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1 INTRODUCTION

Consider the control systems
ẋ(t) = f(x(t), u(t)), t ∈ [0,+∞[ a.e.,

x(0) = x0,
(1.1)

where x0 ∈ Rn and

+ f : Rn × U → Rn is the dynamics of the control system

+ U ⊂ Rm is the control set

+ u : [0,+∞[→ U is a control function.

NOTATIONS: we will write

f(x, u) =

f1(x, u)
...

fn(x, u)

 and x(t) =

x
1(t)
...

xn(t)

 .

The set of admissible controls is denoted by

Uad :=
{
u : [0,+∞[→ U | u is measurable

}
, (1.2)

we will also write that

u(t) =

u1(t)
...

um(t)

 .

Note that a solution of (1.1) depends on initial state x0 and the choice of admissible
control u.

Definition 1.1 Given any x0 ∈ Rn and u ∈ Uad, a solution of (1.1) denoted by yx0,u(·)
is called a trajectory of (1.1) starting from x0 associated with the control u.

In this note, we will assume that our control system satisfies the following standard hy-
potheses:

STANDARD HYPOTHESES

(SH1) The control set U is closed.
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(SH2) The function f is continuous. Moreover, there exists a constant K1 > 0 such that

|f(y, u)− f(x, u)| ≤ K1 · |y − x|, ∀x, y ∈ Rn, u ∈ U.

Under assumption (SH2), (1.1) admits the unique global trajectory yx0,u.

PAYOFFS: Let’s define the payoff functional

P [u(·)] :=
∫ T

0
r(yx0,u(t), u(t))dt+ g(yx0,u(T )) (1.3)

where the terminal time T > 0 and

+ the function r : Rn × U → R is the running cost,

+ the function g : Rn → R is the terminal cost.

THE BASIC PROBLEM: The goal is to find an admissible control u∗(·) which max-
imizes the payoff function.

P [u∗(·)] ≥ P [u(·)], ∀u ∈ Uad. (1.4)

Definition 1.2 The admissible control u∗ such that (1.4) is called an optimal control.

THE BASIC QUESTIONS:

(i) Does an optimal control exist ?

(ii) How can we characterize an optimal control ?

(iii) How can we construct an optimal control ?

EXAMPLES:

Example 1: (Rocket railroad car)
Imagine a railroad car powered by rocket engines on each side. We introduce the variables

x(t) is the position of the rocket railroad car on the train track at time t

v(t) is the velocity of the rocket rail road car at time t

F (t) is the force from the rocket engines at time t
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where −1 ≤ F (t) ≤ 1 and the sign of F (t) depends on which engine is firing.

Our goal: is to construct F (·) in order to drive the rocket railroad car to the origin
0 with zero velocity in a minimum amount of time.

Mathematical model: Assuming that the rocket railroad car has mass m, the mo-
tion of law is

ẍ(t) =
F (t)
m

:= u(t) (1.5)

where u(·) is understood as a control function. For simplicity, we will also assume that
m = 1. The motion equation of the rocket car is

ẍ(t) = u(t),

x(0) = x0 and v(0) = v0

(1.6)

where u(·) ∈ U = [−1, 1], x0 is the position of the rocket railroad car at time 0 and v0 is
the velocity of the rocket railroad car at x0. By setting

z(t) =

x(t)

v(t)

 , A =

0 1

0 0

 and b =

0

1

 (1.7)

we can rewrite (1.6) as the first order control system:
ż(t) = A · z(t) + u(t) · b

z(0) = (x0, v0)T .
(1.8)

The payoff function is

P [u(·)] = −
∫ θ

0
1 ds = θ

where θ is the first time such that z(θ) = (0, 0)T .
The goal is to find u∗ ∈ Uad such that

P [u∗(·)] ≥ P [u(·)], ∀u ∈ Uad.

Example 2: (Minimal surfaces of revolution)
Consider in the space R3 the two circles

z2 + y2 = R1

x = a1

and


z2 + y2 = R2

x = a2

(1.9)

where a1 < a2.

Let Aad be the set of functions ξ : [a1, a2] → R3 such that ξ(x) =

 x
0

r(x)

 where
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r(·) : [a1, a2] → R+ is smooth and satisfies that r(a1) = R1 and r(a2) = R2. For each
ξ ∈ Aad, we denote by

Sξ =
{

(x, y, z)T
∣∣∣ a1 ≤ x ≤ a2, z

2 + y2 = r(x)
}

(1.10)

the surface of revolution generated by ξ. The area of Sξ is

Area(Sξ) = 2π
∫ a2

a1

r(x)
√
r′(x)2 + 1 dx. (1.11)

Our goal: Finding ξ∗(·) ∈ Aad such that

Area(Sξ∗) ≤ Area(Sξ) ∀ξ(·) ∈ Aad. (1.12)

We can reformulate the problem into a control problem. Indeed, we consider the
constant control system 

ṙ(t) = u(t),

r(a1) = R1,
(1.13)

where u(·) ∈ Uad which is denoted by

Uad =
{
u ∈ C1([a1, a2],R+)

∣∣∣ ∫ a2

a1

u(s)ds = R2 −R1

}
. (1.14)

The payoff functional is

P [u(·)] = 2π
∫ R2

R1

r(s)
√

1 + u2(s) ds. (1.15)

The goal is to find u∗(·) ∈ Uad such that

P [u∗(·)] ≤ P [u(·)] ∀u ∈ Uad. (1.16)

We will answer the basic questions for some special cases which are contained in
section 2 and section 3. Our main goal is to bring you to some more advanced problems
related to control problem. More precisely, we shall present some recent results con-
cerning with the regularity and the compactness of viscosity solutions to time optimal
control and Hamilton-Jacobi-Bellmann Equations.

2 A model problem

2.1 A problem in calculus of variations

We now start the analysis of our model problem. Given 0 < T ≤ +∞, we suppose that

L : Rn × Rn → R and g : Rn → R (2.1)
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are respectively the continuous running cost (Lagrangian) and the continuous terminal
cost. For any (t̄, x̄) ∈]0, T [×Rn, we define the set of admissible arcs as

At̄,x̄ =
{
y(·) ∈ AC([0, t],Rn) | y(0) = x̄

}
where AC([0, t̄],Rn) is the set of absolutely continuous functions from [0, t] to Rn. The
cost functional

Jt̄,x̄[y(·)] =
∫ t̄

0
L(y(s), ẏ(s))ds+ g(y(t̄)).

Then we consider the following problem:

minimize Jt̄,x̄[y(·)] over all y ∈ At̄,x̄. (2.2)

This problem is classical in the calculus of variations.

For our purpose, we would prefer to reset the above problem in a control sense.
In fact, we consider the control system

ẋ(t) = u(t) a.e. t ∈ [0, T ]

x(0) = x̄,
(2.3)

where x : [0,+∞[→ Rn and u(·) ∈ Uad. Here, the admissible control UTad is denoted by

UTad =
{
u : [0, T ]→ Rn | u ∈ L1

loc([0, T ],Rn)
}
. (2.4)

We suppose that
L : Rn × Rn → R and g : Rn → R (2.5)

are respectively the continuous running cost (Lagrangian) and the continuous terminal
cost. For every t̄ ∈ [0, T [ and x̄ ∈ Rn, the payoff function is

Pt̄,x̄[u(·)] =
∫ t̄

0
L(yx̄,u(s), u(s))ds+ g(yx̄,u(t̄)). (2.6)

Our problem is
minimize Pt̄,x̄[u(·)] over all u ∈ U t̄ad. (2.7)

Before going to study (2.7), we remark that (2.7) is a special case of the Bolza prob-
lem. For a general Bolza problem, the control system (2.3) will be nonlinear. Moreover,
if the running cost L = 0, (2.7) is called a Mayer problem.

Let’s consider the value function V which is associated with (2.7).

Definition 2.1 The value V : [0, T [×Rn → R of (2.7) is denoted by

V (t̄, x̄) = inf
u∈Uad

Pt̄,x̄[u(·)], ∀(t̄, x̄) ∈ [0, T [×Rn. (2.8)
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Noting that V (0, ·) = g(·).
We are now going introduce the result which is called Bellman’s optimality princi-

ple or dynamic programming principle. This one is to show that V is an alternative
characterization of the solution of a suitable partial differential equation.

Theorem 2.1 Let (t̄, x̄) ∈]0, T [×Rn, u ∈ U t̄ad. Then, for all t ∈ [0, t̄[,

V (t̄, x̄) ≤
∫ t

0
L(yx̄,u(s), u(s))ds+ V (t̄− t, yx̄,u(t)) (2.9)

In addition, the control u is a minimizer for (2.8) if and only if the above equality holds
for all t ∈ [0, t̄].

Proof. Let t ∈ [0, t̄) and u ∈ Uad. For any control v ∈ Uad, we consider the control u′(·)
such that

u′(s) =


u(s) ∀s ∈ [0, t]

v(s) ∀s ∈ [t, t̄].

By the definition of the value function, one has that

V (t̄, x̄) ≤ Pt̄,x̄[u′(·)] =
∫ t̄

0
L(yx̄,u

′
(s), u′(s))ds+ g(yx̄,u

′
(t̄))

=
∫ t

0
L(yx̄,u(s), u(s))ds+

∫ t̄

t
L(yx̄,u

′
(s), u′(s))ds+ g(yx̄,u

′
(t̄)).

Set x̄t = yx̄,u(t) and v̄t(s) = v(t+ s) for all s ∈ [0, t̄− t], we have that

yx̄,u
′
(t+ s) = yx̄t,v̄t(s), ∀s ∈ [0, t̄− t].

Therefore,

V (t̄, x̄) ≤
∫ t

0
L(yx̄,u(s), u(s))ds+ Pt̄−t,x̄t [v̄t(·)].

Taking the infimum over all v ∈ Uad, we obtain that

V (t̄, x̄) ≤
∫ t

0
L(yx̄,u(s), u(s))ds+ V (t̄− t, x̄t).

(2.9) is proved. We will leave the rest part of the proof for the readers.(exercise 1)

We can give a shaper formulation of the dynamic programming principle.

Theorem 2.2 Let (t̄, x̄) ∈ [0, T ]× Rn. Then, for all t ∈ [0, t̄], it holds

V (t̄, x̄) = inf
u∈Uad

{∫ t

0
L(yx̄,u(s), u(s))ds+ V (t̄− t, yx̄,u(t))

}
. (2.10)
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Proof. Given ε > 0, let u ∈ U t̄ad be such that

V (t̄, x̄) ≥
∫ t̄

0
L(yx̄,u(s), u(s))ds+ g(yx̄,u(t̄))− ε.

Then,

V (t̄, x̄) ≥
∫ t

0
L(yx̄,u(s), u(s))ds+

∫ t̄

t
L(yx̄,u(s), u(s))ds+ g(yx̄,u(t̄))− ε

≥
∫ t

0
L(yx̄,u(s), u(s))ds+ V (t̄− t, yx̄,u(t))− ε.

By taking ε to zero, we obtain the proof. �

Corollary 2.1 Let (t̄, x̄) ∈ [0, T [×Rn. Assume that V is differentiable at (t̄, x̄). Then,
for any v ∈ Rn, it holds

Vt(t̄, x̄) + [−∇xV (t̄, x̄) · v − L(x̄, v)] ≤ 0 (2.11)

Proof. For any v ∈ Rn, we consider the constant control u(s) = v for all s ∈ [0, T [.
Recalling theorem 2.1, we have that

V (t̄, x̄) ≤
∫ t

0
L(yx̄,u(s), u(s))ds+ V (t̄− t, yx̄,u(t))

for all t ∈ (0, t̄[. Since u(s) = v and yx̄,u(s) = x̄ + sv for all s ∈ [0, T [, we obtain from
the inequality that

V (t̄, x̄) ≤
∫ t

0
L(x̄+ sv, v)ds + V (t̄− t, x̄+ tv), ∀t ∈]0, t̄[.

Hence,

0 ≤
∫ t

0 L(x̄+ sv, v)ds
t

+
V (t̄− t, x̄+ tv)− V (t̄, x̄)

t
.

Recalling that V is differentiable at (t̄, x̄), by taking t→ 0+, we obtain that

0 ≤ L(x̄, v)− Vt(t̄, x̄) +∇xV (t̄, x̄) · v.

The proof is complete. �

We are now giving the standard hypotheses which ensure that (2.8) admits a mini-
mizer. More precisely, we will assume that

(L1) For any R > 0, there exists γR such that

|L(y, u)− L(x, u)| ≤ LR · |y − x|, ∀u ∈ Rn, x, y ∈ B(0, R).
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(L2) There exists l0 > 0 and a function l : [0,∞[→ [0,∞[ with limr→∞
l(r)
r = +∞ and

such that
L(x, u) ≥ l(|u|)− l0, ∀x ∈ Rn, u ∈ Rn.

(L3) For every x̄, the function L(x̄, ·) is convex.

We will state the existence result of an optimal control.

Theorem 2.3 Assume that L satisfies (L1)-(L3) and g is locally Lipschitz and bounded
below. Then, for every (t̄, x̄) ∈]0, T [×Rn, there exists an optimal control u∗(·) ∈ Ūad of
the problem (2.8), i.e.,

V (t̄, x̄) = min
u∈Uad

Pt̄,x̄[u(·)] = Pt̄,x̄[u∗(·)].

In addition, we have that ‖u∗‖L∞([0,t̄],Rn) < +∞.

Proof. Given (t̄, x̄) ∈]0, T [×Rn, we set λ = infu(·)∈Uad Pt̄,x̄[u(·)]. There exists a sequence
of control functions uk(·) ∈ L1([0, t̄],Rn) such that limk→∞ Pt̄,x̄[uk(·)] = λ. Thus, there
is k0 > 0 such that Pt̄,x̄[uk(·)] ≤ λ + 1 for all k > k0. Therefore, by recalling (L2) we
have that ∫ t̄

0
l(|uk(s)|)ds ≤ Pt̄,x̄[uk(·)] + l0t̄− inf

x∈Rn
g(x)

≤ λ+ 1 + l0t̄− inf
x∈Rn

g(x)

for all k > k0. By limr→∞
l(r)
r = +∞, there is M0 > 0 such that l(r) > r for all r > M0.

Hence, for all k ≥ k0, it holds that

‖uk‖L1([0,t̄],Rn) ≤ M0t̄+
∫
|uk(s)|>M0

l(|uk(s)|)ds

≤ M0t̄+ λ+ 1 + l0t̄− inf
x∈Rn

g(x).

Therefore, there exists M > 0 such that

‖uk‖L1([0,t̄],Rn) ≤M, ∀k ∈ Z+. (2.12)

Now, let u ∈ L1([0, t̄],Rn) be such that ‖u‖L1 ≤M . For α > 0, we define

uα(s) =


u(s) if |u(s)| ≤ α,

0 if |u(s)| > α.
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Observe that |yx̄,uα(s)|, |yx̄,u(s)| ≤ R1 for all s ∈ [0, t̄] where R1 = |x̄| + M . Hence, by
setting Iα = {s ∈ [0, t̄] | |u(s)| > α}, we can estimate that

Pt̄,x̄[uα(·)]− Pt̄,x̄[u(·)]

=
∫ t̄

0
L(yx̄,uα(s), uα(s))− L(yx̄,u(s), u(s))ds+ g(yx̄,uα(t̄))− g(yx̄,u(t̄))

≤
(
LR1 t̄+ gR1

)
·
∫ t̄

0
|uα(s)− u(s)|ds+

∫
Iα

L(yx̄,u(s), 0)− L(yx̄,u(s), u(s))ds

≤
(
LR1 t̄+ gR1

)
·
∫
Iα

|u(s)|ds+ (KM + l0) · |Iα| −
∫
Iα

l(|u(s)|)ds

where gR1 is a Lipschitz constant of g in B(0, R1) and KM = sup|y|≤R1
L(y, 0). Let

α > 1, we then have that

Pt̄,x̄[uα(·)]− Pt̄,x̄[u(·)] ≤ Γ ·
∫
Iα

|u(s)|ds−
∫
Iα

l(|u(s)|)ds (2.13)

where Γ = LR1 t̄+ gR1 +KM + l0. Now, by limr→+∞
l(r)
r = +∞ there exists αΓ > 1 such

that
l(r) > (Γ + 1) · r ∀r ≥ αΓ.

Hence, we have that

Pt̄,x̄[uαΓ(·)]− Pt̄,x̄[u(·)] ≤ −
∫
IαΓ

|u(s)|ds ≤ −αΓ · |IαΓ |. (2.14)

It implies that
Pt̄,x̄[uαΓ(·)] ≤ Pt̄,x̄[u(·)]

Thus, by recalling (2.12), if we define

vk(s) =


uk(s) if |uk(s)| ≤ αΓ,

0 if |uk(s)| > αΓ.

Then, we have that ‖vk‖L∞([0,t̄],Rn) ≤ αΓ for k > k0 and limk→∞ Pt̄,x̄[vk(·)] = λ. Since
‖vk‖L∞([0,t̄],Rn) is bounded, there exists v ∈ L∞([0, t̄],Rn) such that vk ⇀ v, i.e.,

lim
k→∞

∫ t̄

0
w(s)vk(s)ds =

∫ t̄

0
w(s)v(s)ds ∀w ∈ L1([0, t̄],Rn).

In particular, yx̄,vk converges uniformly to yx̄,v. Thus, we have that limk→∞ g(yx̄,vk(t̄))
= g(yx̄,v(t̄)). Hence,

lim inf
k→∞

Pt̄,x̄[vk(·)]− Pt̄,x̄[v(·)] = lim inf
k→∞

∫ t̄

0
L(yx̄,vk(s), uk(s))− L(yx̄,v(s), v(s))ds.
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By (L1) we have that

lim inf
k→∞

∣∣∣ ∫ t̄

0
L(yx̄,vk(s), vk(s))−L(yx̄,v(s), vk(s))ds

∣∣∣ ≤ C lim inf
k→∞

∫ t̄

0
|yx̄,vk(s)−yx̄,v(s)|ds = 0.

