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Abstract

We consider a non-cooperative game in infinite time horizon, with linear dynamics
and exponentially discounted quadratic costs. Assuming that the state space is one-
dimensional, we prove that the Nash equilibrium solution in feedback form is stable under
nonlinear perturbations. The analysis shows that, in a generic setting, the linear-quadratic
game can have either one or infinitely many feedback equilibrium solutions. For each of
these, a nearby solution of the perturbed nonlinear game can be constructed.

1 Introduction

Noncooperative differential games with linear dynamics and quadratic costs have been widely
studied in recent literature [2, 11, 12, 13, 14, 16, 19]. The existence of explicit solutions,
determined by a finite set of algebraic equations, makes them a very attractive modeling tool.
They have been used in a variety of applications, particularly in economics and management
science.

In most of these applications, the underlying dynamical equations are nonlinear and the cost
functions are not exactly quadratic polynomials. Prices, interest rates, inventory levels, etc. . .
assume only positive values, while in a linear-quadratic game all functions must be defined on
the whole real line.

In spite of these discrepancies, linear-quadratic games can be regarded as a natural approx-
imation to more realistic models. In an attempt to justify this approximation, one is led to
the following

Question: Starting from a linear-quadratic differential game for two players, suppose that
some small, nonlinear perturbations are added to the dynamics of the system and to the cost
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functions. Does the perturbed game still have a Nash equilibrium solution in feedback form,
close to the original one?

For noncooperative differential games on a finite time interval [0, T ], the analysis in [9] and
[5] shows that the answer is largely negative. Indeed, the value functions for the two players
are determined by a system of two Hamilton-Jacobi equations, with given terminal conditions
at t = T . When the state space has dimension n = 1, in some cases this leads to a hyperbolic
system, which has unique solutions [8]. However, in dimension n ≥ 2 the system is not
hyperbolic and the backward Cauchy problem is generically ill posed. A small nonlinear
perturbation of the terminal costs may produce a large change in the solution.

Aim of the present paper is to prove some positive results, in the case of differential games for
two players in infinite time horizon, with exponentially discounted costs.

Let u1, u2 be the controls implemented by the two players, and assume that the state of the
system x ∈ IRn evolves according to

ẋ = f(x, u1, u2), u1(t) ∈ U1 , u2(t) ∈ U2 . (1.1)

Moreover, let

Ji =

∫ ∞
0

e−γt φi
(
x(t), u1(t), u2(t)

)
dt i = 1, 2, (1.2)

be the exponentially discounted costs. Here and in the sequel, an upper dot denotes a deriva-
tive w.r.t. time, while the constant γ > 0 is a discount rate.

Since the dynamics and the payoffs do not depend explicitly on time, it is natural to seek a
Nash equilibrium solution consisting of time-independent feedbacks.

Definition 1. A pair of functions x 7→ u∗1(x) ∈ U1, x 7→ u∗2(x) ∈ U2 will be called a Nash
equilibrium solution to the non cooperative game (1.1)-(1.2) provided that:

(i) The map u∗1(·) is an optimal feedback, in connection with the optimal control problem
for the first player:

minimize

∫ ∞
0

e−γt φ1

(
x(t), u1(t), u∗2(x(t))

)
dt

subject to
ẋ = f(x, u1, u

∗
2(x)) u1(t) ∈ U1 .

(ii) The map u∗2(·) is an optimal feedback, in connection with the optimal control problem
for the second player:

minimize

∫ ∞
0

e−γt φ2

(
x(t), u∗1(x(t)), u2

)
dt

subject to
ẋ = f(x, u∗1(x), u2) u2(t) ∈ U2 .
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This equilibrium solution can be found by solving the corresponding PDEs for the value
functions. Assuming that the feedbacks u∗1, u

∗
2 implemented the two players are sufficiently

regular, let t 7→ x(t, x0) be the trajectory of the system starting from an initial state x0. This
is obtained by solving the Cauchy problem

