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Abstract

We study optimal strategies for a borrower, who services a debt in an infinite time
horizon, taking into account the risk of possible bankruptcy. In a first model, the interest
rate as well as the instantaneous bankruptcy risk are given, increasing functions of the
total amount of debt. In a second model only the bankruptcy risk is given, while the
interest rate is determined from a Nash equilibrium, in a game between the borrower and
a pool of risk-neutral lenders. This yields a non-standard optimal control problem for the
borrower, where the dynamics involves all future values of the control. For this model,
optimal repayment strategies are constructed, in open-loop form. In addition, for optimal
strategies in feedback form, our analysis shows that the value function should satisfy a
new kind of nonlinear, degenerate elliptic equation.

1 Introduction

This paper is concerned with problems of optimal debt management, in an infinite time hori-
zon. Denoting by x(t) the total amount of debt at time t, we seek optimal repayment strategies
which minimize a total cost, exponentially discounted in time. A key feature of our models is
the possibility of bankruptcy. When this happens, the borrower incurs in a very large cost B,
while the lenders lose part of the money they invested.

As it is well known, there is no way to predict with certainty the time Tb when bankruptcy
occurs [11]. We thus regard Tb as a random variable. Its probability distribution is described
in terms of a instantaneous bankruptcy risk ρ(x), depending on the total amount of debt.
Roughly speaking, the probability that the borrower goes bankrupt within the time interval
[t, t + ε] is measured by ε ρ(x(t)) + o(ε), where o(ε) denotes a higher order infinitesimal as
ε → 0.

In most of the literature [3, 5, 6, 7, 9], the interest rate is either given a priori, or modeled
as a random variable. A distinguished feature of our model is that the interest rate on new
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loans is determined by the competition among a a pool of risk-neutral lenders. In this game-
theoretical setting, the current rate is thus affected by the anticipation of the bankruptcy risk
over the entire future. This yields a highly non-standard optimal control problem, where the
dynamics in the state space depends not only on the instantaneous value of the control, but
also on all of its future values.

In Section 2 we first consider a model where both the bankruptcy risk and the interest rate
are given functions of the total amount of debt. As the debt increases (measured as a fraction
of the yearly income of the borrower), so does the bankruptcy risk. In turn, this forces an
increase of the interest rate charged by lenders, to offset the possible loss of their capital. For
this model, the problem of minimizing the expected cost to the borrower can be formulated
as a deterministic optimal control problem in infinite time horizon, exponentially discounted
in time.

A detailed description of the optimal feedback control is provided in Section 3. Toward this
goal we analyze the Hamilton-Jacobi differential equation for the value function, constructing
its unique viscosity solution, with the appropriate boundary conditions.

In Section 4 we introduce a further model, where only the bankruptcy risk is exogenously
given. Here the two state variables are the total amount of debt X and the average interest
rate A payed on the various portions of this debt. We assume that the borrower announces
in advance his entire repayment strategy t 7→ u(t). Here u(t) ∈ [0, 1] describes the portion of
the borrower’s income which is allocated to servicing the debt, at time t ∈ [0,+∞[ . In turn,
the interest rate I(τ) charged on new loans initiated at time τ is determined by the perfect
competition within a pool of risk-neutral lenders. This will depend on the bankruptcy risk
ρ(X(t)) at all future times t ∈ [τ,+∞[ . As a consequence, the time derivatives Ẋ(τ), Ȧ(τ)
depend not only on X(τ), A(τ) and u(τ), but also on all future values of the debt, i.e. on the
function t 7→ X(t), for t ≥ τ .

Given initial conditions
X(0) = X0 , A(0) = A0 , (1.1)

our analysis shows that, contrary to what happens for standard control systems, in general the
control function u(·) does not uniquely determine the future evolution of the state. Indeed,
for the same repayment strategy u(·), the competition among lenders may produce infinitely
many Nash equilibrium solutions. In connection with the financial model, this fact can be
interpreted as follows. If lenders regard their investment as being risky, they will charge a
high interest rate. In turn, this will push up the size of the debt, and hence the chances of
bankruptcy. In other words, the widespread belief that the investment is risky makes high
risk a reality. On the other hand, given the same initial amount of debt, a widespread belief
that the investment is safe will result in a lower interest rate, thus reducing the actual chances
of bankruptcy.

In Section 5 we prove that, for any given initial data (1.1), there exists a control u∗(·) and a
corresponding solution (X(·), A(·)) which minimizes the expected total cost to the borrower.

Section 6 contains a more detailed analysis of the set of solutions (X,A) corresponding to a
given control function u(·). Thanks to a monotonicity property of the ODEs for the variables
X and A, we show that a unique minimal solution (X∗, A∗) can be singled out. For every
time t ≥ 0, X∗(t) provides the pointwise minimum among all debt sizes X(t) that can be
achieved for the same control and initial data. By selecting this minimal solution we obtain a
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deterministic optimal control problem for the borrower.

As proved in Theorem 3, under natural conditions, this minimal solution provides the smallest
expected cost to the borrower. However, in some exceptional cases where the bankruptcy cost
is small compared with the cost of servicing the debt, we show that the minimal solution is
not the most advantageous for the borrower.

In Section 7 we observe that the optimal strategy for the borrower may not always be time-
consistent. More precisely, let t 7→ u∗(t) be an optimal control and let t 7→ (X∗(t), A∗(t)) be
the corresponding optimal trajectory. For any τ > 0 one can consider the new optimization
problem with initial data

X(0) = X∗(τ), A(0) = A∗(τ).

A dynamic programming principle would imply that the control t 7→ u∗(t− τ) is optimal for
this new problem. However, this is not true in general. Indeed, in a game-theoretical setting,
it is well known that optimal Stackelberg solutions may not be time-consistent [2].

Modeling the evolution of the debt as a game between the borrower and a pool of lenders, in
Section 7 we seek Nash equilibrium solutions in feedback form. Formal computations show
that, if a smooth value function V (X,A) exists, it satisfies a second order, highly nonlinear,
degenerate elliptic equation. Unfortunately, PDEs of this kind do not fall within the known
theory. Their properties will be the topic of a future investigation.

For the basic theory of optimal control and viscosity solutions we refer to [1, 4].

2 The infinite horizon optimal control problem

The model includes the following constants:

• r = discount rate,

• B = bankruptcy cost to the borrower,

and the variables

• t = time, measured in years,

• x = total debt, measured as a fraction of the yearly income of the borrower,

• u ∈ [0, 1] = payment rate, as a fraction of the income,

• α(x) = interest rate payed on debt at a given time,

• ρ(x) = instantaneous risk of bankruptcy,

• L(u) = cost to the borrower for implementing the control u.

We regard u as the control variable for the borrower. Observe that, in this model, both α and
ρ are given functions of x. If the total debt is large, so is the bankruptcy risk and thus the
interest rate charged by lenders. The following assumptions will be used.
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(A1) The discount rate is a constant r > 0. The functions α, ρ are continuously differentiable
for x ∈ [0,M [ and satisfy

α , α′ ≥ 0 , ρ , ρ′ ≥ 0 , for all x ∈ [0,M [ , (2.1)

lim
x→M−

α(x) = lim
x→M−

ρ(x) = +∞. (2.2)

Moreover, L is twice continuously differentiable for u ∈ [0, 1[ and satisfies

L(0) = 0, L′ > 0, L′′ > 0, lim
u→1−

L(u) = +∞. (2.3)

In (2.2) the large constant M denotes a maximum size of the debt, beyond which bankruptcy
immediately occurs. Calling Tb the random time at which bankruptcy occurs, its distribution
is determined as follows. If at time τ the borrower is not yet bankrupt and the total debt is
x(τ) = y, then the probability that bankruptcy will occur shortly after time τ is measured by

Prob.
{
Tb ∈ [τ, τ + ε]

∣∣∣ Tb > τ , x(τ) = y
}

= ρ(y) · ε+ o(ε), (2.4)

where o(ε) denotes a higher order infinitesimal as ε → 0. As long as the total debt remains
strictly smaller that M , the probability that the borrower is not yet bankrupt at time t > 0
is thus computed as

Prob.{Tb > t} = exp

{
−

∫ t

0
ρ(x(τ)) dτ

}
. (2.5)

Notice that this depends on the function τ 7→ x(τ). If debt is maintained at a higher level,
then the probability of bankruptcy increases. This reflects lack of confidence in the ability of
the borrower to eventually repay the debt. In turn, a higher bankruptcy risk determines a
higher interest rate α asked by the lenders, to offset the possible loss of capital. This motivates
the assumptions in (2.1).

The last assumption in (2.3) is motivated by the fact that a borrower needs at least part of
his income to survive. Therefore, the cost L(u) approaches infinity as u → 1−.

For a given initial value of the debt

x(0) = y ≥ 0 , (2.6)

the optimal control problem for the borrower can be formulated as follows.

(OCP) Optimal control problem with bankruptcy risk. Given the initial size y of the
debt, find a control t 7→ u(t) ∈ [0, 1] which minimizes the expected cost

J
.
= E

[∫ Tb

0
e−rtL(u(t)) dt +B e−rTb

]
, (2.7)

subject to
ẋ(t) = α(x(t))x(t) − u(t) , x(0) = y , (2.8)

and with the constraint
x(t) ≥ 0 for all t ≥ 0 .
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Here and in the sequel, an upper dot denotes a derivative w.r.t. time. The ODE in (2.8)
accounts for the increase of the total debt, depending on the interest rate α, minus the rate u
at which it is payed back.

Remark 1. One can modify the model, assuming that the income (say, a gross national
product) is not constant, but grows at an exponential rate γ. To handle this more general
case, we introduce the variables

d(t) = total debt, g(t) = yearly income, x(t)
.
=

d(t)

g(t)
, U(t)

.
=

u(t)

g(t)
.