Thus, we obtain that

lim inf
k→∞

Pt̄,x̄[vk(·)]− Pt̄,x̄[v(·)] = lim inf
k→∞

∫ t̄

0
L(yx̄,v(s), vk(s))− L(yx̄,v(s), v(s))ds

Since L(x̄, ·) is convex and vk ⇀ v, we get that

lim inf
k→∞

∫ t̄

0
L(yx̄,v(s), vk(s))− L(yx̄,v(s), v(s))ds ≥ 0.

Therefore,
λ = lim inf

k→∞
Pt̄,x̄[vk(·)] ≥ Pt̄,x̄[v(·)].

This implies that Pt̄,x̄[v(·)] = λ. Hence, u∗ = v is an optimal control of (2.8). The proof
is complete. �

Now, we define the Hamilton function H : Rn×Rn → Rn which is associated with L
as the following:

H(x̄, p) = sup
q∈Rn

{
−p · q − L(x̄, q)

}
∀(x̄, p) ∈ Rn × Rn. (2.15)

From (L2), H(x̄, p) < +∞ for all (x̄, p) ∈ Rn × Rn (exercise 2). Moreover, by the
continuity of L, for each p, there exists at least qp where the supremum in (2.15) is
attained. The function H is called the Legendre transform of the running cost L. We
can now state the following lemma which is a consequence of corollary 2.1

Lemma 2.1 Let (t̄, x̄) ∈]0, T [×Rn be a differentiability point of V . Assuming that L
satisfies (L2). Then,

Vt(t̄, x̄) +H(x̄,∇xV (t̄, x̄)) ≤ 0. (2.16)

We are proving a reversed inequality

Lemma 2.2 Let (t̄, x̄) ∈]0, T [×Rn be a differentiability point of V . Assuming that L
satisfies (L1)–(L3), g is locally lipschitz and bounded below. Then,

Vt(t̄, x̄) +H(x̄,∇xV (t̄, x̄)) ≥ 0. (2.17)

Proof. From theorem 3.8, let u∗(·) be the optimal control of (2.8). Then by recalling
theorem 2.1, we have that

V (t̄, x̄) =
∫ t

0
L(yx̄,u

∗
(s), u∗(s))ds+ V (t̄− t, yx̄,u∗(t)), ∀t ∈]0, t̄[.
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Thus, for t ∈]0, t̄[

V (t̄− t, yx̄,u∗(t))− V (t̄, x̄)
−t

=

∫ t
0 L(yx̄,u

∗
(s), u∗(s))ds
t

. (2.18)

Since ‖u∗‖L∞([0,t̄],Rn) is bounded, there exists a sequence tk → 0+ such that limk→0∞

R tk
0 u∗(s)ds

tk
=

ū. Since V is differentiable at (t̄, x̄), one can compute that

lim
k→∞

V (t̄− tk, yx̄,u
∗
(tk))− V (t̄, x̄)
−tk

= Vt(t̄, x̄)−∇xV (t̄, x̄) · ū. (2.19)

On the other hand, recalling (L1), we have that

|L(yx̄,u
∗
(s), u∗(s))− L(x̄, u∗(s))| ≤ C · tk

for some positive constant C. Thus,

lim
k→∞

∫ tk
0 L(yx̄,u

∗
(s), u∗(s))ds
tk

= lim
k→∞

∫ tk
0 L(x̄, u∗(s))ds

tk
.

Recalling (L3) that L(x̄, ·) is convex, by using Jensen’s inequality, we then have

lim
k→∞

∫ tk
0 L(x̄, u∗(s))ds

tk
≥ lim

k→∞
L
(
x̄,

∫ tk
0 u∗(s)ds

tk

)
= L(x̄, ū).

Therefore,

lim
k→∞

∫ tk
0 L(yx̄,u

∗
(s), u∗(s))ds
tk

≥ L(x̄, ū). (2.20)

Recalling (2.18), (2.19) and (2.20), we obtain that

Vt(t̄, x̄)−∇xV (t̄, x̄) · ū− L(x̄, ū) ≥ 0.

The proof is complete. �

Combining the two above lemmas, we obtain that

Proposition 2.1 Let (t̄, x̄) ∈]0, T [×Rn be a differentiability point of V . Assuming that
L satisfies (L1)–(L3), g is locally lipschitz and bounded below. Then,

Vt(t̄, x̄) +H(x̄,∇xV (t̄, x̄)) = 0. (2.21)

Therefore, if the value function V is smooth in ]0, T [×Rn then V is a smooth solution of
the Hamiton-Jacobi equation

ut(t, x) +H(x,∇xu) = 0,

u(0, ·) = g(·).
(2.22)
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2.2 The Hopf formula

We consider here the special case of L(x, q) = L(q) and T = +∞. We will assume that

(i) L is convex and lim|q|→+∞
L(q)
|q| = +∞

(ii) g is Lipschitz in Rn.

The Hamiltion function associated with L is denoted by

H(p) = sup
q∈Rn

{
−p · q − L(q)

}
. (2.23)

To start with this subsection, we first introduce the formula of Hopf.

Theorem 2.4 The value function V satisfies

V (t̄, x̄) = min
z∈Rn

{
t̄ · L

(z − x̄
t̄

)
+ g(z)

}
(2.24)

for all (t̄, x̄) ∈]0, T [×Rn.

Proof. Let u(·) ∈ U t̄ad, we set zu = yx̄,u(t̄). Since L is convex, we obtain from Jensen’s
inequality that∫ t̄

0
L(u(s))ds ≥ t̄ · L

(1
t̄
·
∫ t̄

0
u(s)ds

)
= t̄ · L

(zu − x̄
t̄

)
.

Hence,

Pt̄,x̄[u(·)] ≥ t̄ · L
(zu − x̄

t̄

)
+ g(zu). (2.25)

This implies that

V (t̄, x̄) ≥ inf
u∈Uad

{
t̄ · L

(zu − x̄
t̄

)
+ g(zu)

}
.

Since {zu | u ∈ U t̄ad} = Rn, we get that

V (t̄, x̄) ≥ inf
z∈Rn

{
t̄ · L

(z − x̄
t̄

)
+ g(z)

}
. (2.26)

On the other hand, for every z ∈ Rn by choosing uz(·) ∈ Uad such that uz(s) = z−x̄
t̄ for

all s ∈ [0, t̄], we have that

Pt̄,x̄[uz(·)] = t̄ · L
(z − x̄

t̄

)
+ g(z).

Therefore, we obtain that

V (t̄, x̄) = inf
z∈Rn

{
t̄ · L

(z − x̄
t̄

)
+ g(z)

}
. (2.27)

Now, by using the Lipschit continuity of g and the coercivity of L, one can complete the
proof. (exercise 3) �

We introduce here two main properties of the value function.
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Proposition 2.2 Let (t̄, x̄) ∈]0, T [×Rn. Then, the followings hold

(i) A functional identity: for every s ∈ [0, t̄[,

V (t̄, x̄) = min
z∈Rn

{
(t̄− s) · L

(z − x̄
t̄− s

)
+ V (s, z)

}
. (2.28)

(ii) The linear programming principle: Let 0 < s < t̄ and assume that x0 a
minimum for (2.24). Let z = s

t̄x0 +(1− s
t̄ )x̄. Then, we have that x0 is a minimum

for s · L(w−zs ) + g(w).

Exercise 4: Prove the proposition 2.2.

Now, we will use Hopf’s fomula to prove the first regularity property of V .

Theorem 2.5 The value function V is Lipschitz continuous in [0, T ] × Rn. More pre-
cisely, we have that

|V (t̄, x̄)− V (t, x)| ≤ Lg|x̄− x|+ L1|t̄− t|, (2.29)

where Lg is the lipschitz constant of g and L1 ≥ 0 is a suitable constant.

Proof. We first show that

|V (t̄, x̄)− V (t̄, x)| ≤ Lg · |x̄− x|, ∀x, x̄ ∈ Rn, t ∈ [0, T [. (2.30)

Indeed, by Hopf’s formula, there exists zx such that

V (t̄, x) = t̄ · L
(zx − x

t̄

)
+ g(zx).

One the on the hand, we also have that

V (t̄, x̄) ≤ t̄ · L
((zx + x̄− x)− x̄

t̄

)
+ g(zx + x̄− x).

Therefore,
V (t̄, x̄)− V (t̄, x) ≤ g(zx + x̄− x)− g(zx) ≤ Lg|x̄− x̄|.

Similarly, we get that

V (t̄, x)− V (t̄, x̄) ≤ g(zx + x̄− x)− g(zx) ≤ Lg|x̄− x̄|.

(2.30) is proved.
Assume that t̄ > t, from proposition 2.2, there exists zt = t

t̄ x̄+ t̄−t
t̄ zx̄ such that

V (t̄, x̄) = (t̄− t) · L
(zt − x̄
t̄− t

)
+ V (t, zt),

14



where zx is a minimum of t̄ · L(w−x̄t̄ ) + g(w).
Thus, by (2.30), we get that

|V (t̄, x̄)− V (t, x)| ≤ (t̄− t) · L
(zt − x̄
t̄− t

)
+ Lg|zt − x|. (2.31)

On the other hand, we have that

t̄ · L(0) + g(x̄) ≥ V (t̄, x̄) = t̄ · L
(zx̄ − x̄

t̄

)
+ g(zx̄).

Hence,

L
(zx̄ − x̄

t̄

)
≤ L(0) + Lg ·

∣∣∣zx̄ − x̄
t̄

∣∣∣.
Thus, by the coercivity of L, there exists a constant C1 such that | zx̄−x̄t̄ | ≤ C1. This
implies that ∣∣∣zt − x̄

t̄− t

∣∣∣ =
∣∣∣zx̄ − x̄

t̄

∣∣∣ ≤ C1.

By recalling (2.31), we finally obtain that

|V (t̄, x̄)− V (t, x)| ≤ Lg · |x̄− x|+
(
LgC1 + sup

|q|≤C1

L(q)
)
· |t̄− t|.

The proof is complete by setting L1 = LgC1 + sup|q|≤C1
L(q). �

It is well-known that a Lipschitz contiuous function is differentiable at most every-
where by Rademacher’s theorem. By recalling proposition 2.1, we obtain that

Corollary 2.2 The value function V satisfies the H-J equation
ut(t, x) +H(∇xu) = 0,

u(0, ·) = g(·)
(2.32)

almost everywhere in ]0, T [×Rn.

One may expect that V is smooth such that V is a classical solution of (2.32). How-
ever, V usually fails to be everywhere differentiable even if g and L are differentiable.
Indeed, let’s consider the following example:

Example 5: Let’s consider the problem (2.7) with n = 1, L(x, q) = L(q) = q2

2 and
the terminal cost g given by

g(z) =


z if z ≤ 0,

1
2(1− (z − 1)2) if 0 < z ≤ 1,

1
2 if z > 1.

(2.33)
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By using Hopf’s formula, we have that

V (1, x) = min
zR

{ |z − x|2
2

+ g(z)
}
.

We set

f(z) =
|z − x|2

2
+ g(z) ∀z ∈ R.

One can compute that

f ′(z) =


1 + z − x if z ≤ 0,

1− x if 0 < z ≤ 1,

z − x if z > 1.

(2.34)

+ If x > 1 we have that f ′(z) = 0⇐⇒ z = x. Thus, V (1, x) = f(x) = 1
2 .

+ If x ≤ 1 we have that f ′(z) = 0⇐⇒ z = x− 1. Thus, V (1, x) = f(x− 1) = x− 1
2 .

Therefore, one can easily see that V (1, ·) is not differentiable at x = 1. �

Exercise 5: Computing the value function V in the example.

On the other hand, the property of solving the equation (2.32) almost everywhere is
not enough to characterize the value function V . Indeed, the problem (2.32) can have
more then one solution which is Lipschitz continuous.

Example 6: The problem 
ut(t, x) + 1

2u
2
x = 0,

u(0, ·) = 0(·)
(2.35)

admits the solution u = 0. However, for any a > 0, the function ua defined as

ua(t, x) =


0 if |x| ≥ at

2 ,

a|x| − 1
2a

2t if |x| < at
2

(2.36)

is a Lipschitz function satisfying the equation almost everywhere together with its initial
condition.

The above example show that the property of solving the equation almost every-
where is too weak and does not suffice to provide a satisfactory notion of generalized
solution. It is therefore desirable to find additional conditions to ensure uniqueness and
characterize the value function among the Lipschitz continuous solutions of the equa-
tions. A way of doing this relies on the semiconcavity property which is closely related
to the entropy condition.

However, in this note, we prefer to use the concept of viscosity solutions to show that
the viscosity solution of (5.49) is coincided with the value function.
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2.3 Viscosity solutions

Consider the HJ equation 
ut(t, x) +H(∇xu) = 0,

u(0, ·) = g(·)
(2.37)

where u : [0,+∞[×Rn → R is the value function, H : Rn → R is the Hamilton function
and the notation

ut =
∂u

∂t
, ∇u =

( ∂u
∂x1

, ...,
∂u

∂xn

)
.

Definition 2.2 Let u : [0,+∞[×Rn be uniformly continuous. We say that u is a vis-
cosity solution of (2.22) if u(0, ·) = g(·) and

(1) u is a viscosity subsolution of (2.22), i.e., for every v ∈ C1([0,+∞[×Rn) such that
u− v has a local maximal at (t0, x0)

vt(t0, x0) +H(∇v(t0, x0)) ≤ 0.

(2) u is a viscosity supersolution of (2.22), i.e., for every v ∈ C1([0,+∞[×Rn) such
that u− v has a local minimal at (t0, x0)

vt(t0, x0) +H(∇v(t0, x0)) ≥ 0.

For this subsection, we will assume that

(i) H is convex and lim|q|→+∞
H(p)
|p| = +∞

(ii) g is Lipschitz in Rn.

The running cost (Lagrangian) associated with H is the Legrende transform of H

L(q) = H∗(−q) = sup
p∈Rn
{−q · p−H(p)}.

The initial data g plays the role of the terminal cost.
Let V be the value function given by (2.24). Our goal is to show that the value

function V is the unique viscosity solution of (5.49)

Theorem 2.6 The value function V is the a viscosity solution of (5.49).

Proof. Fix any (t0, x0) ∈]0,+∞[×Rn and consider a function v ∈ C1([0,+∞[×Rn) such
that V − v has a local maximal at (t0, x0), i.e.,

V (t, x)− v(t, x) ≤ V (t0, x0)− v(t0, x0) ∀(t, x) ∈ B((t0, x0), δ)

for some δ > 0. Thus, fixing any w ∈ Rn, we have that for all s > 0 sufficiently small

v(t0 − s, x0 + sw)− v(t0, x0)
s

≥ V (t0 − s, x0 + sw)− V (t0, x0)
s

. (2.38)
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by recalling (2.9), we get

V (t0, x0) ≤ sL(w) + V (t0 − s, x0 + sw).

Combining with (2.38), we have

v(t0 − s, x0 + sw)− v(t0, x0)
s

≥ −L(w).

By letting s tend to 0+, we obtain that

vt(t0, x0) + [−∇v(t0, x0) · w − L(w)] ≤ 0.

Thus,
vt(t0, x0) +H(∇v(t0, x0)) ≤ 0.

It says that V is a viscosity subsolution of (5.49).
We are now going to show that V is a viscosity supersolution of (5.49). Fix any

(t0, x0) ∈]0,+∞[×Rn and consider a function v ∈ C1([0,+∞[×Rn) such that V − v has
a local minimal at (t0, x0). Thus, one gets that

V (t, x)− V (t0, x0) ≥ v(t, x)− v(t0, x0) ∀(t, x) ∈ B((t0, x0), δ) (2.39)

for some δ > 0. By Hopf’s formula, there exists z0 be such that

V (t0, x0) = t0 · L(w0) + g(z0)

where w0 = z0−x0
t0

. Recalling proposition 2.2, we have that

V (t0, x0) = sL(w0) + V (t0 − s, x0 + sw0) ∀s ∈]0, t0[.

By choosing (t, x) = (t0 − s, x0 + sw0) in (2.39), we obtain for s > 0 sufficiently small
that

−L(w0) ≥ v(t0 − s, x0 + sw0)− v(t0, x0)
s

.

Letting s tend to 0+, we finally get

vt(t0, x0) +H(∇v(t0, x0)) ≥ vt(t0, x0) + [−∇v(t0, x0) · w0 − L(w0)] ≥ 0

Thus, V is a viscosity solution of (5.49). For the uniqueness, one can show by using the
result of comparison principle (see in [7]). �

Exercise 6: Showing that the value function V in theorem 3.8 is a viscosity solution of
the Hamilton-Jacobi equation (2.22).
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3 Time optimal control for linear systems

Consider the linear control system
ẋ(t) = Ax(t) +Bu(t), t > 0

x(0) = x0,
(3.1)

where A ∈ Mn×n, B ∈ Mn×m, 1 ≤ m ≤ n, and U = [−1, 1]m. The set of admissible
control is

Uad = {u : [0,+∞[→ U | u is measurable}.

Given u ∈ Uad, the trajectory starting from x0 with control u can be presented as

yx0,u(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds (3.2)

where

eAt =
∞∑
k=0

tk · A
k

k!

is the fundamental solution of 
Ẋ(t) = AX(t),

X(0) = In.
(3.3)

3.1 Controllability

In this subsection, we will answer the basic question on controllability for the linear con-
trol which mentioned particularly in the example of rocket railroad car. More precisely,
we will consider the problem driving the system (3.1) to the origin.

Definition 3.1 The reachable set for time t > 0 is

R(t) = the set of initial points x0 for which there exists an
admissible control u such that yx0,u(t) = 0.

The overall reachable set is the set of initial points x0 for which there exists a control u
such that yx0,u(t) = 0 for some t > 0, i.e.,

R = ∪t≥0R(t).

We now introduce the definitions of controllability.