ẋ = f(x, u∗1(x), u∗2(x)) , x(0) = x0 . (1.3)

The value functions for the two players are then computed by

Vi(x0)
.
=

∫ ∞
0

e−γt φi

(
x(t, x0), u∗1(x(t, x0)), u∗2(x(t, x0))

)
dt , i = 1, 2. (1.4)

In the following we assume:

(H) For any x ∈ IRn and every pair of vectors (ξ1, ξ2) ∈ IRn× IRn, there exist a unique pair

(u]1, u
]
2) ∈ U1 × U2 such that

u]1(x, ξ1, ξ2) = argmin
ω∈U1

{
ξ1 · f(x, ω, u]2) + φ1(x, ω, u]2)

}
, (1.5)

u]2(x, ξ1, ξ2) = argmin
ω∈U2

{
ξ2 · f(x, u]1, ω) + φ2(x, u]1, ω)

}
. (1.6)

On an open region where V1, V2 are continuously differentiable, a dynamic programming argu-
ment (see for example [1, 6, 15]) shows that these value functions satisfy a system of Hamilton-
Jacobi equations: {

γV1 = H(1)(x,∇V1,∇V2) ,

γV2 = H(2)(x,∇V1,∇V2) ,
(1.7)

where, for i = 1, 2,

H(i)(x, ξ1, ξ2)
.
= ξi · f

(
x, u]1(x, ξ1, ξ2), u]2(x, ξ1, ξ2)

)
+ φi

(
x, u]1(x, ξ1, ξ2), u]2(x, ξ1, ξ2)

)
.

If a solution to the system (1.7) can be found, then the Nash equilibrium feedback controls
are computed by

u∗i (x) = u]i(x, ∇V1(x), ∇V2(x)), i = 1, 2 . (1.8)

In general, the system (1.7) is highly nonlinear and difficult to solve (globally on the entire
space IRn). Even in one space dimension, examples are known where this system admits
infinitely many solutions, or no solution at all [7, 17]. In the case of linear dynamics

ẋ = Ax+B1u1 +B2u2 , (1.9)

and quadratic cost functionals

Ji =

∫ ∞
0

e−γt
(
aTx(t) + xT (t)Rix(t) + uTi (t)Siui(t)

)
dt , i = 1, 2 , (1.10)

a particular solution to the system of PDEs (1.7) can be found in terms of quadratic polyno-
mials. Namely

Vi(x) =
1

2
xTMix+ nTi x+ ei , i = 1, 2 ,
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where the superscript T denotes transposition. To determine this particular solution, it suffices
to solve a system of algebraic equations for the coefficients of the matrices M1,M2, the vectors
n1,n2, and the scalars e1, e2.

Our present goal is to understand whether this solution is stable w.r.t. small nonlinear pertur-
bations of the dynamics and of the cost functionals. This issue can be studied in two separate
settings: either on a bounded domain, or on the entire space IRn.

(I) Let u∗1, u
∗
2 be the affine feedback controls in a Nash equilibrium for the linear quadratic

game (1.9)-(1.10), and consider any bounded domain Ω which is positively invariant for
the corresponding dynamical system

ẋ = Ax+B1u
∗
1(x) +B2u

∗
2(x). (1.11)

We recall that Ω is positively invariant if, for every solution x(·) of (1.11), one has the
implication

x(0) ∈ Ω =⇒ x(t) ∈ Ω for all t ≥ 0.

In this setting a natural question is whether, for a suitably small perturbation of the
dynamics and of the cost functions, the system of H-J equations (1.7) admits a solution
defined on Ω, close to the original one. The uniqueness of this solution is also an
important issue, both for the linear-quadratic game and for the nonlinear perturbation.

(II) A further question is whether a solution to the perturbed game can be constructed on the
entire space IRn, under suitable assumptions on how the perturbation grows as |x| → ∞.