It is reasonable to assume that the bankruptcy risk ρ and hence the interest rate α depend on
the ration x = d/g, while the cost function L depends on U = u/g. The evolution equation
for the total debt (as a fraction of the yearly income) is then expressed by

ẋ(t) =
ḋg − dġ

g2
=

(α(x)d − u) · g − d · γg

g2
= (α(x(t)) − γ))x(t)− U(t).

We thus obtain an optimization problem having exactly the same form as (2.7)-(2.8), simply
by replacing α(x) with α(x)− γ.

We now study the optimal control problem (OCP). Given an initial condition y < M and a
control t 7→ u(t) ∈ [0, 1], by (2.8) one obtains a unique trajectory t 7→ x(t). Call

TM .
= sup

{
t ≥ 0 ; x(t) < M

}
(2.9)

One can think of TM as the first time when the debt reaches M . In this case the interest rate
becomes infinite and bankruptcy occurs instantly. Of course, one may well have TM = +∞.

Remark 2. The time TM ∈ ]0,+∞] is uniquely determined by the initial condition and the
control u(·). On the other hand the time Tb when bankruptcy occurs is random. By (2.4), the
probability that at time t the borrower is not yet bankrupt is computed by

P (t)
.
= Prob.{Tb > t} =





exp

{
−

∫ t

0
ρ(x(τ)) dτ

}
if t < TM ,

0 if t ≥ TM .

(2.10)

Notice that, if TM < ∞ and
∫ TM

0 ρ(x(t))dt < ∞, then there is a positive probability that
bankruptcy occurs exactly at time TM . However, if TM < ∞ and

∫ M

∗

ρ(x)

α(x)
dx = +∞ , (2.11)

then with probability one the bankruptcy must occur before time TM . To see this, choose
x1 ∈ ]y,M [ so large that α(x1)x1 > 1. In this case, when x ≥ x1, by (2.8) the debt is
monotonically increasing in time, hence the inverse function t = t(x) is well defined. Calling
t1 = t(x1) the time when the debt reaches the value x1, we have

∫ TM

0
ρ(x(t)) dt ≥

∫ TM

t1

ρ(x(t)) dt =

∫ M

x1

ρ(x)

α(x)x − u(t(x))
dx ≥

∫ M

x1

ρ(x)

α(x)M
dx = +∞.
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Hence exp
{
−

∫ TM

0 ρ(x(t)) dt
}
= 0.

We also remark that, if TM = +∞, then one may have
∫∞
0 ρ(x(τ)) dτ < ∞. In this case there

is a positive probability that bankruptcy never happens.

Assuming that (2.11) holds, the expected cost in (2.7) can now be written as

J =

∫ ∞

0
ρ(x(t)) exp

{
−

∫ t

0
ρ(x(s)) ds

}{
e−rtB +

∫ t

0
e−rsL(u(s)) ds

}
dt

=

∫ TM

0
exp

{
−rt−

∫ t

0
ρ(x(s)) ds

}{
ρ(x(t))B + L(u(t))

}
dt .

(2.12)

Notice that the term ρ(x(t)) exp
{
−
∫ t

0 ρ(x(s)) ds
}
dt yields the probability that bankruptcy

occurs within the time interval [t, t+ dt]. Moreover

e−rtB = discounted bankruptcy cost, at time t,

∫ t

0
e−rsL(u(s)) ds = total cost of repayments, up to time t.

Using (2.12), the optimization problem (2.7)-(2.8) can now be reformulated as a deterministic
optimal control problem in infinite time horizon, with exponential discount.

minimize: J(u)
.
=

∫ TM

0
e−rtz(t) ·

{
ρ(x(t))B + L(u(t))

}
dt , (2.13)

for the control system with dynamics and initial conditions





ẋ(t) = α(x(t))x(t) − u(t) ,

ż(t) = − ρ(x(t)) z(t)





x(0) = x0 ,

z(0) = z0 = 1 .
(2.14)

In (2.13), the integral ranges up to the time TM = TM(x0, u(·)) defined at (2.9).

3 Structure of the optimal feedback control

Aim of this section is to give a detailed description of the value function and of the optimal
feedback control, for the infinite horizon optimization problem (OCP). The main result is
summarized in Fig. 1. Calling W (y) the expected cost of the strategy that keeps the debt
constantly equal to y, we prove that the value function admits the representation

V (x) = min
y∈A

Z(x, y) ,

where A is a suitable subset of [0,M ] and Z(·, y) is the cost of a suitable strategy that steers
the debt asymptotically to the value y. Each Z(·, y) can be found by solving a specific ODE,
with boundary values Z(y, y) = W (y) if y < M and Z(M,y) = B if y = M . In a generic
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M

W(x)

x

Z(x,y )
k

y
k

Z(x,M)

V

Figure 1: The value function V for the optimization problem (2.7)-(2.8) is obtained as the minimum of
solutions Z(·, y) to suitable ODEs. Here Z(·, y) is the cost of a strategy steering the debt asymptotically
to the value y (or producing bankruptcy in finite time, if y = M).

situation, the set A contains finitely many points. Hence the problem is reduced to the solution
of a small number of ODEs.

Call Ṽ (x0, z0) the value function for the problem (2.13)–(2.14). Then Ṽ provides a viscosity
solution to the Hamilton-Jacobi equation

r Ṽ (x, z) = min
u∈[0,1]

{
Ṽx(x, z) · (α(x)x − u)− Ṽz(x, z) ρ(x)z + z

(
ρ(x)B + L(u)

)}
. (3.1)

Observing that the above equations are linear homogeneous w.r.t. the variable z, we can
introduce the reduced value function

V (x)
.
= Ṽ (x, 1) . (3.2)

Using the identities

Ṽ (x, z) = z Ṽ (x, 1) = z V (x),





Ṽx(x, z) = z Vx(x) ,

Ṽz(x, z) = V (x) ,

from (3.1) we obtain

V (x) =
1

r + ρ(x)
·H(x, V ′(x)), (3.3)

where
H(x, ξ) = min

ω∈[0,1]

{
L(ω)− ξ · ω + ξ · α(x)x+ ρ(x)B

}
. (3.4)

The corresponding optimal feedback control is

U(ξ) = arg min
ω∈[0,1]

{L(ω)− ξ · ω}. (3.5)
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Observe that, for each x > 0, the map ξ 7→ H(x, ξ) is the minimum of a family of linear
functions, hence it is concave down. Moreover, if α(x)x < 1, then

lim
ξ→∞

H(x, ξ) = −∞.

Differentiating w.r.t. ξ one obtains

Hξ(x, ξ) =
∂

∂ξ

(
L(U(ξ))− ξ · U(ξ) + ξ · α(x)x + ρ(x)B

)
= α(x)x− U(ξ) . (3.6)

Therefore, the map ξ 7→ H(x, ξ) attains its maximum at a point ξ♯(x) satisfying

0 = Hξ(x, ξ
♯(x)) = α(x)x − U(ξ♯(x)) . (3.7)

By the optimality condition L′(U(ξ)) = ξ, this yields

ξ♯(x) = L′
(
U(ξ♯(x))

)
= L′(α(x)x). (3.8)

To compute the value function V (·), we first consider the functions

Hmax(y)
.
= max

ξ
H(y, ξ) , W (y)

.
=

1

r + ρ(y)
·Hmax(y).

Notice that W (y) is expected cost achieved by the (constant in time) control u♯(y) = α(y) y
which keeps the debt constant: x(t) ≡ y for all t ≥ 0. Using (2.12), we obtain

W (y) =

∫ ∞

0
e−(r+ρ(y))t

[
ρ(y)B + L(α(y)y)

]
dt =

1

r + ρ(y)
·
[
ρ(y)B + L

(
α(y)y

)]
. (3.9)

The function W is defined on a maximal interval [0, x∗[ , where x∗ ∈ ]0,M [ is implicitly defined
by the identity α(x∗)x∗ = 1. Moreover, W (y) → ∞ as x → x∗−. For convenience, we also
define W (y)

.
= +∞ for y ≥ x∗.

We regard (3.3) as an implicit ODE for the function V . For every x ∈ [0, x∗[, when V > W (x),
this equation does not determine any value of V ′. On the other hand, when

ρ(x)B ≤ (r + ρ(x))V ≤ Hmax(x)

the implicit ODE is equivalent to the differential inclusion

V ′ ∈
{
F−(x, V ) , F+(x, V )

}
, (3.10)

where V ′ = F− and V ′ = F+ are the two solutions of the equation (3.3).

• The value V ′ = F+(x, V ) ≥ ξ♯(x) corresponds to the choice of an optimal control such
that ẋ < 0.

• The value V ′ = F−(x, V ) ≤ ξ♯(x) corresponds to the choice of an optimal control such
that ẋ > 0.

8



For any y0 ∈ [0, x∗[ , we consider the Cauchy problem

Z ′(x) =





F+(x,Z) if y0 < x < x∗,

F−(x,Z) if 0 ≤ x < y0 ,
Z(y0) = W (y0). (3.11)

We shall denote by x 7→ Z(x, y0) the solution to this Cauchy problem. Since the functions
(x, V ) 7→ F±(x, V ) are smooth for V < W (x) but only Hölder continuous w.r.t. V near the
curve where V = W (x), and not defined for V > W (x), the definition of Z(·, y0) requires some
care.

For ε > 0, we denote by Zε the solution to the ODE in (3.11) with initial datum

Zε(y0) = W (y0)− ε .

This solution is uniquely defined on a maximal interval [aε(y0), bε(y0)], where aε, bε are points
where Zε = W . By a comparison argument, for any 0 < ε < ε′ we have

Zε′(·, y0) ≤ Zε(·, y0), aε′(y0) ≤ aε(y0) ≤ y0 ≤ bε(y0) ≤ bε′(y0) . (3.12)

We can thus define the lower solution to the Cauchy problem (3.11) by setting

Z(x, y0) = lim
ε→0+

Zε(x, y0) , x ∈

[
sup
ε>0

aε(y0) , inf
ε>0

bε(y0)

]
.