Definition 3.2 The linear control system (3.1) is small time controllable on 0 if 0 is in
the interior of R. Moreover, if R = Rn, we say that (3.1) is fully controllable.
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Our goal is to study the controllability properties of (3.1). Firstly, from the definition,
x0 ∈ R(t) if and only if there exist a control u(·) ∈ Uad such that

0 = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds.

It is equivalent that

x0 = −
∫ t

0
e−AsBu(s)ds.

Therefore,

R(t) =
{
x0 = −

∫ t

0
e−AsBu(s)ds | u ∈ Uad

}
. (3.4)

By using this expression, one can show that

Theorem 3.1 For a fixed t > 0, the followings hold

(i) R(t) is convex, symmetric and compact.

(ii) R(t) ⊆ R(t̄) for all t̄ ≥ t ≥ 0.

Exercise 7: Prove the above theorem.

A simple example: Let n = 2, m = 1 and U = [−1, 1]. Consider the linear con-
trol system 

ẋ(t) = bu(t), t > 0

x(0) = x0,
(3.5)

where b = (0, 1)T . One can easily compute that R = {(x1, x2) | x1 = 0}. Thus, R does
not cover a neighborhood of the origin. Therefore, the control system is not fully con-
trollable.

We are going to look for a condition which ensure that the reachable set R con-
tains a small ball with the center being the origin. Let’s start with a single column
B = b ∈ Rn, U = [−1, 1].

Proposition 3.1 Assuming that B = b ∈ Rn and U = [−1, 1]. Then,

R ⊆ H(A, b) = span{b, Ab, ..., An−1b}.

Proof. Fixing any t > 0, we have that

R(t) =
{
x = −

∫ t

0
e−Asbu(s)ds

∣∣∣ u ∈ Uad}. (3.6)

One has that

e−Asb =
∞∑
k=0

(−1)k
skAkb

k!
. (3.7)
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Recall that
P (λ) := det(λ · In −A)

is the characteristic polynomial of A. The Cayley-Hamiltonian states that

P (A) = 0.

It means that if we write

P (λ) = λn + βn−1λ
n−1 + ...+ β1λ+ β0,

then
An + βn−1A

n−1 + ...+ β1A+ β0In = 0.

Equivalently,
An = −βn−1A

n−1 − ...− β1A− β0In
Thus, one can show that for all k ∈ Z+,

An+k = −βn−1,kA
n−1 − ...− β1,kA− βk0,kIn.

Therefore, from (3.7) it holds for every s ∈ R

e−Asb ∈ span{b, Ab, ..., An−1b}.

It implies that
R(t) ⊆ span{b, Ab, ..., An−1b}.

The proof is complete. �

Proposition 3.2 For every t > 0, 0 is an interior point of R(t) in H(A, b),i.e. there
exists r(t) > 0 such that

B(0, r(t)) ∩H(A, b) ⊆ R(t). (3.8)

In particular, there exist δ > 0 such that

B(0, δ) ∩H(A, b) ⊆ R.

Proof. Recalling theorem 3.1 and proposition 3.1, R(t) is a compact, convex set in the
subspace H(A, b). Assuming that 0 is not an an interior point of R(t) in H(A, b), by the
convexity of R(t) in H(A, b), there exists a unit vector ξ ∈ H(A, b) such that

〈ξ , y〉 ≤ 0, ∀y ∈ R(t).

Now, let’s consider
gξ(s) = 〈ξ , e−sAb〉.

According to gξ(·), we choose the control uξ(·) ∈ Uad such that

uξ(s) = −sign(gξ(s)), ∀x ∈ [0,+∞).
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We set

yξ = −
∫ t

0
e−Asbuξ(s)ds.

One has that yξ ∈ R(t). Thus,

0 ≥ 〈ξ , yξ〉 =
∫ t

0
|gξ(s)|ds.

It implies that gξ(s) = 0 for all s ∈ [0, t]. Therefore,

g
(k)
ξ (s) = 0, ∀s ∈ [0, t), k ∈ N.

In particular,
〈ξ , Akb〉 = 0, ∀k ∈ {0, ..., n− 1}.

Hence, ξ is orthogonal to H(A, b). This is a contradiction. �

Theorem 3.2 Assuming that Reλ ≤ 0 for each eigenvalue of A. Then

R = H(A, b).

Proof. Assume by a contradiction, from theorem 3.1 there exists x̄ ∈ H(A, b) such that
x̄ ∈ ∂R. Since R is convex, there exist a unit ξ ∈ H(A, b) such that

〈ξ , y − x̄〉 ≤ 0, ∀y ∈ R.

Equivalently,
〈ξ , y〉 ≤ ν, ∀y ∈ R (3.9)

where ν = 〈ξ , x̄〉. Let’s consider

gξ(s) = 〈ξ , e−sAb〉.

According to gξ(·), we choose the control uξ(·) ∈ Uad such that

uξ(s) = −sign(gξ(s)), ∀x ∈ [0,+∞).

We set

yξ(t) = −
∫ t

0
e−Asbuξ(s)ds ∈ R(t).

One has that

〈ξ , yξ(t)〉 =
∫ t

0
|gξ(s)|ds (3.10)

On the other hand, one can compute that

g
(k)
ξ (s) =

〈
ξ , (−1)kAkb

〉
, ∀k ∈ N.
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Therefore, by Cayley-Hamiltonian theorem, we have that

P
(
− d

ds

)
gξ(s) = 0, ∀s ∈ R

where P (λ) = det(λ · In − A). It implies that gξ(·) solves the n − th order ODE. Let
λ1, ..., λn be the n solutions of P (λ) = 0, or the n engenvalues of A. Therefore, according
to ODE theory, we can write

gξ(s) =
n∑
i=1

pi(s) · e−λis (3.11)

where pi(·) are appropriate polynomials.
Now, assume that

lim
t→+∞

〈ξ , yξ(t)〉 =
∫ +∞

0
|gξ(s)|ds ≤ +∞.

Then, lims→+∞ gξ(s) = 0. Since, Reλi ≤ 0 for all i ∈ {1, 2, ..., n}, from the expression
of gξ(s) in (3.11), one can show that gξ(s) = 0 for all s ∈ R. This is a contradiction.
Hence,

lim
s→∞
〈ξ , yξ(t)〉 = +∞.

This contradict to (3.9). Therefore,

R = H(A, b).

The proof is complete. �

From proposition 3.1 and proposition 3.2, we will introduction a algebraic condition
which ensures that the linear control system (3.1) is small time controllable.

Definition 3.3 Controllability matrix is

G(A,B) := [B,AB, ..., An−1B]. (3.12)

Theorem 3.3 Let B = b ∈ Rn and U = [−1, 1]. Then, the linear system (3.1) is small
time controllable if and only if

Rank G(A, b) = n. (3.13)

Proof. Assume that the linear system (3.1) is small time controllable, i.e., there exists
δ > 0 such that

B(0, δ) ⊂ R.

Recalling proposition 3.1, we obtain that

B(0, δ) ⊂ H(A, b) = span{b, Ab, ..., An−1b}.
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It implies that
Rank G(A, b) = n.

On the other hand, assuming that

Rank G(A, b) = n,

we have H(A, b) = Rn. From proposition 3.2, 0 ∈ intR, i.e., the linear system (3.1) is
small time controllable. �

Together with theorem 3.2, we obtain that.

Theorem 3.4 Let B = b ∈ Rn and U = [−1, 1]. Assume that Reλ ≤ 0 for each
eigenvalue of A and rank G(A, b) = n. Then, the linear control system (3.1) is fully
controllable.

We are now going to state the general results for linear control system.

Theorem 3.5 The linear control system (3.1) is small time controllable if and only if

Rank G(A,B) = n. (3.14)

Proof. We write that B = [b1, ..., bm] where bi ∈ Rn for all i ∈ {1, ...,m} and the control
u = (u1, ..., um)T . One has that

−
∫ t

0
e−AsBu(s)ds = −

m∑
i=1

∫ t

0
e−Asbiui(s)ds.

Hence,
R = R1 + ...+Rm, (3.15)

whereRi is the reachable set of the linear system (3.1) with B = bi for all i ∈ {1, 2, ...,m}.
Now, assume that

Rank G(A,B) = n,

we have
H(A, b1) + ...+H(A, bm) = Rn.

From proposition 3.2, for every i ∈ {1, ...,m}, there exists δi > 0 such that

B(0, δi) ∩H(A, bi) ⊆ Ri.

Therefore, from (3.15), one has that 0 is in the interior of R, i.e., the linear control
system (3.1) is small time controllable.

On the other hand, assume that the linear control system (3.1) is small time con-
trollable, we will prove that rank G(A,B) = n. Assume by a contradiction, one has
that

dim(H(A, b1) + ...+H(A, bm)) < n.

In particular, 0 /∈ int(H(A, b1) + ...+H(A, bm)). By recalling proposition 3.1, we finally
obtain that 0 /∈ intR. This is a contradiction. �

We conclude this subsection with the following result.
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Theorem 3.6 Assume that rank G(A,B) = n and Reλ ≤ 0 for each eigenvalue of A.
Then, the linear control system 3.1 is fully controllable.

Exercise 8. Prove the above theorem.
Exercise 9. Showing that for every t > 0, there exists r(t) > 0 such that

B(0, r(t)) ∩H(A,B) ⊂ R(t).

3.2 Bang-bang principle

Definition 3.4 The control u ∈ Uad is called bang-bang control if for each time t ≥ 0
and for each index i ∈ {1, ...m}, we have |ui(t)| = 1 where

u(t) =

u1(t)
...

um(t)

 . (3.16)

Our main result in this subsection is the following:

Theorem 3.7 (Bang-bang principle) Given any x̄ ∈ R, then there exists a bang-
bang control u which steers x̄ to the origin.

Recalling (3.15) that
R = R1 + ...+Rm,

whereRi is the reachable set of the linear system (3.1) with B = bi for all i ∈ {1, 2, ...,m}.
To prove theorem 3.7, we only need to show it in the case of B = b ∈ Rn and U = [−1, 1].
In this case, from the previous subsection, we have that for every t > 0

R(t) ⊆ H(A, b) = span{b, Ab, ..., An−1b}

is convex and compact.

Proposition 3.3 For every t > 0, consider the reachable set R(t). Let x be on the
boundary of R(t) in the space H(A, b). Then, there exists an bang-bang control which
steers x to the origin in time t.

Proof. Since R(t) is convex in Rn, we have that R(t) is also convex in H(A, b). Thus,
for every x ∈ ∂R(t), there exists a unit vector ξx ∈ H(A, b) such that ξx ∈ NR(t)(x), i.e.,

〈ξx , y − x〉 ≤ 0, ∀y ∈ R(t). (3.17)

From (3.4), we have

x = −
∫ t

0
e−Asbux(s)ds,

where ux : [0, t[→ U is measurable. Let’s consider

g(s) = 〈ξx , e−sAb〉, ∀s ∈ R. (3.18)
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We define
ū(s) = −sign(g(s)), ∀s ∈ [0,+∞). (3.19)

One can see that ū ∈ Uad. Hence,

ȳ = −
∫ t

0
e−Asbū(s)ds

is in R(t). By recalling (3.17), we have that

〈ξx , ȳ − x〉 ≤ 0.

That is ∫ t

0

〈
ξx , −e−Asbū(s) + e−Asbux(s)

〉
ds ≤ 0.

Recalling (3.18) and (3.19), we obtain that∫ t

0
|g(s)| · [1 + sign(g(s))ux(s)]ds ≤ 0. (3.20)

Since |g(s)| · [1 + sign(g(s))ux(s)] ≥ 0 for all s ∈ [0, t], one has that

|g(s)| · [1 + sign(g(s))ux(s)] = 0 for a.e. s ∈ [0, t].

On the other hand, since ξx ∈ H(A, b), one can show that the set

Ztg = {s ∈ [0, t] | g(s) = 0}

is finite. Hence, 1 + sign(g(s))ux(s) = 0 for a.e. s ∈ [0, t]. It implies that

ux(s) = ū(s) for a.e. s ∈ [0, t].

Therefore, x is also steered to the origin by control ū(s). The proof is complete. �

Exercise 10. Proving that the set Ztg = {s ∈ [0, t] | g(s) = 0} is finite.

Proposition 3.4 For every t > 0, the set R(t) is strictly convex in the subspace H(A, b).

Exercise 11. Proving the above proposition.
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3.3 The continuity of the minimum time function

In this subsection, we will study the continuity of the minimum time function function
for the linear control system with the target 0. Indeed, let’s recall the linear control
system 

ẋ(t) = Ax(t) +Bu(t), t > 0

x(0) = x0,
(3.21)

where A ∈ Mn×n, B ∈ Mn×m, 1 ≤ m ≤ n, and U = [−1, 1]m. The set of admissible
control is

Uad = {u : [0,+∞[→ U | u is measurable}.

Given u ∈ Uad, the trajectory starting from x0 with control u can be presented as

yx0,u(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds. (3.22)

Now, assume that the target S = {0}.

Definition 3.5 For fixed x0 ∈ Rn\0, let T (x) be the minimum amount of time to reach
to the target S from x0, i.e.,

T (x0) := inf{t > 0 | yx0,u(t) = 0, u ∈ Uad}. (3.23)

Setting T (0) = 0 and T (x0) = +∞ for all x0 ∈ Rn\R, we say that T : Rn → [0,+∞] is
the minimum time function of the control system (3.21) with target S.

From definition 3.5, one can see that

+ T (x0) is finite for all x0 ∈ R,

+ T (x0) = +∞ for all x0 ∈ Rn\R.

Theorem 3.8 (Existence of time-optimal control) For every x0 ∈ R, we have that

T (x0) = min{t > 0 | yx0,u(t) = 0, u ∈ Uad}.

It means that there exists an optimal control u∗ ∈ Uad such that yx0,u∗(T (x0)) = 0.

Proof. Since x0 ∈ R, we have that T (x0) <∞. Thus, there exist a sequence of admissible
controls {uk} ⊂ Uad and an increasing sequence {tk} converging to T (x0) such that

yx0,uk(tk) = 0, ∀k ∈ N.

Since ‖uk‖L∞[0,T (x0)] ≤ 1, there exists a subsequence {ukl} such that {ukl} converges
weakly to ū in L1([0, T ]). Therefore, yx1,ukl (·) converges uniformly to yx0,u(·). In partic-
ular, we obtain that yx0,ū(t) = limkl→∞ y

x0,ukl (tkl) = 0. The proof is complete. �

Before going to study the continuity property of T , we state the result of dynamics
programming principle.
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Theorem 3.9 (Dynamic programming principle) Let x be in R. Then, it holds

min
{
t+ T (yx,u(t)) | u ∈ Uad} = T (x)

for every 0 < t < T (x).

Exercise 12. Proving the above theorem.

Theorem 3.10 Let TR : R → [0,∞) be denoted by TR(x) = T (x) for all x ∈ R. Then,
TR is continuous.

Proof. We first show that TR(·) is continuous at 0. Let {xk} ⊂ R be a sequence
converging to 0. Since for every t > 0, there is r(t) > 0 such that

B(0, r(t)) ∩R(t) ⊂ H(A,B),

there exists tk > 0 converging to 0 such that xk ∈ R(tk). It implies that 0 ≤ TR(xk) ≤ tk.
Thus, limk→0 TR(xk) = 0. Hence, TR is continuous at 0.

Now, let x ∈ R\{0}. From theorem 3.8, let u∗ ∈ Uad be an optimal control steering x
to 0, i.e., yx,u

∗
(TR(x)) = 0. Given z ∈ R\{0} be such that TR(z) ≥ TR(x), we consider

trajectory yz,u
∗
(·) staring from z with control u∗. By setting z̄ = yz,u

∗
(TR(x)), we have

that

‖z̄‖ = ‖eTR(x)A(z − x)‖ ≤ eTR(x)·‖A‖ · ‖z − x‖.

By the dynamics programming principle, we have that

TR(z)− TR(x) ≤ TR(z̄).

Hence,
TR(z)− TR(x) ≤ sup

z̄∈B(0,δz)
TR(z̄)

where δz = eTR(x)·‖A‖ · ‖z − x‖.
On the other hand, let z ∈ R\{0} be such that TR(z) ≤ TR(x). Let u∗z(·) be an

optimal control steering from z to 0 in time TR(z). By setting x̄ = yx,u
∗
z(TR(z)), we have

that
‖x̄‖ = ‖eTR(z)A(z − x)‖ ≤ eTR(z)·‖A‖ · ‖z − x‖ ≤ eTR(x)·‖A‖ · ‖z − x‖.

By the dynamics programming principle, we have that

TR(x)− TR(z) ≤ TR(x̄).

Hence,
TR(x)− TR(z) ≤ sup

z̄∈B(0,δz)
TR(z̄)

where δz = eTR(z)·‖A‖ · ‖z − x‖.
Therefore, for all x ∈ R\{0}, we have that

|TR(z)− TR(x)| ≤ sup
z̄∈B(0,δz)

TR(z̄) (3.24)
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where δz = eTR(x)·‖A‖ · ‖z− x‖. Thus, since TR(·) is continuous at 0, TR(·) is continuous
on R. The proof is complete. �

Together with theorem 3.6, we obtain immediately the following.

Theorem 3.11 Assume that rank G(A,B) = n and Reλ ≤ 0 for each eigenvalue of A.
Then, T is continuous on Rn.
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4 Regularity of minimum time function for nonlinear con-
trol system

4.1 Seminconcave functions with linear modulus

In this subsection, we collect some main properties of a semiconcave function with linear
modulus. Some proofs will be postponed to the following subsection. Standard reference
is in [14].

Definition 4.1 Let Ω ⊂ Rn be an open set. We say that a function f : Ω → R is
semiconcave with linear modulus if there exists C ≥ 0 such that

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ≤ λ(1− λ) · C · |y − x|2, (4.1)

for all λ ∈ [0, 1] such that [x, y] ⊂ Ω. The constant C is called a semiconcavity constant
for f in Ω.

A function f is called semiconvex in Ω if −f is semiconcave in Ω.