We remark that, for many applications, the models are meaningful only on a proper subset
of IRn. For example, state variables should often satisfy non-negativity constraints. It is thus
natural to construct solutions to the system of H-J equations (1.7) on a bounded domain Ω,
as long as this domain is positively invariant for the corresponding dynamics. In this case,
the feedback controls u∗i : Ω 7→ IRm will still provide a Nash equilibrium for a game where the
state is required to remain inside Ω, assuming that the cost functions φi in (1.2) satisfy

φi(x) = +∞ if x /∈ Ω.

In this paper we confine the analysis to the one-dimensional case, under generic assumptions
(i.e., valid as the coefficients range on an open dense set). Denoting by ξi = V ′i ∈ IR, i = 1, 2,
the gradients of the value functions, the Hamilton-Jacobi equations (1.7) can be reduced to a
system of two implicit ODEs, of the form

Λ(x, ξ1, ξ2)

(
ξ′1
ξ′2

)
=

(
ψ1(x, ξ1, ξ2)
ψ2(x, ξ1, ξ2)

)
, (1.12)

where Λ is a suitable 2× 2 matrix.

In the linear-quadratic case, one can find a solution (ξ∗1 , ξ
∗
2) of (1.12), where each ξ∗i (x) = αix+

βi is an affine function. Moreover, the determinant det Λ(x, ξ1, ξ2) is a homogeneous quadratic
polynomial of the three variables x, ξ1, ξ2. It vanishes on the surface of a double cone Γ−,
shown in Fig. 1. Looking at the relative position of the line ξ∗ =

{
(x, ξ∗1(x), ξ∗2(x)) ; x ∈ IR

}
w.r.t. the cone Γ−, under generic conditions two main cases can occur.
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Figure 1: The position of the line ξ = ξ∗(x), relative to the double cone Γ− where detΛ(x, ξ1, ξ2) ≤ 0.
Left: the line is always outside Γ−. Center: the line is inside Γ− for x in some bounded interval [a, b].
Right: the line is inside Γ− for x outside a bounded interval ]a, b[ . Notice that trajectories of the
implicit ODE (1.12) typically become singular as they approach the boundary of Γ−, and cannot be
prolonged any further (left figure).

x

ξ
1

2
ξ

0

ξ*(x)

Figure 2: If det Λ(x, ξ∗1(x), ξ∗2(x)) 6= 0 for all x ∈ IR, then, the linear-quadratic game has infinitely
many solutions. In one of these solutions the feedbacks u∗1, u

∗
2 are affine, while in all the others they

are fully nonlinear functions. All these solutions are stable under small nonlinear perturbations of the
dynamics and of the cost functions.
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Figure 3: A case where det Λ(x, ξ∗1(x), ξ∗2(x)) vanishes at two points x̄1 < x̄1 and the linear-quadratic
game has a unique solution, which is stable under small nonlinear perturbations of the dynamics and
of the cost functions. The graph of ξ∗(·) contains a heteroclinic orbit of a related dynamical system.
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CASE 1: The line ξ∗ lies entirely outside the cone (Fig. 1, left). As a consequence, the matrix
Λ(x, ξ1, ξ2) is invertible in a neighborhood of ξ∗. The system of ODEs (1.12) can thus be
written in the standard form(

ξ′1
ξ′2

)
= Λ−1(x, ξ1, ξ2)

(
ψ1(x, ξ1, ξ2)
ψ2(x, ξ1, ξ2)

)
. (1.13)

In this case, by solving (1.13) with slightly different initial data at x = 0, one can construct
infinitely many Nash equilibrium solutions in feedback form for the same linear-quadratic
game (Fig. 2). These solutions vary continuously under small nonlinear perturbations of the
data.

CASE 2: the line ξ∗ is partly inside, partly outside the cone Γ−. (Fig. 1, center and right),
crossing the surface of the cone at two points P ∗i = (x̄i, ξ

∗
1(x̄i), ξ

∗
2(x̄i)), i = 1, 2, with x̄1 < x̄2.