If the initial size of the debt is x̄ ∈ [a(y0), b(y0)], we think of Z(x̄; y0) as the expected cost
achieved by the feedback strategy

uy0(x)
.
= arg min

ω∈[0,1]

{
L(ω)−

∂Z(x, y0)

∂x
· ω

}
. (3.13)

With this strategy, the debt has the asymptotic behavior x(t) → y0 as t → ∞.

Adopting the convention that

Z(x, y0)
.
= W (x) if x /∈ [a(y0), b(y0)],

the map (x, y0) 7→ Z(x, y0) ∈ [0,+∞] is then lower semicontinuous.

Next, we consider the equation (3.3) for x ∈ [x∗,M [ . Notice that in this case the borrower
has no way to reduce the debt, and bankruptcy must occur within a finite time.

When x ∈ [x∗,M [ , the map ξ 7→ H(x, ξ) is increasing and satisfies

H(x, 0) = ρ(x)B , lim
ξ→∞

H(x, ξ) = +∞.

Therefore, for every V ≥ ρ(x)B
r+ρ(x) , there exists a unique value F−(x, V ) such that

V =
1

r + ρ(x)
·H(x, F−(x, V )).

We observe that
lim

x→M−
F−(x,B) = 0.
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For x ∈ [x∗,M [ , the implicit equation (3.3) is equivalent to the ODE

V ′(x) = F−(x, V (x)). (3.14)

Observing that the function V 7→ F−(x, V ) is uniformly Lipschitz continuous, the Cauchy
problem

V ′(x) = F−(x, V (x)) , V (M) = B (3.15)

has a unique backward solution, defined on some maximal interval [a(M),M [. This solution
will be denoted by x 7→ Z(x;M).

Concatenations of F+-solutions and F−-solutions provide admissible viscosity solutions as
long as, at each point y where V ′ is discontinuous, one has

V ′(y−) ≥ V ′(y+). (3.16)

In other words, trajectories should not tend to the point y with positive speed from both sides.

For any initial datum x0 (and z0 = 1), it is clear that the minimum cost in (2.13)-2.14) cannot
be greater than B. Indeed, the trivial control u(t) ≡ 0 achieves a cost ≤ B.

+F  (x,V)

H(x,  )

ξ ξ

H(x,  )ξ

V

_
F  (x,V)

(x)ρ

(τ+ρ(  ))x

(τ+ρ(  ))x

B(x)ρ B

ξ

F  (x,V)
_

V

H   (x)
max

ξ (x)
#

Figure 2: Left: the case where x < x∗. For (r+ρ(x))V > Hmax(x) the equation (3.3) has no solution.
At a point where (r+ ρ(x))V < Hmax(x), it determines two distinct values F−, F+ for V ′. Right: the
case where x > x∗. For any (r + ρ(x))V > ρ(x)B, the equation (3.3) determines a unique solution
V ′ = F−(x, V ).

The main result in this section characterizes the value function for the optimization prob-
lem (OCP). We recall that Z(·; y0) is the solution of (3.11), defined on a maximal interval
[a(y0), b(y0)[ .

Theorem 1. Let the functions α, ρ, L satisfy the assumptions (A1) together with (2.11). Let
W be the function in (3.9) and consider the set

A
.
=

{
y ∈ [0,M ] ; W ′(y) = L′(α(y) y)

}
∪ {0,M}. (3.17)

Then the value function for the optimization problem (2.7)-(2.8) is given by

V (x) = min
y0∈A

Z(x; y0). (3.18)
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W(x)V

x
1 M x

B
Z(x,M)

*x
y
0

Z(x,y )
0

Figure 3: For y0 > x1 and every x ∈ [y0,M ] we have Z(x, y0) ≥ Z(x,M).

Proof. 1. As in Fig. 3, let x1 ∈ ]0, x∗[ be the point where

W (x1) = B .

Consider the function
Z∗(x)

.
= inf

y0∈[0,x∗[∪{M}
Z(x; y0) , (3.19)

we claim that
Z∗(x) = min

y0∈[0,x1]∪{M}
Z(x; y0) . (3.20)

Indeed, by the lower semicontinuity of the map (x, y0) 7→ Z(x, y0), for every x ∈ [0,M ] the
minimum in (3.20) exists.

If Z∗(x) = Z(x, y0) for some y0 > x1, then two cases can arise

• If x ≥ y0 > x1 then

Z(x, y0) ≥ Z(y0, y0) = W (y0) > B ≥ Z(x,M).

• If x < y0, then again Z(x, y0) ≥ Z(x,M) because the maps Z(·, y0) and Z(·,M) are
solutions to the same ODE, namely Ż = F−(x,Z). Moreover, at x = y0 one has
Z(y0, y0) = W (y0) > M ≥ Z(y0,M).

This proves (3.20).

2. Fix x0 ∈ [0,M ], we claim that

Z∗(x0) = V (x0) . (3.21)
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For any y0 ∈ [0, x1] ∪M such that x0 ∈ [a(y0), b(y0)], Z(x0, y0) is the expected cost achieved
by a feedback strategy for which the debt has the asymptotic behavior x(t) → y0 as t → ∞,
with initial data x(0) = x0. Hence Z(x0, y0) ≥ V (x0). This implies

Z∗(x0) = min
y0∈[0,x1]∪{M}

Z(x; y0) ≥ V (x0) .

It now remains to show that Z∗(x0) ≤ V (x0). For any control t 7→ u(t) ∈ [0, 1], let x(·) be
the solution of (2.8) associated with control u(t) and initial debt x0, and let TM ∈ [0,+∞] be
the first time when the debt reaches the value M , as in (2.9). We claim that

Z∗(x0) ≤

∫ TM

0
exp

{
−rt−

∫ t

0
ρ(x(s)) ds

}{
ρ(x(t))B + L(u(t))

}
dt . (3.22)

For every τ ∈ [0, TM ], define

Φu(τ)
.
=

∫ τ

0
exp

{
−rt−

∫ t

0
ρ(x(s)) ds

}{
ρ(x(t))B + L(u(t))

}
dt

+exp

{
−rτ −

∫ τ

0
ρ(x(s)) ds

}
· Z∗(x(τ)) .

Observe that Z∗ is uniformly Lipschitz in [0,M ], while the map τ 7→ Φu(τ) is absolutely
continuous.

At any point x ∈ [0,M ] where Z∗ is differentiable, one has

(r + ρ(x)) · Z∗(x) = H(x,Z ′
∗(x)) .

By (3.4) this implies

(r + ρ(x)) · Z∗(x) ≤ L(u) + ρ(x)B + Z ′
∗(x) · (α(x)x − u) for all u ∈ [0, 1] . (3.23)

We can now find a set N ⊂ [0, TM ] of measure zero such that, for every τ /∈ N ,

(i) τ is a Lebesgue point of u(·),

(ii) either ẋ(τ) = 0 or else Z∗ is differentiable at x(τ).

For τ ∈ [0, TM ] \ N , we compute

d

dτ
Φu(τ) = exp

{
−rτ −

∫ τ

0
ρ(x(s)) ds

}
·
{
ρ(x(τ))B + L(u(τ))

+ Z ′
∗(x(τ)) · (α(x(τ))x(τ) − u(τ))− (r + ρ(x(τ)) · Z∗(x(τ))

}
≥ 0 .

Therefore the map τ 7→ Φu(τ) is non-decreasing on [0, TM ]. In particular,

Z∗(x0) = Φu(0) ≤ lim
τ→TM−

Φu(τ)

=

∫ TM

0
exp

{
−rt−

∫ t

0
ρ(x(s)) ds

}{
ρ(x(t))B + L(u(t))

}
dt .

(3.24)
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Indeed, since Z∗ is uniformly bounded, in both cases TM < +∞ or TM = +∞ by the second
assumption in (2.2) together with (2.11) one has

lim
τ→TM−

exp

{
−rτ −

∫ τ

0
ρ(x(s)) ds

}
· Z∗(x(τ)) = 0 .

This proves our claim (3.22).

3. To complete the proof, we show that the minimum in (3.20) is attained for some y0 ∈ A.
Denote by VA the right hand side of (3.18). By the definitions of Z∗, VA and by the previous
analysis, it is clear that

Z∗(x) ≤ VA(x) for all x ∈ [0,M ],

Z∗(x) = VA(x) = Z(x,M) for all x ∈ [x1,M ] .

To prove the identity Z∗ = VA, it thus remains to show that

Z∗(x) ≥ VA(x) for all x ∈ [0, x1]. (3.25)

W

xx MMx x *x *x

W

x
0

x
0

’’

Figure 4: Proving that the minimum in (3.20) cannot be attained when y0 /∈ A. Left: the case
W ′(y0) > ξ♯(y0). Right: the case W ′(y0) < ξ♯(y0).

Assume Z∗(x̄) = Z(x̄; y0) for some y0 ∈ [0, x1], y0 /∈ A. We claim that this leads to a
contradiction. Two cases will be considered.

CASE 1: W ′(y0) > ξ♯(y0) = L′(α(y0) y0). Then Z(·, y0) is defined only for x ≥ y0. By
continuity, we can find x′ < y0 sufficiently close to y0 such that Z(·;x′) is defined on [x′, x̄]
and

Z(y0;x
′) < Z(y0, y0) = W (y0).

Since Z(·; y0) and Z(·;x′) satisfy the same ODE, namely Z ′ = F+(x,Z), with different initial
data, this implies

Z(x;x′) < Z(x; y0)., for all x ∈ [y0, x̄] .