Noting that if the constant C = 0 in (4.1), we say that f is concave in Ω. Hence, a
semiconcave function is a concave function up to a quadratic term. More precisely,

Remark 4.1 The function f : Ω→ R is semiconcave with the semiconcavity constant C
in Ω if and only if f(·)−C · |·|

2

2 is concave in Ω or D2f ≤ C in the sense of distributions.

We now introduce a standard criterion of semiconcave functions.

Proposition 4.1 Let f : Ω→ R. Assume that f continuous and

f(x+ h) + f(x− h)− 2f(x) ≤ C · |h|2 (4.2)

for all [x−h, x+h] ⊂ Ω. Then, f is semiconcave with a semiconcavity constant C in Ω.

Proof. We set
g(x) = f(x)− C · |x|2, ∀x ∈ Ω.

From (4.7), we have that

g(x+ h) + g(x− h)− 2g(x) ≤ 0, (4.3)

for all [x− h, x+ h] ⊂ Ω. Moreover, (4.1) follows that

λg(y) + (1− λ)g(x)− g(λx+ (1− λ)y) ≤ 0, (4.4)

for all λ ∈ [0, 1] such that [x, y] ⊂ Ω. Now, one can show that (4.3) implies (4.4) for all
λ ∈ Q ∩ [0, 1]. Then, by using the continuity, we obtain (4.4) for all λ ∈ [0, 1]. �

Proposition 4.2 A semiconcave function f : Ω → R is locally Lipschitz continuous in
Ω.
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Proof. Setting
g(x) = f(x)− C · |x|2, ∀x ∈ Ω,

we have that
λg(y) + (1− λ)g(x) ≤ g(λx+ (1− λ)y). (4.5)

Given any x0 ∈ Ω, we consider a closed cube Q with center x0 such that Q ⊂ Ω. Let
x1, ..., x2n be the vertices of Q and

m = min{f(xi) | i = 1, ..., 2n}.

For every x ∈ Q, there exists 0 ≥ λ1, ..., λ2n ≤ 1 such that
∑2n

i=1 λi = 1 and

y =
2n∑
i=1

λi · xi.

Therefore, from (4.5), one proves that

m ≤
2n∑
i=1

λig(xi) ≤ g(y). (4.6)

It implies that for all y ∈ Q

f(y) ≥ m− C · ‖y‖2 ≥ m0 := m− C ·max
z∈Q
‖z‖2.

Therefore, f is bounded below in Q.
On the other hand, for every x ∈ Q, we have that

g(x) + g(2x0 − x) ≤ 2 · g(x0).

Hence,
g(x) ≤ 2g(x0)− g(2x0 − x) ≤ 2g(x0)−m.

It implies that

f(x) ≤ 2f(x0)− C‖x0‖2 −m+ C‖x‖2 ≤M0 = 2f(x0)− C‖x0‖2 −m+ C ·max
z∈Q
‖z‖2.

Therefore, f is bounded above in Q.
We are now going to show that f is Lipschitz in Q1 = x0 + 1

2(Q − x0). Given any
x, y ∈ Q1, there exists x1 ∈ ∂Q such that x ∈ [y, x1].

x =
|y − x|
|x1 − y|

· x1 +
|x− x1|
|x1 − y|

· y.

Hence, from (4.5), we get

g(x)− g(y)
|x− y|

≤ g(y)− g(x1)
|x1 − y|

.
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It implies that

f(x)− f(y)
|y − x|

≤ f(y)− f(x1)
|x1 − y|

− C · |x1 + y|+ C · |x+ y|

Since f(·) is bounded in Q and |x1 − y| ≤ diam(Q)
4 , we have that

f(x)− f(y)
|y − x|

≤ LQ

for a suitable constant LQ > 0. Similarly, one gets that

f(y)− f(x)
|y − x|

≤ LQ.

Therefore,
|f(y)− f(x)| ≤ LQ · |y − x|, ∀x, y ∈ Q.

The proof is complete. �

From the above two propositions, one has that

Corollary 4.1 Let f : Ω→ R. f is semiconcave with a semiconcavity constant C in Ω
if and only if f continuous and

f(x+ h) + f(x− h)− 2f(x) ≤ C · |h|2 (4.7)

for all [x− h, x+ h] ⊂ Ω.

Let us now recall the result of H. Rademacher.

Theorem 4.1 (H. Rademacher) A locally Lipschitz function f : Ω → R is a.e. dif-
ferentiable in Ω.

Hence, we obtains the first result on the differentiability of semiconcave function.

Corollary 4.2 A semiconcave function f : Ω→ R is a.e. differentiable in Ω.

Moreover, a semiconcave function with linear modulus is a concave function up to a
quadratic term. This allows to extend immediately some well-know properties of concave
functions.

Theorem 4.2 Let f : Ω→ R be semiconcave. Then the following holds:

(i) (Alexandroff’s Theorem) f is a.e. twice differentiable in Ω, i.e., for a.e. x ∈ Ω,
there exists a vector p ∈ Rn and a symmetric matrix B such that

lim
y→x

f(y)− f(x)− 〈p, y − x〉+ 〈B(y − x), y − x〉
|y − x|2

= 0.
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(ii) The gradient of f , defined almost everywhere in Ω, belongs to the class BVloc(Ω,Rn).

Example 7. (Distance function) Let S ⊂ Rn be closed. The distance function from a
point to S is defined by

dS(x) = min
y∈S
|y − x|, (x ∈ Rn)

is locally semiconcave in Rn\S.

Exercise 13 Proving that

(1) dS(·) is locally semiconcave in Rn\S.

(2) dS(·) is not locally semiconcave in Rn.

(3) d2
S(·) is seminconcave with semiconcavity constant 2.
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4.2 Generalize differentials

We are now introducing a concept in nonsmooth analysis which are used to studying
deeper in the regularity of semiconcave functions.

Definition 4.2 Let f be a real valued function defined on the open set Ω ⊂ Rn. For any
x ∈ Ω, the sets

D−f(x) =
{
p ∈ Rn

∣∣∣ lim inf
y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≥ 0
}

(4.8)

D+f(x) =
{
p ∈ Rn

∣∣∣ lim sup
y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≤ 0
}

(4.9)

are called, respectively, the (Fréchet) superdifferential and subdifferential of f at x.

We recall the basic properties of superdifferential and subdifferential of f .

Proposition 4.3 Let f : Ω→ Rn and x ∈ Ω. Then, the following properties hold:

(i) D+f(x) = −D−(−f)(x).

(ii) D+f(x) and D−f(x) are convex (possibly empty).

(iii) D+f(x) and D−f(x) are both nonempty if and only if f is differentiable at x. In
this case, we have that

D+f(x) = D−f(x) = Df(x).

We are now stating the properties of superdifferential of a semiconcave function which
are not valid for a general Lipschitz continuous function.

Proposition 4.4 Let f : Ω→ R be semiconcave with semiconcavity constant C. Then,
a vector p ∈ Rn belongs to D+f(x) if and only if

f(y)− f(x)− 〈p, y − x〉 ≤ C

2
· |y − x|2

for every y ∈ Ω such that [x, y] ⊂ Ω.

Exercise 14 Proving the above proposition.

Corollary 4.3 Let f : Ω → R be semiconcave with semiconcavity constant C and let
[x, y] ⊂ Ω. Then, for every p ∈ D+f(x), q ∈ D+f(y), it holds

〈q − p, y − x〉 ≤ 2C · |y − x|2.

Before going to give a presentation of superdifferential of a semiconcave function. We
introduce the concept of reachable gradient.
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Definition 4.3 Let f : Ω→ Rn be locally Lipschitz. For every x ∈ Ω, we denote by

D∗f(x) =
{
p = lim

k→∞
Df(xk) | f is differentiable at xk and xk → x

}
.

From Rademacher’s Thereom, one can see that D∗f(x) is nonempty. In the case of
seminconcave function, we also have that

Proposition 4.5 Let f : Ω→ R be semiconcave with semiconcavity constant C and let
x ∈ Ω. Then,

(i) D+f(x) = co(D∗f(x)) where co(D∗f(x)) is the convex hull of D∗f(x).

(ii) D+f(x) is singleton if and only if f is differentiable at x.

(iii) D+f(·) is upper semicontinuous.

(iv) if D+f(y) is singleton in the neighborhood Ox of x then f(·) is C1 in Ox.

To conclude this subsection, we are now discussing on the singular set of f . We denote
by

Σf = {x ∈ Ω | f is not differentiable at x}.

From proposition 4.5, if f be semiconcave then

Σf = {x ∈ Ω | dimHD+f(x) ≥ 1}. (4.10)

Theorem 4.3 Let f : Ω→ R be semiconcave. Then, Σf is countable H(n−1)-rectifiable.
More generally, if we denote by

Σk
f = {x ∈ Ω | dimHD+f(x) ≥ k}

then Σk
f is countable H(n−k)-rectifiable.

Proposition (4.5) and the above theorem will be proved in the following subsection.
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4.3 Semiconcavity and time optimal control

Consider the control systems
ẋ(t) = f(x(t), u(t)), t ∈ [0,+∞[ a.e.,

x(0) = x0,
(4.11)

where x0 ∈ Rn and

+ f : Rn × U → Rn is the dynamics of the control system

+ U ⊂ Rm is the control set

+ u : [0,+∞[→ U is a control function.

Standard hypotheses

(H1) f : Rn × U → Rn is Lipschitz

|f(y, u)− f(x, u)| ≤ L1 · |y − x|, ∀x, y ∈ Rn, u ∈ U. (4.12)

Moreover, the gradient of f with respect to x exists everywhere and is locally
Lipschitz in x, uniformly in u.

(H2) U is compact.

The set of admissible control is

Uad =
{
u : [0,∞)→ U | u is measurable

}
.

For every u ∈ Uad, we recall that yx0,u(·) is the trajectory staring from x with control
u which is the unique solution of (4.11). The minimum time needed to steer x to the
closed target S, regarded as a function of x, is called the minimum time function and is
denoted by

TS(x) := inf {t ≥ 0 | yx,u(t) ∈ S, u ∈ Uad}. (4.13)

Now, we define
H(x, p) = sup

u∈U
〈p, f(x, u)〉. (4.14)

By the dynamic programming principle, one can show that TS(·) is a vicosity solution
of Hamilton-Jacobi-Bellman equation

H(x,∇TS(x))− 1 = 0, ∀x ∈ R\S, (4.15)

i.e., for all x ∈ R\,

H(x, p)− 1 ≥ 0, ∀p ∈ D−TS(x),

H(x, p)− 1 ≤ 0, ∀p ∈ D+TS(x),
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where R is the reachable set denoted by

R = {x ∈ Rn | TS(x) <∞}.

In particular, the equation (4.15) hold at all differentiability points of TS(x). Thus,

H(x, p)− 1 = 0, ∀x ∈ R\S, p ∈ D∗T (x).

It is proved in [6] that TS is the unique viscosity solution of (4.15) in R\S satisfying
suitable boundary condition.

We want to study the properties of TS under the following controllability assumption:

(H3) For very R > 0, there exist µR > 0 such that for all x ∈ (B(0, R) ∩R)\S, there is
ux ∈ U :

f(x, ux) · x− πS(x)
|x− πS(x)|

≤ −µR. (4.16)

It is well studied in [23, 24, 8] that

Proposition 4.6 Assume that system (4.11) satisfies (H1)-(H3). Then, TS is locally
Lipschitz in Rd. Moreover, for every R > 0, it holds

TS(x) ≤ CR · dS(x), ∀x ∈ (B(0, R) ∩R)\S

for some constant CR.

Therefore, TS(x) is differentiable almost everywhere in R\S and

H(x,∇TS(x))− 1 = 0, a.e. x ∈ R\S.

We now state the main result of this subsection (see in [13]).

Theorem 4.4 Assume that system (4.11) satisfies (H1)-(H3) and the target S satisfies
a ρ0-internal sphere condition, i.e., for every x ∈ ∂S, there exists x0 such that x ∈
B′(x0, ρ0) ⊂ S. Then, TS(·) is locally semiconcave in R\S.

Sketch of proof. (The method of middle point)
Fixing any x ∈ R\S, let h ∈ Rn be such that [x − h, x + h] ⊂ R\S, one needs to show
that

TS(x+ h) + TS(x− h)− 2TS(x) ≤ Cx · |h|2. (4.17)

Let u∗(·) be an optimal control steering x to S in time TS(x). We define

y+
h (t) = yx+h,u∗(t), y(t) = yx,u

∗
(t) and y−h (t) = yx−h,u

∗
(t).

By the dynamics programming principle, we have that

TS(x+ h) + TS(x− h)− 2TS(x) ≤ T (y+
h (t)) + T (y−h (t))− 2T (y(t)). (4.18)
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Moreover, observing that

|y+
h (t) + y−h (t)− 2y(t)| ≤ C · |h|2. (4.19)

From (4.18), (4.19) and the locally Lipschitz continuity of TS , we finally obtain that

TS(x+h)+TS(x−h)−2TS(x) ≤ T (y+
h (t))+T (y−h (t))−2T

(y+
h (t)) + T (y−h (t)

2

)
+C1|h|2.

Therefore, we only need to study the semiconcavity property of TS(·) near to the target
S. We leave the rest part for the reader. �
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4.4 Sets with finite perimeter

In this subsection, we will recall some basic concepts from geometric measure theory.
The major references are [25], [26] and [2].

Definition 4.4 Let A ⊆ Rd and 0 ≤ p ≤ d. The p-dimensional Hausdorff measure
Hp(A) is defined by Hp(A) = lim

δ→0+
Hpδ(A), where

Hpδ(A) = ωp inf

{ ∞∑
i=1

(diam(Ui))
p : A ⊆

⋃
i

Ui, diam(Ui) < δ

}
,

and

ωp :=
2pΓ(p2 + 1)

πp/2
, Γ(p) :=

∫ ∞
0

tp−1 e−t dt.

The constant ωp is chosen so that Hp(A) equals the Lebesgue measure Lp(A) if p ∈ N
and A is a subset of a p-dimensional subspace of Rd. We define the Hausdorff dimension
dimH(A) of A by setting:

dimH(A) := inf{d ≥ 0 : Hd(A) = 0}.

Let k ∈ N, we say that A ⊂ Rd is countably k-rectifiable if

A ⊂ N ∪
∞⋃
i=1

Si

where Si are suitable Lipschitz k-dimensional surfaces and N is a Hk-negligible set. We
say A is k-rectifiable if it is countably k-rectifiable and Hk(A) < ∞, while A is locally
k-rectifiable if A ∩K is k-rectifiable for any compact set K ⊂ Rd. Given an open subset
Ω of Rd and a Lipschitz continuous function f : Ω → Rm, with Lipschitz rank L ≥ 0,
for every 0 ≤ k ≤ d, the estimate Hk(f(S)) ≤ LkHk(S) holds for all S ⊆ Ω. (see
Proposition 2.49(iv) in [2]).

The concepts of functions of bounded variation and of sets with finite perimeter will also
be used (see p. 117 and p. 143 in [2]):

Definition 4.5 Let Ω ⊂ Rd be open, and u ∈ L1(Ω). We say that u is a function of
bounded variation in Ω (denoted by u ∈ BV (Ω)) if the distributional derivative of u is
representable by a finite Radon measure in Ω, i.e., if∫

Ω
u
∂ϕ

∂xi
dx = −

∫
Ω
ϕdDiu for all ϕ ∈ C∞c (Ω), i = 1, . . . , d

for some Radon measure Du = (D1u, . . . ,Ddu). We denote by ‖Du‖ the total variation
of the vector measure Du, i.e.

‖Du‖(Ω) := sup
{∫

Ω
u(x)divφ(x) dx : φ ∈ C1

c (Ω,Rd), ‖φ‖L∞(Ω) ≤ 1
}
.

Accordingly, u ∈ L1
loc(Ω) is a function of locally bounded variation in Ω (denoted by

u ∈ BVloc(Ω)) if u ∈ BV (U) for every U ⊆ Ω open and bounded with U ⊂ Ω.

39



Lemma 4.1 Let f ∈ BV (a, b); then there exists a measurable set I ⊆ (a, b) such that
L1(I) = b− a and

‖Df‖(a, b) ≥ |f(t)− f(s)| for any t, s ∈ I .

Definition 4.6 Let E ⊂ Rd be Ld-measurable, and let Ω ⊆ Rd be open. E has finite
perimeter in Ω if its characteristic function

χE(x) :=

{
1, if x ∈ E,
0, otherwise,

has bounded variation in Ω, and we say that the perimeter of E in Ω is P (E,Ω) =
‖DχE‖(Ω). We say that E has perimeter locally finite in Ω if P (E,U) < +∞ for every
open bounded subset U of Ω with U ⊂ Ω.

Definition 4.7 Let µ be a Radon measure on Rd, and let M be the union of all open
sets U ⊂ Rd such that µ(U) = 0; the complement of M is called the support of µ and it
is denoted by supp(µ).

The following concept of normal vector was introduced by De Giorgi.

Definition 4.8 Let Ω be a nonempty open subset of Rd and E ⊂ Rd be a set of finite
perimeter in Ω; we call reduced boundary of E in Ω the set ∂∗E of all points x ∈
supp(‖DχE‖) ∩ Ω such that

νE(x) := lim
ρ→0+

DχE(B(x, ρ))
‖DχE(B(x, ρ))‖

=
dDχE
d‖DχE‖

(x)

exists in Rd and satisfies ‖νE(x)‖ = 1. The function −νE : ∂∗E → Rd is called the De
Giorgi outer normal to E in x.

Finally, the following measure-theoretic concepts will be used in our analysis.

Definition 4.9 Let E ⊂ Rd be a Borel set. We set, for x ∈ Rd and 0 ≤ k ≤ d,

δkE(x) = lim inf
ρ→0+

Hk(E ∩B(x, ρ))
ωkρk

,

where ωk is the k-dimensional Lebesgue measure of the unit ball in Rk. It is well known
that for k = d the limit actually exists and is equal to 1 for Ld-a.e. x ∈ E.