In this case, the equation detΛ(x, ξ1, ξ2) = 0 locally defines two surfaces Σ1, Σ2, near the
points P ∗1 , P ∗2 , respectively (see Fig. 3). Always for the linear-quadratic game, a detailed
analysis shows that a smooth solution of (1.12) can cross the surface Σ1 only along a special
curve γ1 ⊂ Σ1. By the same argument, it can cross the surface Σ2 only along a curve γ2 ⊂ Σ2.

In general, the graph of a solution to (1.12) can be constructed as a concatenation of orbits of
a related dynamical system on IR3, where all point on the curves γ1 and γ2 are steady states.
Smooth solutions correspond to heteroclinic orbits, connecting a point on γ1 to a point on
γ2. Depending on the properties of the two equilibrium points P ∗1 , P ∗2 (source, saddle, sink),
there can be a single orbit, or else a 1- or a 2-parameter family of heteroclinic orbits. In a
typical case, shown in Fig. 3, the points P ∗1 ∈ γ1 and P ∗2 ∈ γ2 are both saddle points. The
2-dimensional center-stable manifold M1 through P ∗1 and the 2-dimensional center-unstable
manifold M2 through P ∗2 are transversal. Their intersection is the unique heteroclinic orbit
joining γ1 with γ2.

Under generic assumptions, all of the above configurations are structurally stable. Namely,
the curves γi and the manifolds Mi are still well defined in the presence of a small nonlinear
perturbation. The family of heteroclinic orbits is preserved as well.

The remainder of the paper is organized as follows. In Section 2 we recall the system of
Hamilton-Jacobi equations for a noncooperative 2-player game in infinite time horizon, while
in Section 3 we review the construction of affine feedback solutions for the linear-quadratic case.
Solutions of (1.12) on a bounded interval are studied in Section 4. The main tool in the analysis
is a representation of their graph as a concatenation of orbits, for a related dynamical system.
The case of a heteroclinic orbit joining two saddle points, illustrated in Fig. 3, is worked out
in detail in Section 5. This is the most pleasing case, where the linear-quadratic game has a
unique feedback solution, which is stable under small nonlinear perturbations. In Section 6 we
prove that, under suitable growth conditions, feedback solutions to the perturbed nonlinear
game can be extended to the entire real line. Up to this section, all of our analysis is concerned
with the system of ODEs (1.12) for the derivatives of the value functions. Finally, in Section 7
we show that, by constructing a solution to (1.12), one can recover the value functions V1, V2

in (1.7) and provide a Nash equilibrium solution to the non-cooperative differential game.

Remark 1. All of our results hold under “generic” assumptions on the coefficients a0, bi, Ri, Si
of the linear-quadratic game (3.2)-(3.3). In other words, they are valid as these coefficients
range in an open dense set. In some cases, this set can be precisely determined. In general,
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this set is described by a finite set of inequalities:

Φj(a0, b1, b2, R1, R2, S1, S2) 6= 0, j = 1, . . . , N,

where the Φj are analytic functions. Having constructed examples where these inequalities do
hold, by analyticity we conclude that they must hold on an open dense set.

In earlier literature, a few examples of feedback equilibria for nonlinear infinite horizon differ-
ential games have been studied in [4, 7, 17]

2 The basic setting

Throughout the following, we consider a system whose dynamics is linear w.r.t. the controls
u1, u2. The state x ∈ IR thus evolves according to

ẋ = f(x) + g1(x)u1 + g2(x)u2 , u1(t), u2(t) ∈ IR . (2.1)

Here f, g1, g2 : IR 7→ IR are smooth maps with sublinear growth:

|f(x)|+ |g1(x)|+ |g2(x)| ≤ C
(
1 + |x|

)
, (2.2)

for some constant C. The cost functionals for the two players are

Ji =

∫ ∞
0

e−γt
[
ϕi(x(t)) +

u2
i (t)

2

]
dt . (2.3)