In particular, Z(x̄;x′) < Z(x̄; y0) = V (x̄), reaching a contradiction.
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CASE 2: W ′(y0) < ξ♯(y0) = L′(α(y0) y0). Then Z(·; y0) is defined only for x ≤ y0. By
continuity, we can find x′ > y0 sufficiently close to y0 such that Z(·;x′) is defined on [x̄, x′, ]
and

Z(y0;x
′) < Z(y0; y0) = W (y0).

Since Z(·; y0) and Z(·;x′) satisfy the same ODE, namely Z ′ = F−(x,Z), with different initial
data, this implies

Z(x;x′) < Z(x; y0) for all x ∈ [x̄, y0] .

In particular, Z(x̄;x′) < Z(x̄; y0) = V (x̄), reaching a contradiction.

The previous arguments show that (3.25) holds, completing the proof.

4 A game-theoretical model

In the previous model, both the instantaneous bankruptcy risk ρ(x) and the interest rate α(x)
were functions of the total debt x, given a priori. We now consider a model where only the
bankruptcy risk is assigned a priori, while the interest rate is determined endogenously, a
result of the competition among several lenders.

In an accurate description of a debt resulting from several different loans, one should keep
track of (i) the size, (ii) the interest rate, and (iii) the expiration date of the each loan. In a
continuum model, the state of the system at any time t should thus be described by a density
function φ = φ(I, τ), where ∫ I2

I1

∫ τ2

τ1

φ(I, τ) dIdτ

yields the total amount of loans at interest rate I ∈ [I1 , I2], expiring during the time interval
[τ1 , τ2]. This would lead to a very complicated optimization problem, where the current state
of the system is described by a density function depending on two variables: φ = φ(I, τ).

We consider here a highly simplified model, where at any given time the “state” of the system
is described by two scalar numbers: the total amount of debt X and the average interest rate
A payed on this debt.

To achieve a consistent model, we assume that in every loan the principal is payed back at
a fixed exponential rate λ. In other words, if at time t0 the borrower receives a loan in the
amount K, by time t > t0 the remaining size of the loan will be e−λ(t−t0)K. At all times
t > t0, the borrower pays a running interest I on the remaining part e−λ(t−t0)K of the loan.
This interest rate I = I(t0) is negotiated at the initial time and never changes.

We claim that this model yields a closed system of ODEs for the two state variables X, A,
independent of the detailed structure φ of the debt. Indeed, let X(t) is the total amount of
debt at time t and let u(t) the instantaneous payment rate, regarded as the control function
chosen by the borrower. Then the total amount of debt satisfies

Ẋ(t) = A(t)X(t) − u(t) . (4.1)

If u(t) = (A(t)+λ)X(t), then no new loans are initiated at time t, and the average rate payed
on the overall debt remains constant. On the other hand, if u(t) < (A(t) + λ)X(t), then the
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difference must be covered by new loans, at the current interest rate I(t). The average interest
rate payed on the entire debt thus evolves according to

d

dt
A(t) = lim

ε→0

1

ε
·
[A(X − ελX) + εI

[
(A+ λ)X − u

]

X + ε(AX − u)
−A

]
.

This yields

Ȧ = (I −A) ·
(
A+ λ−

u

X

)
. (4.2)

Notice that, if u = AX so that the total debt remains constant in time, then the average
interest payed on the loan changes only as Ȧ = λ(I − A). This reflects the fact that the old
loans at interest A are replaced with new loans at rate I. However, if u 6= AX, then the
additional terms on the right hand side of (4.2) account for the change in the average interest,
due to the change in the total size of the debt. Throughout the sequel, we assume that

u(t) ∈
[
0 , (A(t) + λ)X(t)

]
∩ [0, 1] . (4.3)

In other words, the borrower cannot extinguish the existing loans at a rate larger than λ.
The maximum value (λ+A)X of the control corresponds to the case where no new loans are
initiated. On the other hand, it is quite possible to have u(t) < λX(t), or even u(t) = 0. In
this case, the borrower will always pay the rate (λ+A(t))X(t) on previous loans. To make up
for the difference (λ+ A(t))X(t) − u(t) he will simply ask for new loans, which are available
at the current interest rate I(t).

As a first step, we assume that the instantaneous interest rate I = I(t) charged on new loans
is a given function of time. As in (2.4), we denote by ρ(X) the instantaneous bankruptcy risk,
when the total debt is X. For simplicity, we assume that ρ does not depend on the average
interest A payed on the loan. In the more general case where ρ = ρ(X,A) the analysis is
similar.

The borrower seeks to minimize the expected value of the cost (2.7). As in (2.13)-(2.14) this
can be reformulated as a deterministic optimal control problem in infinite horizon, namely

minimize: J(u)
.
=

∫ TM

0
γ(t)

{
ρ(X(t))B + L(u(t))

}
dt + γ(TM )B , (4.4)

subject to 



Ẋ = AX − u ,

Ȧ = (I −A) ·
(
λ+A− u

X

)
,





X(0) = X0 ,

A(0) = A0 .
(4.5)

Here

γ(t)
.
= e−rt exp

{
−

∫ t

0
ρ(X(s)) ds

}
, t ∈ [0, TM ] , (4.6)

while
TM .

= sup
{
t ≥ 0 ; X(t) < M

}
(4.7)

is the time where the debt reaches the maximum value M and bankruptcy occurs instantly.

Remark 3. If either TM = ∞ or else TM < ∞ and
∫ TM

0 ρ(X(s)) ds = ∞, then γ(TM ) = 0
and the last term in (4.4) vanishes. However, one can also consider that case where TM < +∞
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and
∫ TM

0 ρ(X(s)) ds < ∞. In this case there is a positive probability that the borrower goes
bankrupt exactly at the time TM when the debt reaches the maximum size M . If this happens,
the second term in (4.4) accounts for this bankruptcy cost, exponentially discounted in time.
It is important to keep in mind that the bankruptcy time Tb is random, but the time TM

in (4.7) is not random. Indeed, TM is uniquely determined by the solution to the Cauchy
problem (4.5).

Our main concern is how to model the instantaneous interest rate I(t), reflecting the confidence
of risk-neutral investors. This rate should be determined by the the future risk of insolvency.

Consider a pool of risk-neutral lenders. Let the constant σ ∈ [0, 1] denote the salvage rate. In
other words, at the time when bankruptcy occurs, only a fraction σ of the currently invested
capital will be returned to lenders. The expected payoff for an agent who at time t = 0 lends
a unit amount of money at interest I ≥ r is then computed by

J ♯ = E

[∫ Tb

0
e−rt(λ+ I)e−λtdt + e−rTb σ e−λTb

]
. (4.8)

Here Tb is the random bankruptcy time. We observe that

• At any time t ∈ [0, Tb], the remaining size of the loan is e−λt. The payment due on this
loan is the sum of two terms: λe−λt models the repayment of the principal, while Ie−λt

accounts for the interest. As usual, future earnings are discounted by the factor e−rt.

• At the bankruptcy time Tb, the lender receives only a fraction σ ∈ [0, 1] of the outstanding
loan. Quite possibly σ = 0. Again, the expression for his payoff contains the discount
factor e−rTb .

As before, we assume that Tb is a random variable, with distribution function

P (t)
.
= Prob.{Tb > t} =





exp

{
−

∫ t

0
ρ(X(τ)) dτ

}
if t < TM ,

0 if t ≥ TM .

(4.9)

Here t 7→ (X(t), A(t)) denotes the solution to the Cauchy problem (4.5). Of course, this also
depends on the control u(·) implemented by the borrower.

For a lender who invests a unit amount of money at time t0 = 0 at interest rate I, the expected
return (exponentially discounted in time) is computed by

R(I) =
I + λ

r + λ
P (+∞)−

∫ ∞

0

[∫ t

0
(I + λ)e−(r+λ)s ds + σe−(r+λ)t

]
dP (t) . (4.10)

The above expression deserves a few explanations.

• If bankruptcy never occurs, then the (exponentially discounted) payoff for the lender is
∫ ∞

0
(I + λ)e−(r+λ)t dt =

I + λ

r + λ
.

Moreover, the probability that bankruptcy never occurs is P (+∞) = limt→+∞ P (t).
This accounts for the first term in (4.10).
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• If bankruptcy occurs at time Tb = t, the payoff for the lender is computed as

∫ t

0
(I + λ)e−(r+λ)s ds + σe−(r+λ)t =

I + λ

r + λ
+

(
σ −

I + λ

r + λ

)
e−(r+λ)t. (4.11)

Moreover, for any 0 ≤ t1 < t2,

Prob.
{
Tb ∈ ]t1, t2]

}
= P (t1)− P (t2).

This accounts for the Stiltjes integral in (4.10).

The assumption of risk-neutrality of the lenders implies

R(I) =
I + λ

r + λ
+

(
σ −

I + λ

r + λ

)
·

∫ ∞

0
−e−(r+λ)t dP (t) = 1 . (4.12)

If the evolution of the system (4.5) is known, this determines the interest rate I to be charged
by risk-neutral lenders. Indeed, if the salvage rate is σ = 1, then by (4.12) the interest rate is
simply I = r. On the other hand, when 0 ≤ σ < 1 we must have I > r. Setting

β
.
=

∫ ∞

0
−e−(r+λ)t dP (t) = 1− (r + λ)

∫ ∞

0
e−(r+λ)t P (t) dt , (4.13)

an explicit computation yields

I + λ

r + λ
(1− β) = 1− σβ ,

I = r + (1− σ)(r + λ)
β

1− β
. (4.14)

Remark 4. The value of β in (4.13) can be interpreted as follows. Consider an investor
lending a unit amount of money. This will be paid back in time at an exponential rate. At
the random time Tb when bankruptcy occurs, the expected value of the remaining portion of
this loan (exponentially discounted) is then measured by β.

Assuming 0 ≤ σ < 1, from (4.14) the following limit behavior can be deduced.