Definition 4.10 Let E ⊆ Rd be Ld-measurable. We define (see p. 158 in [2]):

E0 := {x ∈ Rd : δdE(x) = 0}, the measure theoretic exterior of E;

E1 := {x ∈ Rd : δdE(x) = 1}, the measure theoretic interior of E;

∂ME := Rd \ (E0 ∪ E1), the measure theoretic boundary of E.
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Concerning the relations among the above introduced concepts of boundary, we recall
the following (see Theorem 3.61, p. 158, in [2]).

Theorem 4.5 (De Giorgi-Federer) Let Ω be a nonempty open subset of Rd and E ⊆
Rd be a set of finite perimeter in Ω. Then

∂∗E ∩ Ω ⊆
{
x ∈ Rd : δdE(x) = 1/2

}
⊆ ∂ME ⊆ ∂E,

and
Hd−1

(
Ω \ (E0 ∪ ∂∗E ∪ E1)

)
= 0.

In particular, E has density either 0, or 1
2 , or 1 at Hd−1− a.e. x ∈ Ω, and Hd−1(∂ME \

∂∗E) = 0.

We conclude this subsection with the following criterion for sets of finite perimeter.

Theorem 4.6 (Federer) Let Ω be a nonempty open subset of Rd and E ⊆ Rd be mea-
surable. If Hd−1(∂(Ω ∩ E)) < +∞ then P (E,Ω) < +∞.
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4.5 External sphere condition and semiconcavity

We now introduce new concepts for sets which is associated with semiconcavity concepts.
Basing on these ones, we can extend to study the regularity of a class of continuous
functions which is applied to time optimal control.

Definition 4.11 Let Q ⊂ Rd be closed and v ∈ Rd. We say that v is a proximal normal
vector to Q at x ∈ ∂Q, denoted by v ∈ NP

Q (x), if there exists a constant σ > 0 such that

〈v , y − x〉 ≤ σ · |y − x|2, ∀y ∈ Q. (4.20)

Equivalently v ∈ NP
Q (x) if and only if there exists λ > 0 such that πQ(x+ λv) = {x}.

Definition 4.12 Let Q ⊂ Rd be closed and x ∈ ∂Q. The vector v ∈ NP
Q (x) is realized

by a ball of radius ρ if and only if (4.20) satisfies for σ = |v|
2ρ .

We are ready to give the main concept for this subsection.

Definition 4.13 Let Q ⊂ Rd be closed and let θ(·) : ∂Q → (0,∞) be continuous. We
say that Q satisfies the θ(·)-external sphere condition if and only if for every x ∈ ∂Q,
there exists a vector vx 6= 0 such that vx ∈ NP

Q (x) is realized by a ball of radius θ(x), i.e.,〈 vx
|vx|

, y − x
〉
≤ 1

2θ(x)
|y − x|2.

for all y ∈ Q.

We will say that Q satisfies the ρ0-external sphere condition for a constant ρ0 > 0
if ρ(·) = ρ0. We are now going to study the main properties of sets which satisfies an
external sphere condition.

Theorem 4.7 (Locally finite perimeter) Let Q ⊂ Rd be closed. Assuming that Q
satisfies the θ(·)-external sphere condition. Then, ∂Q ∩O is finitely Hd−1-rectifiable for
any bounded, open set O. In particular, Q has locally finite perimeter.

Proof. Since O is bounded, we have that O is compact. Therefore, there is a constant
ρ0 > 0 such that for every x ∈ ∂Q∩O, there exists a unit vector vx ∈ NP

Q (x) is realized
by a ball of radius ρ0, i.e.,

〈vx, y − x〉 ≤
1

2ρ0
|y − x|2.

for all y ∈ Q.

Step 1: By the compactness of Sd−1, we can findM1 ∈ N and a finite set {v1, ..., vM1} ⊂
Rd−1 such that

Sd−1 ⊂
M1⋃
i=1

vi +
1
3
B′(0, 1)
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where Sd−1 = {v ∈ Rd | |v| = 1} is the unit sphere with center 0. We partition ∂Q as

∂Q =
M1⋃
i=1

∂Qi (4.21)

where
∂Qi :=

{
x ∈ ∂Q

∣∣∣ |vx − vi| ≤ 1
3

}
.

One has first that

∂Q ∩ O =
M⋃
i=1

∂Qi ∩ O. (4.22)

Moreover, for every x ∈ ∂Qi ∩ O, it holds

〈vi, y − x〉 ≤ 〈vx, y − x〉+ |vi − vx| · |y − x|, ∀y ∈ Q

≤
( 1

2ρ0
|y − x|+ 1

3

)
· |y − x|

for all y ∈ Q. Therefore, for every x, y ∈ ∂Qi ∩ O, we have that

|〈vi, y − x〉| ≤
( 1

2ρ0
|y − x|+ 1

3

)
· |y − x|. (4.23)

Step 2: We are now going to show that ∂Qi ∩ O is finitely Hd−1-rectifiable for all
i ∈ {1, ..,M}. Fixing any i ∈ {1, ..,M1}, since ∂Qi ∩ O is compact, there exists M2 ∈ N
and x1, ..., xM2 such that

∂Qi ∩ O ⊂
M2⋃
k=1

B′(xk, δ),

where δ = ρ0

6 . Setting ∂Qki = ∂Qi ∩ O ∩B′(xk, δ), we have that

∂Qi ∩ O =
M2⋃
k=1

∂Qki . (4.24)

Moreover, by (4.23) and the choice of δ, we have that for every x, y ∈ ∂Qki , it holds

|〈vi, y − x〉| ≤
1
2
· |y − x|.

Now, let v⊥i be the subspace of Rd which is orthogonal to vi. Let πi(·) be the projection
on v⊥i . From (4.24), one shows that

|πi(y)− πi(x)| ≥ 1√
2
· |y − x|, ∀x, y ∈ ∂Qki .

Thus, πi : ∂Qki → v⊥i is injective. Hence, if we set Aki = πi(∂Qki ) ⊂ v⊥i , the map
π−1
i : Aki → Qki is Lipschitz with constant

√
2. Therefore, ∂Qi ∩ O is finitely Hd−1-

rectifiable. By recalling (4.22), ∂Q ∩ O is finitely Hd−1-rectifiable.
Finally, noting that Hd−1(Aki ) < +∞, it implies that Hd−1(∂Qki ) ≤ 2

d−1
2 Hd−1(Aki ) ≤

+∞. Recalling (4.22), we obtain that Q∩O has finite perimeter. The proof is complete.
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Theorem 4.8 Let Q ⊂ Rd be closed. Assuming that Q satisfies the θ(·)-external sphere
condition. For every k ∈ {1, ..., d− 1}, we denote by

∂Qk =
{
x ∈ ∂Q | dimHNP

Q (x) ≥ k
}
.

Then, ∂Qk is countably Hd−k-rectifiable.

The proof is based of the same technique of the previous theorem. A more general result
is studied in [19].

Exercise 15. Proving the about theorem for k = 2.

We now recall the definition of Fréchet normal vector of a set.

Definition 4.14 Let Q ⊂ Rd be closed and v ∈ Rd. We say that v is a Fréchet normal
vector to Q at x, denoted by v ∈ NF

Q (x), if

lim sup
y∈Q→x

〈
v ,

y − x
|y − x|

〉
≤ 0. (4.25)

Lemma 4.2 Let Q ⊂ Rd be closed. Assuming that Q satisfies a θ(·)-external sphere
condition. Then, the map NF

Q (·) : ∂Q ⇒ Rd is upper-semicontinuous, i.e.,

lim
y→x

NF
Q (y) ⊆ NF

Q (x).

Proposition 4.7 Let Q ⊂ Rd be closed. Assuming that Q satisfies a θ(·)-external sphere
condition. Then, the set Q is smooth in ∂Q1, i.e., for every x ∈ ∂Q1, it holds

lim
y∈∂Q→x

〈
vx ,

y − x
|y − x|

〉
= 0,

where vx is the unique unit proximal normal vector to Q at x.

Proof. Assume by a contradiction, there exists a sequence {yn} ⊂ ∂Q converging to x
such that 〈

− vx ,
yn − x
|yn − x|

〉
≥ δ (4.26)

for a constant δ > 0 and for all n ∈ N. Let vn be the unit proximal normal vector to Q
at yn realized by a ball of radius θ(yn). Since yn converges to x, there exists a constant
ρ0 such that for every n, it holds

〈vn, z − yn〉 ≤ ρ0 · |z − yn|2, ∀z ∈ Q. (4.27)

Therefore, vn must converge to vx. On the other hand, from the above inequality, we
get in particularly that

〈vn, x− yn〉 ≤ ρ0 · |x− yn|2.
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It implies that 〈
vn ,

x− yn
|x− yn|

〉
≤ ρ0 · |x− yn|.

Since limn→∞ vn = vx and limn→∞ yn = x, we obtain that〈
vx ,

x− yn
|x− yn|

〉
≤ 0.

This contradicts to (4.26). The proof is complete.

We are now discussing the connection between external sphere condition and semi-
concavity. Let f : Ω → R be upper semicontinuous where Ω ⊂ Rn is open. We denote
by

hypo(f) := {(x, β) | x ∈ Ω, β ≤ f(x)}

the hypograph of f .

Theorem 4.9 The function f is locally semiconcave in Ω if and only if f is locally
Lipschitz and hypo(f) satisfies a θ(·) external sphere condition.

Proof. Assume that f is locally semiconcave. From proposition (4.2), we have that f
is locally Lipschitz in Ω. We now prove that hypo(f) satisfies a θ(·) external sphere
condition. For every x ∈ Ω, there exists vx ∈ Df−(x) such that

f(y)− f(x)− 〈vx, y − x〉 ≤
Cx
2
· |y − x|2, ∀y ∈ B(x, δx) (4.28)

where Cx is a suitable constant and δx is a suitable constant such that B(x, δx) ⊂ Ω. It
implies that〈

(−vx, 1), (y − x, f(y)− f(x))
〉
≤ Cx

2
· |y − x|2, ∀y ∈ B(x, δx).

Therefore, there exists ρx > 0 be such that〈 (−vx, 1)
|(−vx, 1)|

, (y − x, β − f(x))
〉
≤ ρx ·

(
|y − x|2 + |β − f(x)|2

)
Thus, (−vx, 1) ∈ NP

hypo(f)(x, f(x)) is realized by a ball of radius 1
2ρx

. From here, one can
show that hypo(f) satisfies a θ(·) external sphere condition.

For the reversed side, we prefer to leave as an exercise 16.

Remark 4.2 Thereom 4.3 is a particular case of theorem 4.8. Moreover, (ii)-(iv) of
proposition 4.5 are consequences of proposition 4.7.
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4.6 A class of continuous functions

In this subsection, we will study the regularity properties a class of continuous functions
whose hypograph satisfies an external sphere condition. From theorem 4.9, such class is
a generalization of the class of semiconcave functions and is applied to study the regu-
larity of the minimum time function under a weak controllability condition.

Let Ω ⊂ Rn be open. For ρ > 0, we denote by

Fρ(Ω,R) = {f ∈ C(Ω,R) | hypo(f) satifies the ρ− extermal sphere condition}

where C(Ω,R) is the class of continuous function from Ω to R.

Theorem 4.10 For every ρ > 0, it holds that

Fρ(Ω,R) ⊂ BVloc(Ω,R).

Proof. Let f be in Fρ(Ω,R). Given any U ⊂ Ω open and bounded, we need to show that
f ∈ BV (U,R). Indeed, since U is compact and f is continuous, there exist M > 0 such
that ‖f‖L∞(U,R) < M . Thus, recalling theorem 4.7, we obtain that

P (hypo(f), U × R) = P (hypo(f), U × [−M,M ]) <∞.

Hence, for every ϕ ∈ C∞c (U×]−M,M [), we have:∫
U×]−M,M [

χhypo f (x, t) divϕ(x, t) dx dt =
∫

]−M,M [

(∫
U
χhypo f (x, t) divϕ(x, t) dx

)
dt

=
∫

]−M,M [

(∫
U
χ]−∞,f(x)](t) divϕ(x, t) dx

)
dt

=
∫

R

(∫
U
χ]−∞,f(x)](t) divϕ(x, t) dx

)
dt ≤ c.

For every t ∈]−M,M [, let ψt ∈ C∞c (]−M,M [) be such that ψt(]−M,M [) ⊆ [0, 1] and
ψt(s) = 1 if s belongs to a neighborhood of t. We have for every t ∈ ]−M,M [:

P ({x ∈ U : f(x) ≥ t}, U) = sup
{∫

U
χ]−∞,f(x)](t)div σ(x) dx : σ ∈ C∞c (U), ‖σ‖∞ ≤ 1

}
= sup

{∫
U
χ]−∞,f(x)](t)div (σ(x)ψt(t)) dx : σ ∈ C∞c (U), ‖σ‖∞ ≤ 1

}
Setting ϕ(x, s) = σ(x)ψt(s), we have that ϕ ∈ C∞c (U×]−M,M [) and ‖ϕ‖∞ ≤ 1, whence∫

R
P ({x ∈ U : f(x) ≥ t}, U) dt ≤ c.

According to Theorem 1, p. 185 in [25], we have that f ∈ BV (U,R). �

We now introduce the definition of horizontal superdifferential.
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Definition 4.15 Let f : Ω → R be continuous. For every x ∈ Ω, the unit vector
v ∈ Sn−1 is a horizontal superdifferential of f at x, denoted by v ∈ ∂∞f(x), if

(−v, 0) ∈ NP
hypo(f)(x, f(x)).

We also set
Sf = {x ∈ Ω | ∂∞f(x) 6= ∅}.

Lemma 4.3 Let f : Ω→ R be continuous. If f is Lipschitz in a neighborhood of x ∈ Ω
then the set ∂∞f(x) is empty.

Exercise 17: Proving the above Lemma.

From the above Lemma, if f is locally semiconcave in Ω, the set ∂∞f(x) is empty for
every x ∈ Ω. However, we consider here f ∈ Fρ(Ω,R). The horizontal superdifferential
may appeal at the non-lipschitz points. Our main goal is now to study the properties of
Sf .

Proposition 4.8 Assuming that f ∈ Fρ(Ω,R). Then, the set Sf is closed in Ω.

Skecth of proof.
Main step: For every x ∈ Sf , there exists v ∈ Sn−1 such that (−v, 0) ∈ NP

hypo(f)(x, f(x))
is realized by a ball of radius ρ, i.e.,

〈−v, y − x〉 ≤ ρ · (|y − x|2 + |β − f(x)|2), ∀y ∈ Ω, β ≤ f(y).

Indeed, let (−w, 0) ∈ NP
hypo(f)(x, f(x)), along the ray x(t) = x − t · w (t > 0), by

using Clarke’s density theorem, one can find a sequence xn converge to x such that f
is differentiable at xn and limn→∞ |Df(xn)| = +∞. Moreover, since f is differentiable
at x, we have that (−Df(xn), 1) ∈ NP

hypo(f)(xn, f(xn)) realized by a ball of radius ρ.
Therefore, there exists a subsequence {xnk} converge to x such that

lim
nk→∞

(−Df(xnk , 1)
|(−Df(xnk , 1)|

= (−v, 0).

Thus, (−v, 0) ∈ NP
hypo(f)(x, f(x)) is realized by a ball of radius ρ.

Last step: Taking any xn ∈ Sf converging to x ∈ Ω. From the main step, there ex-
ists vn ∈ Sn−1 such that (−vn, 0) ∈ NP

hypo(f)(xn, f(xn)) is realized by a ball of radius
ρ. Therefore, there exists (−vx, 0) ∈ NP

hypo(f)(x, f(x)) is realized by a ball of radius ρ.
Thus, the proof is complete. �

Before going to study the size of Sf , we need the following key Lemma.

Lemma 4.4 Let f be in Fρ(Ω,R). Let x ∈ Sf be such that NP
hypo(f)(x, f(x)) = R+(v, 0)

for some v ∈ Sn−1. Then, there exists δ0 = δ0(x) > 0 such that

‖Df‖Sq(x,δ) ≥ 2n−2 · δn−
1
2 , ∀0 < δ < δ0 (4.29)
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where Sq(x, δ) :=
{

(y1, . . . , yn) ∈ Rn : max
i=1,...,n

|yi − xi| < δ
}

. Thus,

‖Df‖B(x,δ) ≥ 2−
3
2 · δn−

1
2 , ∀0 < δ < δ0. (4.30)

Proof. Without loss of generality we may assume that

x = 0 ∈ Ω, f(x) = 0 and NP
hypo(f)(0, 0) = R+(e1, 0).

For any δ > 0 define

Rδ := {y = (y1, . . . , yn) ∈ Sq(0, δ) :
3
4
δ < y1 < δ},

Sδ := {y = (y1, . . . , yd) ∈ Sq(0, δ) : −δ < y1 < −δ/2} .

Claim: There exist δ1, δ2 > 0 such that

f(y) ≤ −1
2
δ

1
2 , ∀y ∈ Rδ, δ < δ1 (4.31)

and
f(y) > 0 ∀y ∈ Sδ, δ < δ2. (4.32)

Proof of Claim: Let us prove (4.31). For y ∈ Rδ we have

3
4δ < 〈(e1, 0), (y, β)〉 ≤ ρ ·

(
‖y‖2 + |β|2

)
∀β ≤ f(y)

whence

3
4δ ≤ ρ ·

(
nδ2 + |β|2

)
, ∀β ≤ f(y). (4.33)

Notice that, for δ small enough, it holds

f(y) < 0 for any y ∈ Rδ;

indeed, by contradiction, if f(y) ≥ 0 one could choose β = 0, thus violating (4.33)
for δ sufficiently small. Formula (4.31) easily follows for a small enough δ1 on taking
β = f(y) < 0 in (4.33).

Let us prove (4.32). Assume by contradiction that there exist sequences {δk}k and
{yk}k such that

δk → 0+, yk ∈ Sδk and f(yk) ≤ 0.