Call V1, V2 the value functions in a Nash equilibrium in feedback form. By the previous
analysis these functions satisfy the system of Hamilton-Jacobi equations (1.7), where

H(i)(x, ξ1, ξ2)
.
= ξi

[
f(x) + g1(x)u]1 + g2(x)u]2

]
+ ϕi(x) +

(u]i)
2

2
, i = 1, 2 . (2.4)

The optimal feedback controls are given by the formulas

u]1(x, ξ1, ξ2) = argmin
ω

{
ξ1 g1(x)ω +

ω2

2

}
= − ξ1 g1(x) ,

u]2(x, ξ1, ξ2) = argmin
ω

{
ξ2 g2(x)ω +

ω2

2

}
= − ξ2 g2(x) .

(2.5)

Inserting (2.5) in (2.4), from (1.7) one obtains the implicit system of ODEs
γV1 =

[
f(x)− 1

2g
2
1(x)V ′1 − g2

2(x)V ′2

]
V ′1 + ϕ1 ,

γV2 =
[
f(x)− g2

1(x)V ′1 − 1
2g

2
2(x)V ′2

]
V ′2 + ϕ2 .

(2.6)

Differentiating (2.6) w.r.t. x we obtain a system of two ODEs for the derivatives of the value
functions: ξ1 = V ′1 , ξ2 = V ′2 . Namely

Λ(x, ξ1, ξ2)

ξ′1
ξ′2

 =

ψ1(x, ξ1, ξ2)

ψ2(x, ξ1, ξ2)

 , (2.7)
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where

Λ(x, ξ1, ξ2) =

(
Λ11 Λ12

Λ21 Λ22

)
=

f − g2
1ξ1 − g2

2ξ2 −g2
2ξ1

−g2
1ξ2 f − g2

1ξ1 − g2
2ξ2

 , (2.8)

ψ1(x, ξ1, ξ2)

ψ2(x, ξ1, ξ2)

 =

(γ − f ′)ξ1 + g1g
′
1ξ

2
1 + 2g2g

′
2ξ1ξ2 − ϕ′1)

(γ − f ′)ξ2 + g2g
′
2ξ

2
2 + 2g1g

′
1ξ1ξ2 − ϕ′2)

 . (2.9)

When both players adopt the equilibrium feedback strategies (2.5), by (2.1) the system evolves
according to

ẋ = f − g2
1ξ1 − g2

2ξ2 . (2.10)

3 Review of the linear-quadratic case

In this section we review the construction of feedback equilibrium solutions for the linear-
quadratic case. Assume that in (2.1) and (2.3) one has

f(x) = a0x , gi(x) = bi , ϕi(x) = Rix+
1

2
Six

2 , i = 1, 2 , (3.1)

for some constants ai, bi, Ri, Si. The dynamics and cost functionals thus become

ẋ = a0x+ b1u1 + b2u2 , (3.2)

Ji =

∫ ∞
0

e−γt
[
Rix+

1

2
Six

2 +
u2
i

2

]
dt . (3.3)

Notice that, if a0 6= 0, the more general case where f(x) = a0x + b0 can be reduced to (3.2)
by a translation of coordinates. The following assumptions will be used throughout.

(A1) The coefficients S1, S2, γ are strictly positive. Moreover, one of the following alternatives
holds.

Case 1: a0 >
γ
2 > 0 and S1b

2
1 + S2b

2
2 > (2a0 − γ)2/2.

Case 2: a0 < 0.