• If the expected bankruptcy time approaches infinity, then the lenders feel that their
investment is safe, and the interest rate approaches the discount rate:

β → 0 =⇒ I → r .

• If the expected bankruptcy time approaches zero, then the lenders regard their invest-
ment as highly risky, and the interest rate approaches infinity:

β → 1 =⇒ I → +∞ .
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According to the previous analysis, by (4.13)-(4.14) at time t the instantaneous interest rate
I(t) is computed by

I(t) = r + (1− σ)(r + λ)
β(t)

1− β(t)
, (4.15)

where

β(t) = 1− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

{
−

∫ τ

t

ρ(X(s)) ds

}
dτ . (4.16)

As in (4.7), TM ∈ ]0,+∞] denotes the first time when X(t) = M , and bankruptcy instantly
occurs.

Differentiating (4.16) w.r.t. time we obtain

β̇ = (r + λ)− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

{
−

∫ τ

t

ρ(X(s)) ds

}
·
(
r + λ+ ρ(X(t))

)
dτ

= (r + λ) + (r + λ+ ρ(X)) (β − 1).
(4.17)

5 The optimization problem for the borrower

Aim of this section is to prove the existence of an optimal strategy for the borrower, in open-
loop form. Introducing the auxiliary variable

Y
.
= AX ,

the Optimization Problem for the Borrower can be reformulated as follows.

(OPB) Given an initial size of the debt X0 and an initial average interest rate A0, find a control
t 7→ u(t) and a map t 7→ (X,Y, I, β)(t) which minimize the expected cost

J(u,X)
.
=

∫ TM

0
γ(t)

{
ρ(X(t))B + L(u(t))

}
dt + γ(TM )B , (5.1)

subject to the dynamics




Ẋ = Y − u ,

Ẏ = Y (I − λ) + I(λX − u) ,





X(0) = X0 ,

Y (0) = A0X0

(5.2)

and the constraints

u(t) ∈ [0, 1] , u(t) ≤ Y (t) + λX(t) , (5.3)

β(t) = 1− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X(s)) ds

)
dτ , (5.4)

I = I(β)
.
= r + (1− σ)(r + λ)

β

1− β
. (5.5)

Here
TM .

= sup
{
t ≥ 0 ; X(t) < M

}
∈ [0 , +∞] (5.6)

is the first time where X(t) = M and hence bankruptcy instantly occurs.
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The existence of an optimal solution will be proved under the following assumptions.

(A2) The function ρ is continuously differentiable on [0,M [ and satisfies

ρ , ρ′ ≥ 0 for all X ∈ [0,M [ , (5.7)

lim
X→M−

ρ(X) = +∞. (5.8)

The cost function L is twice continuously differentiable for u ∈ [0, 1[ and satisfies

L(0) = 0, L′ > 0, L′′ > 0, L(1) = lim
u→1−

L(u) ∈ IR ∪ {+∞}. (5.9)

Theorem 2. Let the assumptions (A2) hold. Then the optimization problem (OPB) admits
an optimal solution.

Proof. 1. For every initial data (X0, A0), the trivial control u(t) ≡ 0 yields a total cost
J(u,X) ≤ B, regardless of the trajectory X(·). Indeed, this cannot be worse than the cost of
immediate bankruptcy. It thus suffices to prove the theorem assuming that

0 ≤ Jmin
.
= inf

u,X
J(u,X) < B . (5.10)

Following the direct method in the Calculus of Variations, we consider a sequence of functions
(un,Xn, Yn, γn, In, βn) satisfying (5.2)–(5.5), such that

J(un,Xn) → Jmin as n → ∞. (5.11)

We will show that, by taking a subsequence, one can achieve the weak convergence un ⇀ u∗

together with the strong convergence (Xn, Yn, γn, In, βn) → (X∗, Y ∗, γ∗, I∗, β∗), uniformly for
t in bounded sets. Furthermore, using the convexity of the cost function L and the fact that
u enters linearly in the equations (4.5), we will prove that these limit functions provide an
optimal solution.

2. We first consider the case where the corresponding times TM
n in (5.6) satisfy

lim inf
n→∞

TM
n = ∞. (5.12)

For every bounded interval [0, T ], there exist δ,N0 > 0 such that

TM
n ≥ T+δ , Xn(t) ≤ M−δ and ρ(Xn(t)) < ρ(M−δ) , for all t ∈ [0, T ], n ≥ N0 .

Hence, from (5.4) and (5.5), one obtains that for all n ≥ N0

0 ≤ βn(t) ≤ β̂ < 1 , In(t) < Î, for all t ∈ [0, T ] ,

for some constants β̂, Î. Hence and βn, In are Lipschitz continuous with some Lipschitz con-
stant C1 for some constants β1, L1 > 0. Since un and In are uniformly bounded on [0, T ] for
all n ≥ N0, the ODE (5.2) implies that for all n ≥ N0

Xn(t), Yn(t) ≤ C2, for all t ∈ [0, T ] ,
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and thus Xn and Yn are Lipschitz continuous with a Lipschitz constant C3 on [0, T ], for some
constants C2, C3 > 0. Thanks to this Lipschitz continuity, by possibly taking a subsequence,
we can assume the convergence

(Xn, Yn, γn, In, βn)(t) → (X∗, Y ∗, γ∗, I∗, β∗)(t) as n → ∞ (5.13)

uniformly on every bounded interval [0, T ].

Since u enters linearly in the equations (5.2), by (5.13) and the weak convergence un ⇀ u∗ it
is clear that the functions t 7→ (u∗,X∗, Y ∗, γ∗, I∗, β∗)(t) satisfy the corresponding equations
and constraints in (5.2)–(5.5).

If J(u∗,X∗) > Jmin, then there exists a bounded interval [0, T ] such that

∫ T

0
γ∗(t)

{
ρ(X∗(t))B + L(u∗(t))

}
dt > Jmin . (5.14)

Using the convexity of the cost function L we obtain

Jmin <

∫ T

0
γ∗(t)

{
ρ(X∗(t))B + L(u∗(t))

}
dt

≤ lim inf
n→∞

∫ T

0
γn(t)

{
ρ(Xn(t))B + L(un(t))

}
dt

≤ Jmin

reaching a contradiction. Hence J(u∗,X∗) ≤ Jmin, proving the optimality of u∗.

3. Next, consider the case where

TM .
= lim inf

n→∞
TM
n < ∞. (5.15)

By possibly taking a subsequence, we can assume that TM
n → TM , and that the convergence

(5.13) holds, uniformly on every subinterval of the form [0, TM − δ], with δ > 0. As before,
one checks that the functions t 7→ (u∗,X∗, Y ∗, γ∗, I∗, β∗)(t) satisfy the corresponding equations
and constraints in (5.2)–(5.5).

If J(u∗,X∗) > Jmin, then there exists δ, ε > 0 such that

∫ TM−δ

0
γ(t)

{
ρ(X(t))B + L(u∗(t))

}
dt+ γ(TM )B > Jmin + ε ,

and
(
1− e−rδ

)
B < ε . Using again the convexity of the cost function L and recalling that

γn(t) = e−rt · exp

{
−

∫ t

0
ρ(Xn(s)) ds

}
,
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we obtain

Jmin = lim inf
n→∞

{∫ TM
n

0
γn(t)

(
ρ(Xn(t))B + L(un(t))

)
dt+ γn(T

M
n )B

}

≥

∫ TM−δ

0
γ∗(t)

{
ρ(X∗(t))B + L(u∗(t))

}
dt+ γ(TM − δ)B

+ lim inf
n→∞

[∫ TM
n

TM−δ

γn(t)ρ(Xn(t))B dt+ γn(T
M
n )B − γn(T

M − δ)B

]

≥

∫ TM−δ

0
γ∗(t)

{
ρ(X∗(t))B + L(u∗(t))

}
dt+ γ(TM − δ)B

+ lim inf
n→∞

[
− e−rTM

n

∫ TM
n

TM−δ

d

dt
exp

{
−

∫ t

0
ρ(Xn(s)) ds

}
B dt

+γn(T
M
n )B − γn(T

M − δ)B

]

> Jmin + ε+ lim inf
n→∞

(
γn(T

M − δ) ·
[
e−r·(δ+TM

n −TM ) − 1
])

≥ Jmin + ε− (1− e−rδ)B > Jmin .

(5.16)

This contradiction shows that J(u∗,X∗) ≤ Jmin, completing the proof.

6 Minimal solutions

In general, for a given initial data X0 and an open-loop control t 7→ u(t), the system (5.2)-(5.5)
may have several solutions X(·), Y (·). To remove this nonuniqueness, it is natural to look for
a “minimal” solution, where for each t > 0 the pointwise value X(t) yields the minimum
among all admissible solutions. This will make the model deterministic. Toward this goal, we
introduce

Definition 1. Let any open loop control t 7→ u(t) ∈ [0, 1] be given. We say that t 7→
(X(t), Y (t), β(t)) is a supersolution to (5.2)–(5.5) if there exists a time TM ≥ 0 such that
the following holds.

(i) The initial data satisfy X(0) = X0, Y (0) = A0X0.

(ii) The functions X,Y, β are absolutely continuous on every compact subinterval of [0, TM [ .
For a.e. t ∈ [0, TM [ they satisfy





Ẋ ≥ Y − û ,

Ẏ ≥ − λY + I(Y + λX − û) ,

û(t)
.
= min

{
u(t), Y (t)+λX(t)

}
, (6.1)
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β(t) ≥ 1− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X(s)) ds

)
dτ . (6.2)

(iii) If TM < +∞, then

lim
t→TM−

β(t) = 1, lim
t→TM−

X(t) = M





X(t) = +∞ ,
Y (t) = +∞ ,
β(t) = 1 ,

for all t ≥ TM .