Since yk → 0 and f(0) = 0 we get limk→∞ f(yk) = f(0) = 0. Let (vk, αk) ∈ NP
hypo(f)(xk, f(xk))

be realized by a ball of radius ρ and (vk, αk converges to (e1, 0). Moreover, for all
β ≤ 0 = f(0) it holds〈 (vk, αk)

|(vk, αk)|
, (0, β)− (yk, f(yk))

〉
≤ ρ ·

(
‖yk‖2 + |β − f(yk)|2

)
.
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Since f(yk) ≤ f(0) = 0 we can choose β = f(yk) in the above inequality and get

〈vk,−yk〉 ≤ C · ‖yk‖2.

Thus,

δk
2 − ‖vk − e1‖

√
n δn ≤ 〈e1,−yk〉+ 〈vk − e1,−yk〉 = 〈vk,−yk〉 ≤ Cn δ2

k.

Dividing both sides by δk and passing to the limit as k →∞ we obtain a contradiction.
This concludes the proof of the Claim. �

Last step: The Claim allows us to conclude: indeed, for any δ < δ0 := min{δ1, δ2}
and any z ∈ (−δ, δ)n−1 we get

|f(ya, z)− f(yb, z)| ≥
1
2
δ

1
2 ∀ya ∈ ]3

4δ, δ[, yb ∈ ]− δ,−δ/2[.

By virtue of Lemma 4.1, for any z ∈ (−δ, δ)d−1 there exist ya(z) ∈]3
4δ, δ[ and yb(z) ∈

]− δ,−δ/2[ such that

‖Dfz‖(−δ, δ) ≥ |f(ya(z), z)− f(yb(z), z)| ≥
1
2
δ

1
2

where fz := f(·, z). We obtain

‖Df‖(Sq(0, δ)) ≥
∫

]−δ,δ[n−1

‖De1f‖(z+ ]− δ, δ[e1)dz

=
∫

]−δ,δ[n−1

‖Dfz‖(−δ, δ)dz

≥ (2δ)n−1 · 1
2δ

1
2 = 2n−2δn−

1
2 ,

where we have denoted by De1f the distributional derivative of f along e1 and by z+ ]−
δ, δ[·e1 the line segment joining (−δ, z) and (δ, z). This concludes the proof of the Lemma.
�

We are ready to prove the main result.

Theorem 4.11 Let f be in Fρ(Ω,R). Then, Hn−
1
2 (Sf ) ∩ U is finite for every U ⊂ Ω

open and bounded.

Proof. We divide the set Sf into two sets:

Sf = S1
f + S2

f

where

S1
f :=

{
x ∈ Sf | NP

hypo(f)(x, f(x)) = R+(v, 0)
}
,

S2
f :=

{
x ∈ Sf | dimHNP

hypo(f)(x, f(x)) ≥ 2
}
.
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Recalling 4.8, one can show that S2
f isHn−1-countably rectifiable. In particular,Hn−

1
2 (S2

f ) =

0. Hence, we only need to prove that Hn−
1
2 (S1

f ) ∩ U is finite.
We can construct a covering of S1

f ∩ U by setting:

B :=
{

(x+ rBn) : x ∈ S1
f ∩ U, r <

min{δ0(x),dist(U, ∂Ω)/2}
10

}
.

Since B is a fine covering of S1
f ∩ U , by using Vitali’s covering Theorem, there exists a

countable subset of pairwise disjoint balls B′ := {xi + riBn : i ∈ N} ⊂ B such that

⋃
B∈B

B ⊆
∞⋃
i=1

(xi + 5riBn),

which implies that {xi + 5riBn : i ∈ N} is a covering of S1
f ∩ U and⋃

i∈N
(xi + 5riBn) ⊆ (U + cBn) =: W

for a suitable constant c > 0 and thus W is an open bounded subset of Ω.

|Df |(W ) ≥ |Df |

( ∞⋃
i=1

(xi + 5riBn)

)

≥
∞∑
i=1

|Df |(xi + riBn) ≥
∞∑
i=1

2−
3
2 · rn−

1
2

i ≥ C · Hn−
1
2 (S1

f ).

On the other hand, from theorem 4.10, we have that |Df |(W ) < +∞. Therefore,
Hn−

1
2 (S1

f ) < +∞. The proof is complete. �

Corollary 4.4 Let f be in Fρ(Ω,R). Then, Ln(Sf ) = 0.

We conclude this subsection with the following theorems.

Theorem 4.12 Let f be in Fρ(Ω,R). Then, f is locally semiconcave in the open set
Ω\Sf . In particular, f is a.e. twice diffrentiable in Ω.

Excercise 18. Prove the above theorem.

Theorem 4.13 Let f : Ω → R be continuous. Assuming that hypo(f) satisfies a θ(·)-
external sphere condition. Then, f is locally semiconcave in the open set Ω\Sf .
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4.7 Application to time optimal control

There are several cases showing that the controllability condition (H3) in subsection 4.3
does not hold, or the minimum time function TS(·) is not locally Lipschitz (e.g., the
rocket car case). Therefore, TS(·) may not be locally semiconcave and differentiable
almost everywhere. A natural problem is to study TS under a weaker controllability
assumption. More precisely, in this subsection we will study the regularity of TS when
TS is just continuous.

Consider the control systems
ẋ(t) = f(x(t), u(t)), t ∈ [0,+∞[ a.e.,

x(0) = x0,
(4.34)

where x0 ∈ Rn and

+ f : Rn × U → Rn is the dynamics of the control system

+ U ⊂ Rm is the control set

+ u : [0,+∞[→ U is a control function.

Standard hypotheses

(H1) f : Rn × U → Rn is Lipschitz

|f(y, u)− f(x, u)| ≤ L1 · |y − x|, ∀x, y ∈ Rn, u ∈ U. (4.35)

Moreover, the gradient of f with respect to x exists everywhere and is locally
Lipschitz in x, uniformly in u.

(H2) U is compact.

The set of admissible control is

Uad =
{
u : [0,∞)→ U | u is measurable

}
.

For every u ∈ Uad, we recall that yx0,u(·) is the trajectory staring from x with control
u which is the unique solution of (4.11). The minimum time needed to steer x to the
closed target S, regarded as a function of x, is called the minimum time function and is
denoted by

TS(x) := inf {t ≥ 0 | yx,u(t) ∈ S, u ∈ Uad}. (4.36)

A condition on S

(S) The target S satisfies the ρ0-internal sphere condition, i.e., for every x ∈ ∂S, there
exists a unit vector v ∈ R such that

〈v, y − x〉 ≤ 1
2ρ0
· |y − x|2, ∀y ∈ Rn\S.
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Since the internal sphere property is closed with respect to the union operator, one can
see intuitively that the sublevel set,

S(r) = {x ∈ Rn | TS(x) ≤ r},

the set of points reachable from S in time less than equal to r, inherits such property
from S.

Proposition 4.9 Let (H1),(H2) and (S) hold. Assume that TS(·) is continuous in Rn.
Then, for every r > 0, the sublevel set S(r) satisfies the ρ(r)-internal sphere condition
where ρ(r) > 0 can be computed.

Proof. Given any x̄ ∈ ∂S(r), let ū ∈ Uad be an optimal control steering x to S in time
T (x). We set x(t) = yx̄,ū(t) and xr = x(r) ∈ ∂S. Since S satisfies the ρ0-internal sphere
condition, there exists a unit vector pr ∈ NP

Sc(x0) such that

〈pr, zr − xr〉 ≤
1

2ρ0
· |zr − xr|2, ∀zr ∈ Sc. (4.37)

Let p(·) be the adjoint arc which solves the following ODE:
ṗ(t) = −p(t) ·Dxf(x(t), ū(t)), a.e. t ∈ [0, r],

p(T (x̄)) = pr.
(4.38)

We will prove now that p(0) is a proximal normal vector to Sc(r) at x̄ realized by a ball
of radius ρ(r) > 0, i.e.,〈 p(0)

|p(0)|
, z̄ − x̄

〉
≤ 1
ρ(r)

· |z̄ − x̄|2, ∀z̄ ∈ Sc(r). (4.39)

Indeed, let z̄ be in Sc(r). One first has that TS(z̄) ≥ TS(x̄). We set z(t) = yz̄,ū(t) and
zr = z(r). By the dynamics programming principle, one can show that z0 ∈ Sc, this
implies that

〈p0, z0 − x0〉 ≤
1

2ρ0
· |z0 − x0|2. (4.40)

On the other hand, one can estimate that

− d

dt
〈p(t), z(t)− x(t)〉 ≤ C1 · |z(t)− x(t)|2. (4.41)

Hence,
〈p(0), z̄ − x̄〉 ≤ C1 · |z(t)− x(t)|2 + 〈pr, z̄r − x̄r〉.

By Gronwall’s inequality, we have that |z(t) − x(t)| ≤ β(t) · |z̄ − x̄| and |p(0)| ≤ α(t).
Therefore, from the above estimate and (5.36), one concludes the proof. �

Our main result is the following.
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Theorem 4.14 Let (H1),(H2) and (S) hold. Assume that TS(·) is continuous in Rn.
Then, hypo(f) satisfies the θ(·)-external sphere condition.

Sketch of proof. Let x(·), p(·) be in the above proposition.
Step 1: Let

λx̄ = H(x̄, p(0)) = sup
u∈U
〈−p(0), f(x̄, u)〉.

By using the dynamics programming principle, one shows that λx̄ ≥ 0.

Step 2: Showing that
(p(0), λx) ∈ NP

hypo(TS)(x̄, TS(x̄))

is realized by a ball of radius θx > 0, i.e., for all z̄ ∈ Sc, β ≤ TS(z̄), it holds

〈p(0), z̄ − x̄〉+ λx · (β − TS(x)) ≤ 1
2θx
· |(p(0), λx)| · (|z̄ − x̄|2 + |β − TS(x̄)|2). (4.42)

Hint: Using the proposition 4.9 and step 1. �

Corollary 4.5 Under the assumptions in theorem 4.14, TS(·) is locally semiconcave
outside a closed set Γ where Hn−

1
2 (Γ ∩ U) <∞, U is compact. In particular, TS is a.e.

twice differentiable.
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5 Compactness properties of solutions to Hamilton-Jacobi
equations

Consider the first order Hamilton-Jacobi equation
ut(t, x) +H(∇xu(t, x)) = 0,

u(0, ·) = g(·)
(5.1)

where u : [0,+∞[×Rn → R is the value function, H : Rn → R is the Hamilton function
and the notation

ut =
∂u

∂t
, ∇u =

( ∂u
∂x1

, ...,
∂u

∂xn

)
.

The function H satisfies the standard assumptions:

(H1) H is coercive, i.e., lim|p|→∞
H(p)
|p| = +∞,

(H2) H ∈ C2(Rn,R) and D2H(p) ≥ α · In for all p ∈ Rn where α is a positive constant.

Since H is convex and coercive, the Legendre transform L of H is denoted by

L(q) = sup
p∈Rn
{q · p−H(p)} (5.2)

is convex and coercive. Moreover, (H2) implies that

L ∈ C2(Rn,R) and D2L(q) ≤ 1
α
· In ∀q ∈ Rn. (5.3)

Hence, for every g ∈ Lip(Rn,R), the HJ equation (5.1) admits a unique viscosity solution
given by Hopf’s formula:

V (t, x) = min
y∈Rn

{
t · L

(x− y
t

)
+ g(y)

}
(5.4)

and V (0, ·) = g(·). We recall some main properties of the viscosity solution defined by
Hopf’s formulate:

Proposition 5.1 Let V be the viscosity solution of (5.1). Then the followings hold

(i) A functional identity: for each x ∈ Rn and 0 ≤ s < t,

V (t, x) = min
y∈Rn

{
V (s, y) + (t− s) · L

(x− y
t− s

)}
.

(ii) The linear programming principle: Let 0 < s < t, x ∈ Rn and assume that y
is a minimizer for (5.4). Let z = s

t ·x+ (1− s
t ) · y. Then y is the unique minimum

for s · L( z−ws ) + u0(w).

54



(iii) Characteristics: (5.1) admits a unique minimum yx if and only if ∇V (t, ·) is
differentiable at x. Moreover, in this case we have that yx = x− t · ∇H(∇V (t, x)).

From (i) of the above proposition, if we define St : Lip(Rn,R)→ Lip(Rn,R) that

St(g)(·) := min
y∈Rn

{
t · L

(x− y
t

)
+ g(y)

}
and S0(g) = g

for t > 0 and g ∈ Lip(Rn,R), we have that

St+s(g) = St(Ss(g)).

Thus St(·) is a semigroup.

Exercise 19: Proving (iii) in the above proposition.

Lemma 5.1 Let T > 0 and u0 ∈ Lip(Rn,R). Then ST (u0) is semiconcave with semi-
concave constant 2

αT .

Proof. Fix any x, h ∈ Rn, we need to show that

ST (u0)(x+ h) + ST (u0)(x− h)− 2ST (u0)(x) ≤ 2
αT
· |h|2. (5.5)

Let yx be such that

ST (u0)(x) = T · L
(x− yx

T

)
+ u0(yx).

By Hopf’s formula, we have

ST (u0)(x± h) ≤ T · L
(x± h− yx

T

)
+ u0(yx).

It implies that

ST (u0)(x+ h) + ST (u0)(x− h)− 2ST (u0)(x)

≤ T ·
[
L
(x+ h− yx

T

)
+ L

(x− h− yx
T

)
− 2L

(x− yx
T

)]
. (5.6)

Recalling that L is semiconcave with semiconcave constant 2
α , we obtain (5.5). �

Therefore, by using Helly’s theorem, one can show that for any T > 0 the map
ST :

(
Lip(Rn,R

)
, ‖ · ‖W 1,1)→W 1,1

loc (Rn,R) is compact. A natural question is to study a
quantitative compactness of ST .

Definition 5.1 (Komogorove ε-entropy) Let (X, d) be a metric space and K a to-
tally bounded subset of X. For ε > 0, let Nε(K | X) be the minimal number of sets in a
cover of K by subsets of X having diameter no larger than 2ε. Then the ε-entropy of K
is defined as

Hε(K | X) .= log2Nε(K | X).
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Given L,M > 0, we define

C[L,M ] = {u0 ∈ Lip(Rn,R) | Supp(u0) ⊂ [−L,L]n, ‖∇u0‖L∞(Rn,R) ≤M}.

Our goal: is to show that for every T > 0 and for every ε > 0 sufficiently small, it holds

Hε
(
ST (C[L,M ]) | W

1,1
loc (Rn,R)

)
' 1
εn
. (5.7)

5.1 An upper bound of Hε

(
ST (C[L,M ]) | W 1,1

loc (Rn, R)
)

To start this subsection, we recall some basic properties of the elements of ST (C[L,M ]).

Lemma 5.2 Given any T > 0 and u0 ∈ C[L,M ], we have that

(i) Su0
T (·) is semiconcave with semiconcavity constant 2

αT .

(ii) ‖∇ST (u0)‖L∞(Rn,R) ≤M and Supp(ST (u0) + βT ) ⊂ [−LT , LT ]n where

LT = L+ T · sup
‖p‖≤M

DH(p) and βT = T ·H(0). (5.8)

Proof. (i) is prove in Lemma 5.1. Moreover, by recalling Theorem 2.5 we have that
‖∇ST (u0)‖L∞(Rn,R) ≤ ‖∇u0‖L∞(Rn,R) ≤M .

Now, let x /∈ Rn\[−LT , LT ]n be a differentiable point of ST (u0). We will show that

ST (u0)(x) = −βT .

Recalling (iii) of proposition 5.1, we have that

ST (u0)(x) = T · L(DH(∇ST (u0)(x))) + u0(yx)

where yx = x− T ·DH(∇ST (u0)(x)). Since |∇ST (u0)(x)| ≤M , x ∈ Rn\[−LT , LT ]n, by
recalling (5.8), we get that yx ∈ Rn\[−L,L]n. It implies that ∇u0(yx) = 0. Therefore,
since yx is a minimum of T · L

(x−y
T

)
+ u0(y), over Rn, one has that −DL

(x−yx
T

)
=

∇u0(yx) = 0. Hence, ∇ST (u0)(x) = DL(DH(∇ST (u0)(x))) = 0. Thus,

ST (u0)(x) = T · L(DH(0)) = −T ·H(0) = −βT .

The proof in complete. �

For any K,L,M > 0, we denote by

SC[K,L,M ] = {f ∈ SC[K] | ‖Df‖L∞(Rn) ≤M, Supp(f) ⊆ [−L,L]N}

where

SC[K] = {f : Rn → R | f is semiconcave with seminconcavity constant K}.
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From Lemma 5.2, we immediately obtain that

ST
(
C[L,M ]

)
+ βT ⊂ SC[ 2

αT
,LT ,M ] (5.9)

where
LT = L+ T · sup

‖p‖≤M
|DH(p)| and βT = T ·H(0).

This implies that

Corollary 5.1 Given any L,M > 0 and T > 0. For any ε > 0, it holds

Hε
(
ST (C[L,M ]) + βT | W 1,1(Rn,R)

)
≤ Hε

(
SC[ 2

αT
,LT ,M ] | W

1,1(Rn,R)
)

(5.10)

where
LT = L+ T · sup

‖p‖≤M
|DH(p)| and βT = T ·H(0).

We are now going to study on upper estimate for a class of semiconcave functions in
W 1,1(Rn,R). More precisely, we will show that

Hε
(
SC[K,L,M ]

∣∣∣ W 1,1(Rn,R)
)
≤ Γ[K,L,M ] ·

1
εn

ONE DIMENSIONAL CASE (n=1): For every f ∈ SC[K,L,M ], we first have that
g(·) = f(·)− K

2 · | · |
2 is concave. Therefore, D+g : R ⇒ R is a monotone multifunction,

i.e.,
py ≤ px, ∀x < y, px ∈ D+g(x) and py ∈ D+g(y). (5.11)

Since D+g is a.e. differentiable in R, D+g(·) is a.e. univalued in R. Therefore, we can
consider that D+g(·) is a decreasing function. Moreover,

‖D+g(·)‖L∞([−L,L],R) ≤M +KL.