In the linear-quadratic case, the matrix Λ and the right hand side ψ in the system of ODEs
(2.7) take the special form

Λ
(
x, ξ1, ξ2

)
=

(
Λ11 Λ12

Λ21 Λ22

)
=

a0x− b21ξ1 − b22ξ2 −b22ξ1

−b21ξ2 a0x− b21ξ1 − b22ξ2

 , (3.4)

ψ1

(
x, ξ1, ξ2

)
ψ2

(
x, ξ1, ξ2

)
 =

(γ − a0)ξ1 −R1 − S1x

(γ − a0)ξ2 −R2 − S2x

 . (3.5)
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Under the assumptions (A1), one can construct an explicit solution where ξ1, ξ2 are affine
functions, namely

ξ∗1(x) = α1x+ β1 , ξ∗2(x) = α2x+ β2 . (3.6)

Indeed, inserting (3.4)–(3.6) in (2.7) one obtains

(
a0x− b21(α1x+ β1)− b22(α2x+ β2)

)
α1 − b22(α1x+ β1)α2

= (γ − a0)(α1x+ β1)− (R1 + S1x) ,(
a0x− b21(α2x+ β2)− b22(α2x+ β2)

)
α2 − b21(α2x+ β2)α1

= (γ − a0)(α2x+ β2)− (R2 + S2x).

Since these equalities must hold for every x, we obtain a system of four quadratic equations
for the unknowns α1, α2, β1, β2.

b21α
2
1 + 2b22α1α2 + (γ − 2a0)α1 = S1 ,

b22α
2
2 + 2b21α1α2 + (γ − 2a0)α2 = S2 ,

(b21α1 + b22α2 − a0 + γ)β1 + b22α1β2 = R1 ,

(b21α1 + b22α2 − a0 + γ)β2 + b21α2β1 = R2 .

(3.7)

To solve (3.7), it is convenient to introduce the variables

A
.
= 2a0 − γ , Xi

.
=

b2i
A
αi , Ki

.
=

Sib
2
i

A2
, i = 1, 2. (3.8)

The first two equations in (3.7) can then be written as{
X2

1 + 2X1X2 −X1 = K1 ,

X2
2 + 2X1X2 −X2 = K2 .

(3.9)

Equivalently, {
(X1 +X2 − 1)(X1 −X2) = K1 −K2 ,

3(X1 +X2)2 − (X1 −X2)2 − 2(X1 +X2) = 2(K1 +K2) .
(3.10)

Introducing the further variables

Y1
.
= X1 +X2 − 1, Y2

.
= X1 −X2 ,

we obtain {
Y1Y2 = K1 −K2 ,

3Y 2
1 + 4Y1 − Y 2

2 = 2(K1 +K2)− 1 .
(3.11)

By the first equation, Y2 = (K1 −K2)/Y1. Inserting this expression in the second equation,
we find

G(Y1)
.
= 3Y 4

1 + 4Y 3
1 +

(
1− 2(K1 +K2)

)
Y 2

1 = (K1 −K2)2 . (3.12)

By the assumption (A1) and the definitions (3.8), two cases can arise.
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Case 1: a0 >
γ
2 > 0 and K1 +K2 > 1/2. This implies

G(0) = G′(0) = 0, G′′(0) = 2− 4(K1 +K2) < 0, lim
s→+∞

G(s) = +∞ . (3.13)

Hence the equation (3.12) has a solution Y ∗1 > 0.

Case 2: a0 < 0. This implies

G(−1) = − 2(K1 +K2) ≤ 0, lim
s→−∞

G(s) = +∞ . (3.14)

Hence the equation (3.12) has a solution Y ∗1 < −1.

In both cases, reverting to the original variables we find

α1 =
A

2b21

[
Y ∗1 + 1 +

K1 −K2

Y ∗1

]
, α2 =

A

2b22

[
Y ∗1 + 1− K1 −K2

Y ∗1

]
. (3.15)

As soon as α1, α2 have been determined, the last two equations in (3.7) provide a linear system
for the variables β1, β2. This can be uniquely solved under the condition

(b21α1 + b22α2 − a0 + γ)2 − b21α1b
2
2α2 6= 0 . (3.16)

We observe that, under the assumption (A1), this inequality always holds. Indeed, dividing
by A2, (3.16) can be rewritten as(

X1 +X2 − 1 +
a0

A

)2
−X1X2 6= 0 .