(6.3)

Lemma 1. Under the assumptions (A2), fix a control t 7→ u(t) and let (X1, Y1, β1), (X2, Y2, β2)
be two supersolutions, satisfying (i)-(iii) with TM = TM

i , i = 1, 2.

Then the map t 7→ (X(t), Y (t), β(t)) with





X(t) = min
{
X1(t), X2(t)

}
,

Y (t) = min
{
Y1(t), Y2(t)

}
,

β(t) = min
{
β1(t), β2(t)

}
,

(6.4)

is also a supersolution.

Proof. 1. For i = 1, 2, let (Xi, Yi, βi) be a supersolution, and let (X,Y, β) be as in (6.4).

It is clear that the initial data X(0) and Y (0) satisfy (i). If TM = max{TM
1 , TM

2 } < +∞, it
is straightforward to check that the properties (6.3) also hold.

2. To prove (ii), we first compute the derivatives of the right hand sides of (6.1).

∂

∂Y

(
Y −min

{
u, λX + Y,

})
=

{
1 if u < λX + Y,
0 if u > λX + Y,

(6.5)

∂

∂X

(
Y (I − λ) + I

(
λX −min

{
u, λX + Y

}))
=

{
λI if u < λX + Y,
0 if u > λX + Y .

(6.6)

In all cases, the right hand sides of (6.5) and (6.6) are non-negative. This quasi-monotonicity
property is the key ingredient in the proof of (ii).

3. For i = 1, 2 define

ûi(t)
.
= min

{
u(t) , λXi(t) + Yi(t)

}
.
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We first check that, for every time t,

β(t) = 1− (r + λ) ·max
i=1,2

{∫ TM

i

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(Xi(s)) ds

)
dτ

}

≥ 1− (r + λ) ·

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

min
{
ρ(X1(s)) , ρ(X2(s))

}
ds

)
dτ

= 1− (r + λ) ·

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X(s)) ds

)
dτ .

(6.7)
Hence (6.2) holds.

4. Finally, we prove the inequalities (6.1). To fix the ideas, assume that X(t) = X1(t) < X2(t).
Two cases need to be considered.

CASE 1: Y1(t) < Y2(t). In this case, observing that I(t) ≤ I1(t), we have

Ẋ(t) = Ẋ1(t) ≥ Y1(t)− û1(t) = Y (t)− û(t),

Ẏ (t) = Ẏ1(t) ≥ Y1(t)(I1(t)− λ) + I1(t)(λX1(t)− û(t))

≥ Y (t)(I(t)− λ) + I(t)(λX(t) − û(t))

CASE 2: Y1(t) > Y2(t). In this case, using (6.5) we obtain

Ẋ(t) = Ẋ1(t) ≥ Y1(t)− û1(t) > Y2(t)− û(t) = Y (t)− û(t) .

Next, observing that I(t) ≤ I2(t) and using (6.6), we obtain

Ẏ (t) = Ẏ2(t) ≥ Y2(t)(I2(t)− λ) + I2(t)(λX2(t)− û(t))

≥ Y2(t)(I2(t)− λ) + I2(t)(λX1(t)− û(t)) ≥ Y (t)(I(t) − λ) + I(t)(λX(t) − û(t)).

The borderline cases where X1(t) = X2(t) or Y1(t) = Y2(t) can be handled by a limiting
argument, valid for all times t outside a set of measure zero. This completes the proof.

The above monotonicity result motivates

Definition 2. Let an initial data (X0, A0) and a control function t 7→ u(t) be given. The min-
imal solution t 7→ (X∗(t), Y∗(t), β∗(t)) of the system (5.2)–(5.5) is defined as the pointwise
infimum:

X∗(t)
.
= inf X(t), Y∗(t)

.
= inf Y (t), β∗(t)

.
= inf β(t) , (6.8)

where the infimum is taken over all supersolutions t 7→ (X(t), Y (t), β(t)).
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Using Lemma 1, we now show that the above definition yields a well defined solution to the
Cauchy problem (5.2)–(5.5).

Lemma 2. Let an initial data (X0, A0) and a control function t 7→ u(t) be given. Then
the minimal solution t 7→ (X∗(t), Y∗(t), β∗(t)) is well defined and satisfies all equations in
(5.2)–(5.5).

Proof. 1. Let T∗ = inf TM , where TM is the supremum of the set of times t where X(t) < ∞,
for some supersolution (X(t), Y (t), β(t)). In the first part of the proof we show that there
exists a countable sequence of supersolutions (Xn, Yn, βn) such that

X∗(t) = inf
n

Xn(t), Y∗(t) = inf
n

Yn(t), β∗(t) = inf
n

βn(t) (6.9)

for all t ∈ [0, T∗[ .

2. Fix a time τ ∈ [0, T∗[ and consider a sequence of supersolutions (Xn, Yn, βn) such that
(6.9) holds at t = τ . By Lemma 1, by possibly replacing each triple of functions (Xn, Yn, βn)
with

(X̃n, Ỹn, β̃n)
.
=

(
min
1≤i≤n

Xn , min
1≤i≤n

Yn , min
1≤i≤n

βn

)

we can assume that each component the above sequence is monotone decreasing as n → ∞.

In addition, it is not restrictive to assume that, for every t ∈ [0, TM
n [ ,

βn(t) = 1− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(Xn(s)) ds

)
dτ , (6.10)

while the components Xn, Yn satisfy




Ẋn ∈ [Yn − 1 , Yn] ,

Ẏn ≥ − λYn ,





Xn(0) = X0 ,

Yn(0) = A0X0 ,
(6.11)

with
ûn(t) = min {u(t) , λXn(t) + Yn(t)} . (6.12)

Otherwise, calling β̃n the right hand side of (6.10) we can simply replace (Xn, Yn, βn) with the
smaller supersolution (Xn, Yn, β̃n).

From (6.11) it follows
Yn(t) ≤ e(τ−t)λYn(τ) t ≤ τ.

Letting n → ∞, this yields

Y∗(t) ≤ e(τ−t)λY∗(τ) t ≤ τ. (6.13)

Since the above is true for every τ < T∗, we conclude that the functions Yn, Y∗ are uniformly
bounded, with bounded variation on every compact subinterval [0, T ] ⊂ [0, T∗[ .

Next, observing that

Yn − 1 ≤ Ẋn ≤ Yn , β̇n = (r + λ+ ρ(x))βn − ρ(Xn),
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we conclude that the functions Xn(·) and βn(·) are uniformly Lipschitz continuous on every
compact subinterval [0, T ] ⊂ [0, T∗[ . This implies

X∗(t) ≥ X∗(τ) + L |t− τ |,

β∗(t) ≥ β∗(τ) + L |t− τ |,
(6.14)

for some Lipschitz constant L.

Given T < T∗, a constant L can be chosen which is uniformly valid for all τ, t ∈ [0, T ]. This
implies the Lipschitz continuity of the limit functions X∗, β∗ restricted to any subinterval
[0, T ]:

|X∗(t)−X∗(τ)| ≤ L |t− τ |,

|β∗(t)− β∗(τ)| ≤ L |t− τ |,
(6.15)

for all τ, t ∈ [0, T ].

3. We now consider a decreasing sequence of supersolutions (Xn, Yn, βn)n≥1 which converges
to (X∗, Y∗, β∗) at every rational time and at every time τ where the BV function Y∗ is discon-
tinuous.

We claim that the identities in (6.9) hold for every t ∈ [0, T∗[ . Indeed, assume on the contrary
that

Y∗(τ) < inf
n

Yn(τ)− ε (6.16)

for some irrational time τ where Y∗ is continuous and some ε > 0. Choose a rational time
t > τ such that

Y∗(t) < Y∗(τ) +
ε

2
, e(t−τ)λ

[
Y∗(τ) +

ε

2

]
< Y∗(τ) + ε . (6.17)

We then have

lim
n→∞

Yn(τ) ≤ lim
n→∞

e(t−τ)λYn(t) = e(t−τ)λY∗(t) < e(t−τ)λ
[
Y∗(τ) +

ε

2

]
< Y∗(τ) + ε ,

in contradiction with (6.16).

By assumption, the limits

X∗(t) = lim
n→∞

Xn(t), β∗(t) = lim
n→∞

βn(t)

hold at every rational time t. By the uniform Lipschitz continuity of Xn, βn, X∗, β∗ on every
compact subinterval [0, T ] ⊂ [0, T∗[ , these limits remain valid for every t ∈ [0, T∗[ .

4. Concerning X∗(·), we already know that this function is locally Lipschitz continuous, hence
absolutely continuous on every compact subinterval [0, T ] ⊂ [0, T∗[ . Moreover, the function
Y∗(·), satisfies (6.13) and has bounded variation of every compact subinterval [0, T ] ⊂ [0, T∗[ .
We claim that Y∗ is locally Lipschitz continuous. If not, we could find sequences of times
ak < bk with

lim
k→∞

ak = lim
n→∞

bk = t̄ ∈ [0, T∗[

such that
Y∗(bk)− Y∗(ak) > k(bk − ak)
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for all k ≥ 1. Recalling (6.9), for any fixed k ≥ 1 there exists nk ≥ 1 such that

max
{∣∣Ynk

(ak)− Y∗(ak)
∣∣,

∣∣Ynk
(bk)− Y∗(bk)

∣∣} ≤
k

4
· (bk − ak) . (6.18)

We let t 7→ (Xak (t), Y ak(t)) be absolutely continuous functions such that

{
Xak

nk
(t) = Xnk

(t),

Y ak
nk

(t) = Ynk
(t),

for t ∈ [0, ak] ,

while, for t ≥ ak, the functions Xak , Y ak provide solutions to the system of ODEs





Ẋ = Y − û ,

Ẏ = − λY + I(βnk
)(Y + λX − û) .