Let f, f̃ be in SC[K,L,M ]. We have that

‖f − f̃‖W1,1(R,R) = ‖f − f̃‖L1(R,R) + ‖D+f −D+f̃‖L1(R,R)

= ‖f − f̃‖L1([−L,L],R) + ‖D+f −D+f̃‖L1([−L,L],R)

≤ (L+ 1) · ‖D+f −D+f̃‖L1([−L,L],R)

= (L+ 1) · ‖D+g −D+g̃‖L1([−L,L],R).

Therefore, one has that for a given ε > 0, it holds

Hε
(
SC[K,L,M ]

∣∣∣ W 1,1(R,R)
)
≤ Hε1

(
DC[L,M+KL] | L1([−L,L],R)

)
(5.12)

where ε1 = ε
2(L+1) and

DC[L,M ] = {F : [−L,L[→ [−M,M [ | F is not increasing}. (5.13)

Therefore, our goal is now to study an upper bound on Hε
(
DC[L,M ] | L1([−L,L],R)

)
.
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Proposition 5.2 Given L,M > 0, for ε > 0 sufficiently small, it holds

Hε
(
DC[L,M ]

∣∣ L1([−L,L],R)
)
≤ 2LM · 1

ε
(5.14)

Proof. Given any N ∈ Z+, we divide [−L,L[ and [−M,M [ into 2N intervals, i.e.,

[−L,L[=
2N−1⋃
i=0

[
− L+

i

2N
,−L+

i+ 1
2N

[
and

]−M,M ] =
2N⋃
i=1

]
−M +

i

2N
,−M +

i+ 1
2N

]
.

Given any function F be in DC[L,M ], we approximate F by a piecewise constant function
F as follows:

F (x) = −M +
k

2N
∀x ∈

[
− L+

i

2N
,−L+

i+ 1
2N

[
if −M + k−1

2N < F
(
− L+ i

2N

)
≤ −M + k

2N . One can compute that

‖F − F‖L1([−L,L],R) ≤
LM

2
· 1
N
. (5.15)

On the other hand, F ∈ F where

FN =
{
F : [−L,L[:→

{
−M +

1
2N

M,−M +
2

2N
M...,

2N
N
M
} ∣∣∣ F is not increasing

}
.

We have that

|F| =
(

2N
N

)
< 22N .

Now, given ε > 0 sufficiently small, we choose N̄ =
⌊
LM
2ε

⌋
+ 1 to obtain that for every

F ∈ DC[L,M ], there exists F ∈ FN such that ‖F − F‖L1([−L,L],R) ≤ ε. Therefore,

DC [L,M ] ⊂
⋃

F∈FN̄

BL1

(
F , ε

)
.

On the other hand,
|F| ≤ 2

2LM
ε

Hence,
Nε
(
DC [L,M ] | L1([−L,L],R)

)
≤ 2

2LM
ε .

The proof is complete. �

Therefore, we obtain that
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Proposition 5.3 Given K,L,M > 0, for ε > 0 sufficiently small, it holds

Hε
(
SC[K,L,M ]

∣∣∣ W 1,1(R,R)
)
≤ Γ[K,L,M ] ·

1
ε

where Γ[K,L,M ] = 4L(L+ 1)(M +KL).

Therefore, by recalling corollary 5.1, we obtain our first result in one dimensional case.

Theorem 5.1 Given any L,M > 0 and T > 0. For ε > 0 sufficiently small, one has

Hε
(
ST (C[L,M ]) + βT | W 1,1(R,R)

)
≤ Γ[KT ,LT ,M ] ·

1
ε

(5.16)

where LT = L+ T · sup‖p‖≤M |DH(p)|, KT = 2
αT .

GENERAL CASE (n ≥ 1): We first introduce some results of monotone functions
which will play a role in this part. A standard reference is in [1].

Definition 5.2 Let F : Rn ⇒ Rn be a multifunction. We say that F is monotone
decreasing if

〈v2 − v1, x2 − x1〉 ≤ 0, ∀xi ∈ Rn, vi ∈ F (xi), i = 1, 2. (5.17)

Moreover, the monotone decreasing function F is maximal if it is maximal with respect
to the inclusion in the class of monotone decreasing functions, i.e.,

F1(x) ⊆ F (x) for all x ∈ Rn =⇒ F1 = F.

Let Dm(F ) = {x ∈ Rn | F (x) 6= ∅} be the domain of F . Given an open set Ω ⊂ Rn

relatively compact in the interior of Dm(F ). From [1] we have that if F is a monotone
decreasing function then F is bounded and almost everywhere univalued in Ω. Therefore,
we can consider F as an element of L∞(Ω,Rn). We recall now a result in [1]:

Proposition 5.4 The monotone function F , viewed as an element in L∞(Ω,Rn), is in
BV (Ω,Rn). Moreover, ∫

Ω
|DF | ≤ 2

n
2 ωn ·

[
diam(Ω) + osc(F,Ω)

]n (5.18)

where ωn is the Lebesgue measure on a unit ball in Rn,

diam(Ω) = sup{|y − x| | x, y ∈ Ω} and osc(F,Ω) = sup
{
|F (y)− F (x)| | x, y ∈ Ω

}
.

For any f ∈ SC[K,L,M ], g(·) = f(·)− K
2 | · |

2 is a concave function. Therefore,

D+g : Rn ⇒ R
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is monotone decreasing. Moreover,

‖D+g(·)‖L∞([−L,L]n,Rn) ≤M +
√
nKL =: M1 (5.19)

and
‖D(D+g)‖BV ([−L,L]n) ≤ 2

3n
2 n

n
2 ωn · [L(

√
nK + 1) +M ]n =: C1. (5.20)

On the other hand, let f, f̃ be in SC[K,L,M ]. We have that

‖f − f̃‖W1,1(Rn,Rn) = ‖f − f̃‖L1(Rn,Rn) + ‖D+f −D+f̃‖L1(Rn,Rn)

= ‖f − f̃‖L1([−L,L]n,Rn) + ‖D+f −D+f̃‖L1([−L,L]n,Rn)

≤ (L+ 1) · ‖D+f −D+f̃‖L1([−L,L]n,Rn)

= (L+ 1) · ‖D+g −D+g̃‖L1([−L,L]n,Rn).

Therefore, one has that for a given ε > 0, it holds

Hε
(
SC[K,L,M ]

∣∣∣ W 1,1(Rn,R)
)
≤ Hε1

(
DC[L,M1,C1] | L1([−L,L]n,Rn)

)
(5.21)

where ε1 = ε
2(L+1) and

DC[L,M1,C1] = {F : [−L,L[n→ [−M1,M1[n | F is not increasing and ‖DF‖BV ≤ C1}.
(5.22)

Kolmogorov-ε entropy of class of monotone function in L1: Let L = [0, L]n and
M = [0,M ]n. We denote F[L,M,C] by a set of multifunctions F : L → M such that
‖F‖BV (L) ≤ C. Our main result is as the following:

Proposition 5.5 For any ε > 0 sufficiently small, it holds

Hε
(
F[L,M,C] | L1(L,Rn)

)
≤ Γ[L,M,C,n] ·

1
εn
,

where Γ[L,M,C,n] = 2n · (LC +
√
nM · Ln)n.

Proof. For a fixed N ∈ N, we divide L into Nn cubes which have a side L
N . More

precisely,
L =

⋃
ι∈{0,...,N−1}n

�ι

where �ι = [ ι1NL,
ι1+1
N L]× ...× [ ιnN L,

ιn+1
N L] for every ι = (ι1, ..., ιn) ∈ {0, ..., N − 1}n.

We first approximate F ∈ F[L,M,C] by F which is constant in �ι. More precisely,
given any F ∈ F[L,M,C], for every ι ∈ {0, ..., N − 1}n, let

F ι =
1

Vol(�ι)
·
∫

�ι
F (x)dx
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be an average of F over �ι. One observes that F ι = (F 1
ι , ..., F

n
ι ) ∈ M. By using

Poincare inequality for a convex domain, we have

‖F − F ι‖L1(int(�ι)) ≤
L

2N
· ‖DF‖BV(int(�ι)). (5.23)

Let F : L →M be such that

F (x) =


F ι if x ∈ int(�ι),

0 if x ∈ L\
⋃
ι∈{0,...,N−1}n int(�ι).

(5.24)

Recalling (5.23), we estimate

‖F − F‖L1(L) =
∑

ι∈{0,...,N−1}n
‖F − F‖L1(int(�ι))

≤ L

2N
·

∑
ι∈{0,...,N−1}n

‖DF‖BV(int(�ι))

≤ L

2N
· ‖DF‖BV(L).

Since ‖DF‖BV(L) ≤ C, we then have

‖F − F‖L1(L) ≤
L

2N
· C. (5.25)

Moreover, fixing i ∈ {1, ..., n}, we denote by ei = (δi1, ..., δ
i
n) where δij = 0 if j 6= i and

δii = 1. For any ι = (ι1, ..., ιn) ∈ {0, ..., N − 1}n be such that ιi ∈ {0, ..., N − 2}, we set
ῑ = ι+ ei where ei is the i− th coordinate vector of Rn. We compute

F ῑ − F ι =
Ln

Nn
·
∫

�ι
F
(
x+

L

N
ei

)
− F (x)dx.

Since F is monotone decreasing, we have

〈F ῑ − F ι, ei〉 =
Ln−1

Nn−1
·
∫

�ι

〈
F
(
x+

L

N
ei

)
− F (x), x+

L

N
ei − x

〉
dx

≤ 0.

This implies that F iῑ ≤ F
i
ι. Therefore, by the same argument, one can show that

F
j
ι+ej ≤ F

j
ι ∀j ∈ {1, ..., n}, ι ∈ {0, ..., N − 1}n. (5.26)

Now, dividing [0,M ] into N intervals

[0,M [=
[
0,
M

N

[⋃
...
⋃[N − 1

N
M,M

[
,
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we construct a new function F̃ : L → M which corresponds to F . For any ι ∈
{0, ..., N − 1}n, for each i ∈ {1, ..., n}, we set F̃ iι = (k+ 1

2) · MN if F iι ∈
[
k · MN , (k+1) · MN

[
.

We define F̃ : L →M as

F̃ (x) =


F̃ι = (F̃ 1

ι , ..., F̃
n
ι ) if x ∈ int(�ι),

0 if x ∈ L\
⋃
ι∈{0,...,N−1}n int(�ι).

(5.27)

For every ι ∈ {0, ..., N − 1}n, it holds

|F̃ι − F ι| ≤
√
n

2
·M
N
.

Thus,

‖F̃ − F‖L1(L) ≤
√
nM · Ln

2
· 1
N
.

Combining the above estimate with (5.25), we obtain that

‖F̃ − F‖L1(L) ≤ Γ1
[L,M,C,n] ·

1
N

(5.28)

where Γ1
[L,M,C,n] = LC

2 +
√
nM ·Ln

2 .

On the other hand, (5.26) implies that

F̃ jι+ej ≤ F̃
j
ι ∀j ∈ {1, ..., n}, ι ∈ {0, ..., N − 1}n. (5.29)

Let F̃ be the set of all functions F̃ : L →
{

0, (0 + 1
2) · MN , ..., ((N − 1) + 1

2) · MN
}n

that are
constant in each int(�ι) for all ι ∈ {0, ..., N − 1}n, equal to 0 in L\

⋃
ι∈{0,...,N−1}n int(�ι)

and satisfy (5.29). We are now giving an upper bound of |F̃ |. Fixing i ∈ {1, ..., n}, we
define

Ji = {ι ∈ {0, ..., N − 1}n | ιi = 0}.

We have that |Ji| = Nn−1. For any ι ∈ Ji, we denote by Kiι the number of sets
{F̃ iι , F̃ iι+ei , ..., F̃

i
ι+(N−1)·ei} such that F̃ iι+k·ei ∈

{
(0 + 1

2) · MN , ..., ((N − 1) + 1
2) · MN

}
and

F̃ iι+(k+1)·ei ≤ F̃ iι+k·ei . One has that Kiι ≤ 22N (see in [27]). Hence by recalling that
|Ji| = Nn−1, if we define Ki as the number of sets{

F̃ iι ∈
{

(0 +
1
2

) · M
N
, ..., ((N − 1) +

1
2

) · M
N

} ∣∣∣ ι ∈ {0, ..., N − 1}n
}

such that F̃ iι+ei ≤ F̃
i
ι for all ι ∈ {0, ..., N − 1}n, then we have that Ki ≤ 22Nn

. Therefore,
by letting i be from 1 to N , we obtain that

|F̃ | ≤ 22nNn ≤ 2(2N)n . (5.30)
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Now, given any 0 < ε < Γ1
[L,M,C,n], we choose N =

⌊
Γ1

[L,M,C,n]

ε

⌋
+ 1. From (5.28) and

(5.30), we finally obtain that

Hε
(
F[L,M,C] | L1

(
L
))
≤ Γ[L,M,C,n] ·

1
εn

where Γ[L,M,C,n] =
(

2 · Γ1
[L,M,C,n]

)n
. The proof is complete. �

Remark 5.1 Given any L1 < L2, M1 < M2 and C > 0, we denote by L2
1 = [L1, L2] and

M2
1 =]M1,M2[. Let F[L2

1,M2
1,C] be a set of functions F : L2

1 →M2
1 which are monotone

decreasing in L2
1 and ‖F‖BV(L2

1) ≤ C. Then, for every ε > 0, one has that

Hε
(
F[L2

1,M2
1,C] | L1

(
L2

1)
)
≤ Γ[L2

1,M2
1,C,n] ·

1
εn

where Γ[L2
1,M2

1,C,n] = 2n · (C · (L2 − L1) +
√
n · (M2 −M1) · (L2 − L1)n)n.

Therefore, by recalling (5.21), we obtain that

Theorem 5.2 Given any L,M,K > 0, for ε > 0 sufficiently small, it holds

Hε
(
SC[K,L,M ] | W1,1

(
Rn,R

))
≤ ΓSC[K,L,M,n] ·

1
εn

(5.31)

where

ΓSC[K,L,M,n] = 2n
2+3n(L+ 1)n

(
2n/2ωnnn/2L(L+M +K

√
nL)n +

√
nLn(M +K

√
nL)

)n
.

(5.32)

Finally, by recalling Corollary 5.1, we have that

Theorem 5.3 Let H satisfy (H). For every ε > 0 and for every T > 0, we have that

Hε(ST (C[L,M ]) + βT | W 1,1(Rn)) ≤ ΓSC[KT ,LT ,M,n] ·
1
εn

(5.33)

where LT = L + T · sup‖p‖≤M DH(p), KT = 2
αT , βT = T · H(0) and ΓSC[KT ,LT ,M,n] is

computed by (5.32).
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5.2 An lower bound of Hε

(
ST (C[L,M ]) | W 1,1

loc (Rn, R)
)

We start this subsection with a controllability result.

Theorem 5.4 Given K,L,M > 0 and time T > 0 such that

KT ≤ 1
2αM

where αM = ‖DH2(p)‖L∞([−M,M ]n). (5.34)

Then, it holds
SC[K,L,M ] ⊂ ST (C[LT ,M ]) + βT (5.35)

provided that LT = L+ T · sup‖p‖≤M DH(p) and βT = T ·H(0).

Proof. Let uT be any function in SC[K,L,M ]−βT . We need to find a function u0 ∈ C[L,M ]

such that ST (u0) = uT . Set

w0(x) = −uT (−x), ∀x ∈ Rn.

Since uT ∈ SC[K,L,M ] − βT , we have that

(i) w0(x) = βT for all x ∈ Rn\[−L,L]n and ‖Dw0‖L∞(Rn) < M ,

(ii) w0 is semiconvex with semiconvexity constant K.

We define w : [0, T ]× Rn → R be as the following:

w(t, x) = St(w0)(x), ∀(t, x) ∈ [0, T ]× Rn. (5.36)

From lemma 5.2, one can get that w(T, ·) is lipschitz and ‖∇w(T, ·)‖L∞(Rn) < M . More-
over, since βT = T ·H(0)

w(T, x) = 0, ∀x ∈ Rn\[−LT , LT ]n. (5.37)

Now, we set
u(t, x) = −w(T − t,−x), ∀(t, x) ∈ [0, T ]× Rn.

One first has that
u(0, ·) ∈ C[LT ,M ].

On the other hand, if u is differentiable at (t0, x0) ∈ [0, T ]× Rn then we have

ut(t0, x0) = wT (T − t0,−x0) and ∇u(t0, x0) = ∇w(T − t0,−x0).

Hence, since w is the viscosity solution of (2.22), we have

ut(t0, x0) +H(∇u(t0, x0)) = 0.

It means that u satisfies (2.22) at (t0, x0). It is well-known from the Hopf’s formula
that w is lipschitz in [0, T ]× Rn. It implies that u is lipschitz in [0, T ]× Rn. Therefore,
u solves (2.22) almost everywhere in [0, T ] × Rn. Our goal is now to show that u is a
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viscosity solution of (2.22) in [0, T ]×Rn. Indeed, by the uniqueness of viscosity solutions
of (2.22), from Corollary 1.5.7 in [14], we need to check that for every t ∈ (0, T ], it holds

u(t, x+ h) + u(t, x− h)− 2u(t, x) ≤ C ·
(

1 +
1
t

)
· |h|2, ∀x, h ∈ Rn. (5.38)

Recalling that u(t, x) = −w(T − t,−x), (5.38) holds if we show there exist a constant
C1 > 0 such that

w(t, x+ h) + w(t, x− h)− 2w(x) ≥ −C1 · |h|2, ∀t ∈ [0, T ], x, h ∈ Rn. (5.39)

Fixing t ∈ (0, T ], for every x, h ∈ Rn, let y+
h be a minimum of miny∈Rn

{
t · L

(
x+h−y

t

)
+ w0(y)

}
.

