left.\bar{z}_{k} \in\right] k, k+1\left[\backslash \mathcal{J}(T)\right.$. Let $\xi_{k}(\cdot)$ be the unique genuine backward characteristic starting at point $\left(T, \bar{z}_{k}\right)$ for every $k \in \mathbb{Z}$ and define

$$
\mathcal{A}_{k}^{T}=\mathcal{A}_{\left[\bar{z}_{k}, \bar{z}_{k+1}\right]}^{T} \bigcup\left\{\left(\xi_{k}(t), t\right): t \in[0, T]\right\} \quad \text { and } \quad A_{k}^{T}(t)=A_{\left[\bar{z}_{k}, \bar{z}_{k+1}\right]}^{T}(t) \bigcup\left\{\xi_{k}(t)\right\} .
$$

Due to the no-crossing property of two genuine backward characteristics in Proposition 2.7. it holds that

$$
\bigcup_{k \in \mathbb{Z}} \mathcal{A}_{k}^{T}=[0, T] \times \mathbb{R} \quad \text { and } \quad \bigcup_{k \in \mathbb{Z}} A_{k}^{T}(t)=\mathbb{R} \quad \text { for all } t \in[0, T] .
$$

From Step 1, it holds that, for every $k \in \mathbb{Z}$, the set

$$
\left\{t \in[0, T]: \mu_{t}\left(A_{k}^{T}(t)\right) \neq 0\right\} \text { is countable. }
$$

Hence,

$$
\mathcal{T}_{T}=\left\{t \in[0, T]: \mu_{t}\left(A_{k}^{T}(t)\right) \neq 0 \text { for some } k \in \mathbb{Z}\right\} \text { is also countable. }
$$

and this yields (3.22).
Acknowledgments. This research by K.T.Nguyen was partially supported by a grant from the Simons Foundation/SFARI (521811, NTK).

References

[1] F. Ancona, O. Glass, and K. T. Nguyen, Lower compactness estimates for scalar balance laws, Comm. Pure Appl. Math. 65 (2012), 1303-1329.
[2] L. Ambrosio and C. De Lellis, A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations, Journal of Hyperbolic Differential Equations 1 (2004), 813-826.
[3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000.
[4] S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension, Comm. Math. Phys. 313 (2012), 1-33.
[5] Camillo De Lellis, Hyperbolic equations and SBV functions, Journées eq́uations aux deŕivées partielles (2010), no. 6, 10 p.
[6] C.M. Dafermos, Generalized characteristic and the structure of solutions of hyperbolic conservation laws, Indiana. U. Math. J. 26 (1977), 1097-1119.
[7] C.M. Dafermos, Hyperbolic conservation laws in continuum physic, Grundlehren der matematischen Wissenshaften 325 Second edition (2005).
[8] A. F. Filippov, Differential equation with discontinuous right-hand side, Mat. $S b$. 51 (1960), 99-128. (English translation: Amer. Math. Soc. Transl. Ser. 42 (1964), 199-231)
[9] K. Fellner and C. Schmeiser, Burgers-Poisson: A nonlinear dispersive model equation, Siam Journal Applied Mathematics 64 (2004), 1509-1525.
[10] K. Grunert and Khai T. Nguyen, Global existence of weak solutions for BurgersPoisson equation, J. Differential Equations 23 (2016), no. 4, 23-46.
[11] E.De Giorgi and L.Ambrosio, Un nuovo funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 82 (1988), 199-210.
[12] H. Liu, Wave Breaking in a Class of Nonlocal Dispersive Wave Equations, Journal of Nonlinear Mathematical Physics 13 (2006), 441-466.
[13] E. Marconi, Regularity estimates for scalar conservation laws in one space dimension, Journal of Hyperbolic Differential Equations 15 (2018), no. 4, 623-691.
[14] O. Oleinik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl, 26 (1963), 95-172.
[15] R. Robyr, SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function, J. Hyper. Differential Equations 05 (2008).
[16] G. B. Whitham, Linear and Nonlinear Waves, John Wiley \& Sons, New York, 1974.