The comparison argument yields

Y ak
nk

(t) ≤ Ynk
(t) and Xak

nk
(t) ≤ Xak

nk
(t), for all t ≥ 0 .

and thus

βk(t) ≥ 1− (r + λ)

∫ TM

k

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(Xak
nk
(s)) ds

)
dτ .

where
TM
k = inf

{
t > 0

∣∣ Xak
nk
(t) = M

}
.

Therefore, the triple
(
Xak

nk
, Y ak

nk
, βk

)
is a supersolution of (5.2)–(5.5).

On the other hand, since Yn is uniformly bounded on every compact subinterval [0, T ] ∈ [0, T∗[,
it holds

Ẋak
nk
(t) ≤ C, for all k, t > 0

for some constant C > 0. Hence, by (6.18), for k large enough we obtain

Y ak
nk

(bk) < Y∗(bk),

contradicting the minimality of Y∗. Together with (6.13), this proves the Lipschitz continuity
of Y∗.

5. Using the fact that every (Xn, Yn, βn) is a supersolution of (5.2)–(5.5), we now prove that
(X∗, Y∗, β∗) is a supersolution as well. Indeed, for every 0 ≤ t1 < t2 < T∗ we have

X∗(t2)−X∗(t1) = limn→∞

(
Xn(t2)−Xn(t1)

)

≥ lim sup
n→∞

∫ t2

t1

(
Yn(s)−min

{
u(s), λXn(s) + Yn(s)

})
ds

=

∫ t2

t1

(
Y∗(s)−min

{
u(s), λX∗(s) + Y∗(s)

})
ds .

(6.19)
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Similarly,

Y∗(t2)− Y∗(t1) = limn→∞

(
Yn(t2)− Yn(t1)

)

≥ lim sup
n→∞

∫ t2

t1

(
Yn(s)(In(s)− λ) + In(s)

(
λXn(s)−min

{
u(s), λXn(s) + Yn(s)

}))
ds

=

∫ t2

t1

(
Y∗(s)(I∗(s)− λ) + I∗(s)

(
λX∗(s)−min

{
u(s), λX∗(s) + Y∗(s)

}))
ds.

(6.20)
Finally, for t < T∗,

β∗(t) = lim
n→∞

βn(t) ≥ 1− (r + λ) lim inf
n→∞

∫ TM
n

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(Xn(s)) ds

)
dτ

= 1− (r + λ)

∫ TM

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X∗(s)) ds

)
dτ

.
= β†(t) .

(6.21)
Together, (6.19)–(6.21) show that (X∗, Y∗, β∗) is a supersolution.

6. Finally, we prove that (X∗, Y∗, β∗) is indeed a solution.

Let β† be the right hand side of (6.21). Then the triple (X∗, Y∗, β
†) is still a supersolution.

By minimality, this implies β∗(t) = β†(t) for all t < T∗.

As in step 4, for every τ ∈ [0, T∗[ we let t 7→ (Xτ (t), Y τ (t)) be absolutely continuous functions
such that {

Xτ (t) = X∗(t),

Y τ (t) = Y∗(t),
for t ∈ [0, τ ] , (6.22)

while, for t ≥ τ , the functions Xτ , Y τ provide solutions to the system of ODEs





Ẋ = Y − û ,

Ẏ = − λY + I(β†)(Y + λX − û) .

(6.23)

The triple (Xτ (t), Y τ (t), β†(t)) is a supersolution of (5.2)–(5.5).

Assume that there exists a time τ which is a Lebesgue point for the function u(·), and such
that

lim inf
h→0+

X∗(τ + h)−X∗(τ)

h
> Y∗(τ)− û(τ) + ε ,

for some ε > 0. Then for t > τ with t− τ sufficiently small we have Xτ (t) < X∗(t), against
the minimality of X∗.

Finally, assume that there exists a time τ which is a Lebesgue point for the function u(·), and
such that

lim inf
h→0+

Y∗(τ + h)− Y∗(τ)

h
> − λY∗(τ) + I(β∗(τ))(Y∗τ) + λX∗(τ)− û(τ)) + ε ,
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for some ε > 0. Then for t > τ with t− τ sufficiently small we have Y τ (t) < Y∗(t), against the
minimality of Y∗. Again, we reached a contradiction. This completes the proof of the lemma.

Remark 5. Given initial data (X0, A0), the above minimal solution can be constructed in
the following alternative way. Consider the Cauchy problem for the system of three equations





Ẋ = Y − û ,

Ẏ = − λY + I(Y + λX − û) ,

β̇ =
(
r + λ+ ρ(X)

)
β − ρ(X) ,





X(0) = X0 ,

Y (0) = A0X0 ,

β(0) = θ .

(6.24)

where I = I(β) is the function in (5.5). Notice that here the initial value θ = β(0) is regarded
as a free parameter. We say that a solution (X,Y, β) : [0, TM [ 7→ IR3 is admissible if

• X(t) ∈ [0,M [ and β(t) ∈ [0, 1[ for all t ∈ [0, TM [ ,

• either TM = +∞, or else X(t) → M and β(t) → 1 as t → TM− .

Observe that for any 0 ≤ θ < 1 and X0 ∈ [0,M [, there exists τ > 0 such that (6.24) has
a unique solution on [0, τ [. We now show that the minimal solution (X∗(t), Y∗(t), β∗(t)) of
(5.2)–(5.5) is the solution of (6.24) corresponding to the smallest value of the parameter θ
that renders this solution admissible.

From Lemma 2, (X∗(t), Y∗(t)) solve the first two ODEs in (6.24) for a.e. t ∈ [0, T ∗
M [ . Moreover,

β∗(t) = 1− (r + λ)

∫ TM
∗

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X∗(s)) ds

)
dτ , (6.25)

where
TM
∗ = inf

{
t > 0 | X∗(t) < M

}
.

Using (6.25) to compute the derivative of β∗, we obtain

β̇∗(t) = −(r + λ)− (r + λ+ ρ(X∗(t)))(r + λ)

∫ TM
∗

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X∗(s)) ds

)
dτ

= −(r + λ)− (r + λ+ ρ(X∗(t))) · (1− β∗(t))

for a.e. t ∈ [0, TM
∗ [. Hence, β∗(t) solves the last ODE in (6.24).

On the other hand, for any t ∈ [0, TM
∗ [ we have β∗(t) < 1 and

β∗(t) ≥ 1− (r + λ) ·

∫ TM
∗

t

e−(r+λ)(τ−t) dτ = lim
τ→TM

∗

e−(r+λ)(τ−t) .

Hence β∗(t) ∈ [0, 1[ for all t ∈ [0, TM
∗ [ . If TM

∗ < ∞ then

lim
t→TM

∗

lim
τ→TM

∗

β∗(t) ≥ e−(r+λ)(τ−t) = 1 ,
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which yields limt→TM
∗

β∗(t) = 1. Therefore, (X∗(t), Y∗(t), β∗(t)) is an admissible solution of
(6.24).

To complete the proof, we claim that there does not exist a θ ∈ [0, β∗(0)[ such that (6.24)
has an admissible solution. Indeed, let (X0(t), Y0(t), β0(t)) : [0, T

0
M [ → R

3 be the solution of
(6.24) with β0(0) = θ0 < β∗(0). Two cases will be considered:

• CASE 1: If T 0
M = +∞ then one can solve the ODE for β to obtain that

β(t) = 1− (r + λ)

∫ ∞

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X(s)) ds

)
dτ, for all t ∈ [0,∞[ .

Thus, (X0(t), Y0(t), β0(t)) is a supersolution of (5.2)–(5.5).

• CASE 2: If T 0
M < +∞ then limt→T 0

M

β(t) = 1. Again, solving the ODE for β, we have

β(t) = 1− (r + λ)

∫ T 0

M

t

e−(r+λ)(τ−t) exp

(
−

∫ τ

t

ρ(X(s)) ds

)
dτ, for all t ∈ [0, T 0

M [ .

We extend (X0(t), Y0(t), β(t)) on [T 0
M ,∞[ such that





X(t) = +∞ ,
Y (t) = +∞ ,
β(t) = 1 ,

for all t ≥ T 0
M .

and (X0(t), Y0(t), β0(t)) is a supersolution of (5.2)–(5.5).

Since (X∗(t), Y∗(t), β∗(t)) is the minimal solution of (5.2)–(5.5), we have β∗(0) < β0(0) = β0
and it yields a contradiction.

Theorem 3. Let u : [0,+∞[7→ [0, 1] be a control such that

L(u(t)) ≤ rB for all t ≥ 0. (6.26)

Then the corresponding minimal solution t 7→ (X∗(t), Y∗(t), β∗(t)) yields the lowest cost among
all solutions of (5.2)–(5.5).

Proof. Let (X(t), Y (t), β(t)) be a solution associated to the control u. The corresponding
cost is computed as

JX,Y,β(u) =

∫ TM

0
γ(t)

{
ρ(X(t))B + L(u(t))

}
dt + γ(TM )B

=

∫ TM

0
e−rt exp

{
−

∫ t

0
ρ(X(s)) ds

}
ρ(X(t)) dt+

∫ TM

0
γ(t)L(u(t)) dt + γ(TM )B

= B − γ(TM )B − rB

∫ TM

0
γ(t) dt+

∫ TM

0
γ(t)L(u(t)) dt + γ(TM )B

= B −

∫ TM

0
e−rt exp

{
−

∫ t

0
ρ(X(s)) ds

}
· [rB − L(u(t))] dt .
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Similarly, the corresponding cost for (X∗, Y∗, β∗) is

JX∗,Y∗,β∗(u) = B −

∫ T ∗

M

0
e−rt exp

{
−

∫ t

0
ρ(X∗(s)) ds

}
· [rB − L(u(t))] dt .

Since
X(t) ≥ X∗(t) for all t ≥ 0 ,

we have TM ≤ T ∗
M and

∫ t

0
ρ(X(s))ds ≥

∫ t

0
ρ(X∗(s))ds for all t ∈ [0, TM ] .