This implies that

DL
(x+ h− y+

h

t

)
= νy+

h
∈ D−w0(y+

h ) (5.40)

By Hopf’s formula, it holds

w(t, x+ h) = t · L
(x+ h− y+

h

t

)
+ w0(y+

h ).

Similarly, let y−h be a minimum of miny∈RN
{
t · L

(
x−h−y

t

)
+ w0(y)

}
, we also have that

DL
(x− h− y−h

t

)
= νy−h

∈ D−w0(y−h ). (5.41)

and

w(t, x− h) = t · L
(x− h− y−h

t

)
+ w0(y−h ).

On the other hand, by Hopf’s formula

w(t, x) ≤ t · L
(x− y+

h +y−h
2

t

)
+ w0

(y+
h + y−h

2

)
.

Hence, we get that

w(t, x+ h) + w(t, x− h)− 2w(t, x) ≥ w0(y+
h ) + w0(y−h )− 2w0

(y+
h + y−h

2

)
+ t ·

[
L
(x+ h− y+

h

t

)
+ L

(x− h− y−h
t

)
− 2 · L

(x− y+
h +y−h

2

t

)]
.

Since L is convex and w0 is semiconvex with semiconvexity constant K, we obtain from
the above inequality that

w(t, x+ h) + w(t, x− h)− 2w(t, x) ≥ −K
4
· |y+

h − y
−
h |

2. (5.42)
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From (5.40) and (5.41), one gets that〈
DL
(x+ h− y+

h

t

)
−DL

(x− h− y−h
t

)
,−

y+
h − y

−
h

t

〉
=
〈
νy+
h
− νy−h ,−

y+
h − y

−
h

t

〉
. (5.43)

By the semiconvex property of w0, we can estimate the right hand side of (5.43) as

〈
νy+
h
− νy−h ,−

y+
h − y

−
h

t

〉
≤ K

t
· |y+

h − y
−
h |

2. (5.44)

On the other hand,

〈
DL
(x+ h− y+

h

t

)
−DL

(x− h− y−h
t

)
,−

y+
h − y

−
h

t

〉
=∫ 1

0

〈
D2L(zτ )

(2h− (y+
h − y

−
h )

t

)
,−

y+
h − y

−
h

t

〉
dτ (5.45)

where zτ = τ · x+h−y+
h

t + (1− τ) · x−h−y
−
h

t . From (5.40), (5.41) and ‖w0‖L∞(Rn) ≤M , we
have that |zτ | ≤ M1 = ‖DL−1‖L∞([−M,M ]n) for all τ ∈ [0, 1]. Hence, ‖D2L(zτ )‖ ≤ KM

where KM = ‖D2L‖L∞([−M1,M1]n), Thus,∫ 1

0

〈
D2L(zτ )

(2h
t

)
,−

y+
h − y

−
h

t

〉
dτ ≥ −2KM ·

|h| · |y+
h − y

−
h |

t2
.

On the other hand, since αM = ‖DH2(p)‖L∞([−M,M ]n), we have that DH2(p) ≤ αM · I
for all p ∈ [−M,M ]n. Hence, for every q = DL−1(p) where p ∈ [−M,M ]n, one has that

DL2(q) = [D2H(p)]−1 ≥ 1
αM
· I.

Thus, ∫ 1

0

〈
D2L(zτ )

(
−
y+
h − y

−
h

t

)
,−

y+
h − y

−
h

t

〉
dτ ≥ 1

αM
·
|y+
h − y

−
h |

2

t2
.

Therefore, one gets that〈
DL
(x+ h− y+

h

t

)
−DL

(x− h− y−h
t

)
,−

y+
h − y

−
h

t

〉
≥ 1
αM
·
|y+
h − y

−
h |

2

t2
−2KM ·

|h| · |y+
h − y

−
h |

t2
.

(5.46)
Combining (5.43), (5.44) and (5.46), we obtain that

2KM · |h| · |y+
h − y

−
h | ≥

( 1
αM
−Kt

)
· |y+

h − y
−
h |

2.

Since t ∈ (0, T ], by recalling (5.34), we get from the above inequality that

|y+
h − y

−
h | ≤ 4KMαM · |h|.
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Hence, from (5.42), we obtain that for every t ∈ (0, T ], it holds

w(t, x+ h) + w(t, x− h)− 2w(t, x) ≥ −C1 · |h|2. (5.47)

where C1 = 4KK2
Mα

2
M . Therefore, u is a viscosity of (2.22) in [0, T ] × Rn. By the

uniqueness of viscosity solutions of (2.22) if we set u0(·) = u(0, ·) ∈ C[LT ,M ], we have
that St(u0)(·) = u(t, ·). Moreover, one can see that ST (u0) = uT . The proof is complete.
�

Remark 5.2 Given K,M > 0 and time T > 0 such that

KT ≤ 1
2αM

where αM = ‖DH2(p)‖L∞([−M,M ]n). (5.48)

Let w0 : Rn → R be semiconvex with the semiconvex constant K and ‖Dw0‖L∞(Rn) ≤M .
Then, 

wt(t, x) +H(∇xw(t, x)) = 0,

w(0, ·) = w0(·)
(5.49)

admits the uniquess viscosity solution which is in C1(Rn × (0, T )).

Proof. Let w be the uniqueness viscosity solution of (5.49). From the above proof, one
has that w(·, ·) is locally semiconcave in (0,+∞) × Rn and w(t, ·) is smooth for every
t ∈ (0, T ). Given any (t, x) ∈ Rn × (0, T ), let (λ, v) ∈ R × Rn be in D∗w(t, x). There
exists a sequence {(tk, xk)}k converging to (t, x) such that w is differentiable at (tk, xk)
and

lim
k→∞

(wt(tk, xk),∇xw(tk, xk)) = (λ, v). (5.50)

Since w(t, ·) is differentiable at x, one first has that v = ∇xw(t, x). Thus,

lim
k→∞

∇xw(tk, xk) = ∇xw(t, x).

On the other hand, we have that

wt(tk, xk) = −H(∇xw(tk, xk)).

Hence,
λ = lim

k→∞
wt(tk = − lim

n→∞
H(∇xw(tk, xk)) = −H(∇xw(t, x)).

Therefore, D∗w(t, x) = {(−H(∇xw(t, x)),∇xw(t, x))}. Hence, from proposition 4.5 we
have that D+w(t, x) is singleton for all (t, x) ∈ Rn × (0, T ). The proof is complete by
recalling proposition 4.5. �

Our main goal is now to give a lower bound on Hε
(
SC[K,L,M ]

∣∣ W1,1(Rn,R)
)

. We
will first introduce a bump function which is a sample to construct a subset of SC[K,L,M ]

such that we can give an estimate on the Kolmogorov-ε of such subset in W1,1(Rn,R).
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A bump function: consider the function c : [0, 1]→ R such that
c(r) = (1

4)2 −
∫ r

0 (1
4 − |

1
4 − s|)ds ∀r ∈ [0, 1

2 ],

c(r) = 0 ∀r ∈ [1
2 , 1].

(5.51)

One see that

c′(r) =
∣∣∣1
4
− r
∣∣∣− 1

4
∀r ∈

[
0,

1
2

]
and c′(r) = 0 ∀r ∈

[1
2
, 1
]
.

Thus, c′(·) is Lipschitz with Lipschitz constant 1 in [0, 1] and ‖c′‖L∞([0,1]) ≤ 1
4 .

Given L,K > 0, by setting c̄(r) = KL2 · c( rL) for every r ∈ [0, L], we have that

(i) c̄(r) = c̄′(r) = 0 ∀r ∈ [L2 , L] and 0 ≤ c̄(r) ≤ KL2

16 ∀r ∈ [0, L2 ],

(ii) ‖c̄′‖L∞([0,L]) ≤ KL
4 and c̄′(·) is Lipschitz with Lipschitz constant K.

We construct now the bump function b : [−L,L]n → R as the followings:

b(x) :=
1
3
· c̄(|x|), ∀x ∈ B

(
0,
L

2

)
and b(x) = 0 ∀x ∈ [−L,L]n\B

(
0,
L

2

)
. (5.52)

One can check that

∇b(x) =
1
3
· c̄′(|x|) · x

|x|
, ∀x ∈ [−L,L]n\0 and ∇b(0) = 0. (5.53)

Thus,

‖∇b‖L∞([−L,L]n) ≤
KL

12
(5.54)

Moreover, one can also compute that

‖∇b‖L1([−L,L]n) =
1
3
·
∫
B(0,L)

|c̄′(|x|)|dx =
KL

3
·
∫
B(0,L)

∣∣∣c′( |x|
L

)∣∣∣dx
=

KLn+1

3
·
∫
B(0,1)

|c′(|x|)|dx =
2KLn+1ωn−1

3

∫ 1

0
|c′(r)|rn−1dr

=
2KLn+1ωn−1

3
· 2n − 1

2n(n+ 1)4n
.

Thus, by setting

C[K,L,n] =
2KLn+1ωn−1

3
· 2n − 1

2n(n+ 1)4n
, (5.55)

we have that
‖∇b‖L1([−L,L]n) = C[K,L,n]. (5.56)
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Since c̄′(·) is lipschitz with lipschitz constant K, we have that for x ∈ [−L,L]n\0, it holds

|∇b(x)−∇b(0)| = |c̄′(|x|)− c̄′(0)| ≤ K · |x|.

For x, y ∈ [−L,L]n\0, we compute that

|∇b(y)−∇b(x)| =
1
3
·
∣∣∣c̄′(|y|) · y|y| − c̄′(|x|) · x|x| ∣∣∣

≤ 1
3
· |c̄′(|y|)− c̄′(|x|)|+ 1

3
· c̄′(|x|) ·

∣∣∣ y|y| − x

|x|

∣∣∣
≤ K

3
·
∣∣|y| − |x|∣∣+

K

3
· |x| ·

(∣∣∣ y|y| − y

|x|

∣∣∣+
∣∣∣y − x|x| ∣∣∣)

≤ K · |y − x|.

It implies that ∇b is lipschitz with lipschitz constant K in [−L,L]n.
Given N ∈ Z+, we define bN : [− L

N ,
L
N ]n → R as

bN (x) =
1
N2
· b(Nx), ∀x ∈

[
− L

N
,
L

N

]n
.

One computes that ∇bN (x) = 1
N · ∇b(Nx) for all x ∈ [− L

N ,
L
N ]n. Thus, bN (·) satisfies

the following properties:

(i) bN (x) = 0 for all x ∈ [− L
N ,

L
N ]n\B(x, L

2N ) and ‖∇bN‖L∞([− L
N
, L
N

]n) ≤
KL
12N ,

(ii) ‖∇bn‖L1([− L
N
, L
N

]n) = C[K,L,n]

Nn+1 where C[K,L,n] = 2KLn+1ωn−1

3 · 2n−1
2n(n+1)4n ,

(iii) bN and −bN are semiconcave with semiconcavity constant K.

Our main result is as follow:

Theorem 5.5 Given K,L,M > 0. For ε > 0 sufficiently small, it holds for every fixed
β ∈ Rn

Hε
(
SC[K,L,M ] | W1,1(Rn,R)

)
≥ Γ−[K,L,n] ·

1
εn

(5.57)

where Γ−[K,L,n] =
Cn

[K,L,n]

2n+3 and C[K,L,n] = 2KLn+1ωn−1

3 · 2n−1
2n(n+1)4n .

Proof. Given N ∈ Z+, we divide [−L,L]n into Nn cubes which have the side 2L
N . More

precisely,
[−L,L]n =

⋃
ι∈{1,...,N}n

�ι (5.58)

where �ι = (−L, ...,−L) + L
N · ι+ [− L

N ,
L
N ]n, ι ∈ {1, ..., N}n. For each ι ∈ {1, .., N}n, we

denote by

Oι = (−L, ...,−L) +
[
ι−
(1

2
, ...,

1
2

)]
· L
N

the center of �ι. The bump function which we are going to define on �ι is

bιN (x) = bN (x− Cι), ∀x ∈ �ι and bιN (x) = 0, ∀x ∈ Rn\�ι.

One sees that,
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(i) bιN (x) = 0 for all x ∈ Rn\B(Cι, L
2N ),

(ii) ‖∇bιN‖L∞(Rn) ≤ KL
12N and ‖∇bιN‖L1(Rn) = ‖∇bN‖L1([− L

N
, L
N

]n),

(iii) bιN and −bιN are semiconcave with semiconcave constant K.

Let
∆N :=

{
δ = (δι)ι∈{1,...,N}n

∣∣∣ δι ∈ {−1, 1}
}

we construct our class of semiconcave functions with semiconcavity constant K which
have a support contained in [−L,L]n and whose gradients are bounded by M as follow:

UN =
{
uδ =

∑
ι∈{1,...,N}n

δι · bιN
∣∣∣ δ ∈ ∆N

}
. (5.59)

For every u ∈ UN , we have that for N ≥ KL
12M

Supp(u) ⊂ [−L,L]n, ‖∇u‖L∞(Rn) ≤M

and u is semiconcave with semiconcavity constant K. Therefore,

UN ⊂ SC[K,L,M ]. (5.60)

Moreover, |UN | = 2N
n
. Fixing δ̄ ∈ ∆N , for every δ ∈ ∆N , we have that

‖uδ̄ − uδ‖W1,1(Rn) = 2d(δ̄, δ) · ‖bN‖W1,1([− L
N
, L
N

]n). (5.61)

where d(ῑ, ι) = Card{ι ∈
{

1, ..., N}n | δ̄ι 6= δι
}

. By Poincare inequality, we obtain that

‖bN‖L1([− L
N
, L
N

]n) ≤
L

N
· ‖∇bN‖L1([− L

N
, L
N

]n).

Thus, for N ≥ L, it holds

‖bN‖W1,1([− L
N
, L
N

]n) ≤ 2 · ‖∇bN‖L1([− L
N
, L
N

]n) =
2C[K,L,n]

Nn+1
.

Therefore, from (5.61), we have that

‖uδ̄ − uδ‖W1,1(Rn) ≤ ε if d(δ̄, δ) ≤ Nn+1ε

4C[K,L,n]
. (5.62)

We define now
Iδ̄,N (ε) =

{
δ ∈ ∆N

∣∣∣ ‖uδ̄ − uδ‖W1,1(Rn) ≤ ε
}
.

Noting that CN (ε) = |Iδ̄,N (ε)| is independent the choice of δ̄. From (5.62), one has that

CN (ε) ≤

⌊
Nn+1ε

4C[K,L,n]

⌋
∑
l=0

(
Nn

l

)
(5.63)
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where bαc = max{z ∈ Z | z ≤ α}. Let X1, ..., XNn be independent random variables
with Bernoulli distribution P(Xi = 1) = P(Xi = 0) = 1

2 , then for any k ≤ Nn, one has

k∑
l=0

(
Nn

l

)
= 2N

n · P(X1 + ...+XNn ≤ k). (5.64)

Setting SNn = X1 + ...+XNn , and using Hoeffding’s inequality ([22, Theorem 2]) that,
for any fixed µ > 0, gives

P(SNn − E(SNn) ≤ −µ) ≤ exp
(
−2µ2

Nn

)
, (5.65)

where E(SNn) denotes the expectation of SNn . Since, by the above assumptions on
X1, . . . , XNn , we have E(SNn) = Nn

2 , taking µ = Nn

2 −
⌊

Nn+1ε
4C[K,L,n]

⌋
and assuming

Nn+1ε

4C[K,L,n]
≤ Nn

2

we deduce from (5.63), (5.64) and (5.65) that

CN (ε) ≤ 2N
n · exp

(
−

2
(
Nn

2 −
⌊

Nn+1ε
4C[K,L,n]

⌋)2

Nn

)
≤ 2N

n · exp
(
− Nn

2
·
(

1− Nε

2C[K,L,n]

)2)
.

By choosing

N̄ =
⌊C[K,L,n]

ε

⌋
+ 1. (5.66)

We obtain that

CN̄ (ε) ≤ 2N̄
n · exp

(
− N̄n

8

)
.

Thus, by recalling that |UN̄ | = 2N̄
n
, we have that the number of sets in an ε

2 -cover of
UN̄ is at least

N ε
2
(UN̄ | W 1,1(Rn)) ≥ exp

(N̄n

8

)
≥ exp

(Cn[K,L,n]

23 · εn
)
. (5.67)

Since UN̄ ⊂ SC[K,L,M ], we get that

N ε
2
(SC[K,L,M ] | W 1,1(Rn)) ≥ exp

(Cn[K,L,n]

23 · εn
)
.

Therefore, for ε > 0 sufficiently small, we have that

Nε(SC[K,L,M ] | W 1,1(Rn)) ≥ exp
( Cn[K,L,n]

2n+3 · εn
)
.

The proof is complete. �

We now state our main result of the lower estimate of compactness.
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Theorem 5.6 Given L,M ≥ 0. For T > 0 and ε > 0 sufficiently small, it holds

Hε(ST (C[L,M ]) + βT | W 1,1(Rn)) ≥
Γ−

[KT ,
L
2
,n]

ln(2)
· 1
εn

(5.68)

where KT = 1
T |D2H(0)| and βT = T ·H(0).

Proof. Let 0 < h < M be such that

αh = ‖DH2(p)‖L∞([−h,h]n) ≥
1
2
· |DH2(0)| and T · sup

‖p‖≤h
|DH(p)| ≤ L

2
. (5.69)

We have first that
ST (C[L,h]) ⊂ ST (C[L,M ]). (5.70)

From theorem 5.4, we get

SC[
KT ,

L
2
,h
] ⊂ ST (C[L,h]) + βT

where βT = T ·H(0) and KT = 1
T |D2H(0)| . Therefore, (5.70) implies that

SC[
KT ,

L
2
,h
] ⊂ ST (C[L,M ]) + βT . (5.71)

From theorem 5.5, we have that

Hε
(
SC[

KT ,
L
2
,h
] | W1,1(Rn)

)
≥

Γ−
[KT ,

L
2
,n]

ln(2)
· 1
εn
. (5.72)

By combining (5.71) and (5.72), we complete the proof. �
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