Using (6.26) we thus obtain

∫ TM

0
e−rt exp

{
−

∫ t

0
ρ(X(s)) ds

}
· [rB − L(u(t))] dt

≤

∫ TM

0
e−rt exp

{
−

∫ t

0
ρ(X∗(s)) ds

}
· [rB − L(u(t))] dt .

Therefore
JX,Y,β(u) ≥ JX∗,Y∗,β∗(u) .

Corollary 1. If L(1) ≤ rB, then for every given control function u : [0,∞[ 7→ [0, 1] the
corresponding minimal solution is the one yielding the minimum expected cost.

Remark 6. At first sight one might guess that, for a given repayment strategy u(·), a lower
interest rate should yield a smaller expected cost to the borrower. However, this is not always
true. A higher interest rate means that bankruptcy occurs earlier. In some cases, paying the
cost of bankruptcy may be preferable, compared with all subsequent costs of servicing the
debt. For example, assume that the borrower chooses the control

u(t) =

{
0 if 0 ≤ t ≤ 1,
1 if t > 1.

(6.27)

Consider a solution where the lenders offer a small interest rate, so that TM > 2 and the
probability of not being bankrupt at time t = 2 is

P (2) = Prob.{Tb > 2} > 0.

Then the expected cost to the borrower is

J(u,X)
.
=

∫ TM

0
γ(t)

{
ρ(X(t))B + L(u(t))

}
dt+ γ(TM )B

≥

∫ 2

1
e−rtP (t)L(u(t)) dt ≥ e−2rP (2)L(1).

(6.28)
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On the other hand, consider a second solution t 7→ X̃(t) where the lenders ask for a high
interest rate, pushing up the total size of the debt so that TM < 1. In this case, bankruptcy
occurs with probability one before time t = 1. Hence the expected cost to the borrower is

J(u, X̃) =

∫ TM

0
γ̃(t)ρ(X̃(t))B dt+ γ̃(TM )B ≤ B. (6.29)

If the bankruptcy cost B is small compared with the cost L(1), then the right hand side
of (6.29) will be smaller than (6.29). For the particular control function u(·) in (6.27), the
minimal solution is not the most advantageous for the borrower.

7 Feedback strategies

As it often happens for Stackelberg games, the optimal open-loop strategy u∗(·) considered
in Section 5 is usually not “time consistent”. In other words, in the middle of the game it
may be advantageous to the borrower to deviate from his announced strategy, if he could do
so without changing the interest rates obtained in the past. However, this is not possible,
because these interest rates are globally determined by his past and future controls.

In this section we shall address this issue, and study strategies in feedback form.

As a first step, assume that both the bankruptcy risk ρ and the interest rate I are given a
priori, as functions of X,A. This leads to a standard problem of optimal control in infinite
time horizon [1, 4, 8]. The value function V = V (X,A) satisfies the Hamilton-Jacobi equation

(
r + ρ

)
V = min

ω∈[0 , (λ+A)X∧1]

{
L(ω)−

(
VX +

I −A

X
VA

)
· ω

}

+AX VX + (λ+A)(I −A)VA + ρB .

(7.1)

The optimal feedback control u∗ is computed by

u∗(X,A, VX , VA) = arg min
ω∈[0 , (λ+A)X∧1]

{
L(ω)−

(
VX +

I(X,A) −A

X
VA

)
· ω

}
. (7.2)

Assuming that the optimal feedback control takes values in the interior of the admissible set,
so that 0 < u∗ < (λ+A)X, we can write the characteristic equations for the first order PDE
(7.1), namely (see for ex. [10])





Ẋ = XA− u∗,

Ȧ = (I −A)

(
λ+A−

u∗

X

)
,

V̇ = (XA− u∗)VX + (I −A)
(
λ+A− u∗

X

)
VA ,

V̇X = ρX(V −B) + (r + ρ−A)VX − [IX(λ+A− u∗

X
) + (I−A)u∗

X2 ]VA ,

V̇A = ρA(V −B)−XVX + [r + ρ− I +A− (IA − 1)(λ +A− u∗

X
)]VA .

(7.3)
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By the previous analysis, one has:

(i) If the instantaneous interest rate I = I(X,A) on new loans is known, then the optimal
feedback control u∗ = u∗(X,A) can be recovered in terms of the value function by the
formula (7.2).

(ii) If the optimal feedback u∗ is known, then for every initial data (X0, A0) one obtains a
solution t 7→ (X(t), A(t)) of the Cauchy problem (4.5). In turn, by (4.13) this determines
the instantaneous interest rate I, namely

I(X0, A0) = I(β) = r + (1− σ)(λ+ r)
β

1− β
, (7.4)

where

β(X0, A0)
.
=

∫ ∞

0
e−(r+λ)t · ρ(X(t), A(t)) exp

{
−

∫ t

0
ρ(X(s), A(s)) ds

}
dt . (7.5)

Combining (i) and (ii), we obtain a system of nonlinear PDEs for the two functions V (X0, A0)
and β(X0, A0). Indeed, if u∗ is an optimal feedback control defined at (7.2), differentiating
w.r.t. t the two expressions

V
(
X(t), A(t)

)
=

∫ ∞

t

e−r(τ−t) exp

{
−

∫ τ

t

ρ
(
X(s), A(s)

)
ds

}

·
[
ρ(X(τ), A(τ)

)
B + L(u∗(τ))

]
dτ ,

β
(
X(t), A(t)

)
=

∫ ∞

t

e−(r+λ)(τ−t) exp

{
−

∫ τ

t

ρ
(
X(s), A(s)

)
ds

}
· ρ

(
X(τ), A(τ)

)
dτ ,

one obtains




d

dt
V (X(t), A(t)) = (r + ρ(X,A))V − L(u∗)− ρ(X,A)B,

d

dt
β(X(t), A(t)) =

(
r + λ+ ρ(X,A)

)
β − ρ(X,A) .

(7.6)

By (4.5), the functions V, β thus satisfy the system of first order PDEs





(
AX − u∗

)
VX + (I −A)

(
λ+A−

u∗

X

)
VA = (r + ρ)V − L(u∗)− ρB,

(
AX − u∗

)
βX + (I −A)

(
λ+A−

u∗

X

)
βA = (r + λ+ ρ)β − ρ .

(7.7)

Here X,A are the independent variables, r, λ,B are positive constants, ρ is a given function
of X,A, while I = I(β) is defined at (7.4). Finally, u∗ can be recovered from X,A, VX , VA and
I(β) in terms of (7.2).

It seems natural to solve (7.7) with boundary conditions at X = 0 and at X = M , namely

{
V (0, A) = 0,
β(0, A) = 0 ,

{
V (M,A) = B,
β(M,A) = 1 .

(7.8)
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To get some additional insight, we shall transform the system (7.7) into a second order scalar
equation. Taking the directional derivative in the direction of the characteristic vector

b = (b1, b2)
.
=

(
AX − u∗ , (I −A)

(
λ+A−

u∗

X

))
,

from (7.7) and (7.4) it follows





b · ∇V = F (X,A, I, VX , VA)
.
= (r + ρ)V − L

(
u∗

)
− ρB ,

b · ∇I = G(X,A, I)
.
=

[I − r − (1− σ) · ρ] · [I − r + (1− σ) · (r + λ)]

1− σ
.

(7.9)
Observe that the components b1, b2 depend also on u∗, and hence onX,A, I, VX , VA. Assuming
that the minimum in (7.2) is attained at an interior point ω = u∗, the necessary conditions
for optimality yield

L′(u∗) = VX +
I −A

X
VA . (7.10)

We assume that, by the implicit function theorem, (7.10) and the first identity in (7.9) can be
used to uniquely determine the functions

u∗ = u∗(X,A, I, VX , VA), I = I(X,A, V, VX , VA). (7.11)

Differentiating the first equation in (7.10) the direction of the vector b, we obtain

0 = b · ∇

[
b · ∇V − (r + ρ)V + L(u∗) + ρB

]

=
(
AX − u∗

)
·

∂

∂X

[(
AX − u∗

)
VX + (I −A)

(
λ+A−

u∗

X

)
VA − (r + ρ)V + L(u∗) + ρB

]

+ (I −A)
(
λ+A−

u∗

X

) ∂

∂A

[(
AX − u∗

)
VX

+ (I −A)
(
λ+A− u∗

X

)
VA − (r + ρ)V + L(u∗) + ρB

]

=
(
AX − u∗

)2
· VXX + 2

(
AX − u∗)(I −A)

(
λ+A−

u∗

X

)
· VXA

+(I −A)2
(
λ+A−

u∗

X

)2
· VAA − Φ(X,A, V, VX , VA),

(7.12)
where the function Φ collects all the remaining terms. We claim that Φ depends only on the
first derivatives VX , VA, i.e., its expression does not involve second derivatives. Indeed, by the
second equation in (7.9) the quantity

(
AX − u∗

)
·
∂I

∂X
+ (I −A)

(
λ+A−

u∗

X

) ∂I

∂A
= G(X,A, I)

can be expressed in terms of X,A, and I(X,A, V, VX , VA). Moreover, the optimality condition
(7.10) implies

[
− VX −

I −A

X
+ L′(u∗)

]
∂

∂X
u∗ =

[
− VX −

I −A

X
+ L′(u∗)

]
∂

∂A
u∗ = 0 .

33



This proves our claim.

We observe that (7.12) is a quasilinear degenerate elliptic equation for the value function
V = V (X,A), on the domain

Ω
.
=

{
(X,A) ; X ∈ [0,M ] , A ≥ 0

}
, (7.13)

with boundary data as in (7.8). In more compact notation, it takes the form

a2 VXX + 2ab VXA + b2 VAA = Φ , (7.14)

where the coefficients a, b,Φ are highly nonlinear functions of X,A, V, VX , VA.
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