Equivalently, (
Y ∗1 +

a0

A

)2
− 1

4
(Y ∗1 + 1)2 +

1

4
(Y ∗2 )2 6= 0 . (3.17)

Two cases are considered:

• If a0 >
γ
2 > 0 and K1 +K2 > 1/2 then

Y ∗1 > 0 and
a0

A
=

a0

2a0 − γ
>

1

2
.

Thus

Y ∗1 +
a0

A
>

1

2
(Y ∗1 + 1) > 0.

• If a0 < 0 then

Y ∗1 ≤ − 1 and 0 <
a0

A
=

a0

2a0 − γ
<

1

2
.

Hence

Y ∗1 +
a0

A
<

1

2
(Y ∗1 + 1) < 0.
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Therefore, (
Y ∗1 +

a0

A

)2
− 1

4
(Y ∗1 + 1)2 > 0 (3.18)

in Case 1 as well as in Case 2. Hence (3.17) holds .

Having determined the constants αi, βi, the affine functions ξ∗1 , ξ
∗
2 in (3.6) yield a solution to

the system (2.7). According to (2.5), the corresponding Nash equilibrium feedback controls
are

u∗1(x) = − b1(α1x+ β1), u∗2(x) = − b2(α2x+ β2). (3.19)

In the following, given a solution (α1, α2, β1, β2) of the algebraic system (3.7), recalling (3.8)
we shall write

X∗1 =
b21
A
α1 , X∗2 =

b22
A
α2 , Y ∗1 = X∗1 +X∗2 − 1 , Y ∗2 = X∗1 −X∗2 . (3.20)

Remark 2. When the Nash equilibrium feedbacks (3.19) are implemented, the system (3.2)
evolves according to

ẋ = a0x− b21(α1x+ β1)− b22(α2x+ β2)

= (a0 − b21α1 − b22α2)x+ (−b21β1 − b22β2).
(3.21)

Under the assumption (A1), if either a0 < 0 or 0 < γ ≤ a0, then the stationary point

x∗ =
b21β1 + b22β2

a0 − b21α1 − b22α2
(3.22)

is an asymptotically stable equilibrium for the ODE (3.21). However, this equilibrium is un-
stable when a0 = γ/2.

To prove the above claims, we examine various cases.

• If a0 < 0, then A = 2a0 − γ < 0, while X∗1 +X∗2 = Y ∗1 + 1 < 0. Therefore

a0 − b21α1 − b22α2 = a0 −A(X∗1 +X∗2 ) ≤ a0 < 0 .

• If 0 < γ ≤ a0 and K1 + K2 > 1/2, recalling that X∗1 + X∗2 = Y ∗1 + 1 > 1 and A =
2a0 − γ > 0, we obtain

a0 − b21α1 − b22α2 = a0 −A(X∗1 +X∗2 ) < a0 −A = γ − a0 ≤ 0.

• On the other hand, if 0 < γ = 2a0, then A = 0 and

a0 − b21α1 − b22α2 = a0 −A(X∗1 +X∗2 ) = a0 > 0.

Remark 3. Under the assumption (A1) one has α1, α2 > 0. Therefore, the value functions
of both players approach +∞ as x→ ±∞.

Indeed, from (3.9) it follows

X∗1 · (X∗1 + 2X∗2 − 1) > 0 and X∗2 · (X∗2 + 2X∗1 − 1) > 0 . (3.23)

Without loss of generality we can assume that X∗1 ≥ X∗2 . There are two cases:
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• If a0 >
γ
2 > 0 and K1 + K2 > 1/2 then A = 2a0 − γ > 0 and X∗1 + X∗2 = Y ∗1 + 1 > 0.

This implies that X∗1 > 0 and

X∗2 + 2X∗1 − 1 = X∗1 + Y ∗1 > 0 .

Recalling (3.23) we have X∗2 > 0. Thus

αi =
AX∗i
b2i

> 0 i = 1, 2 . (3.24)

• If a0 < 0 then A = 2a0 − γ < 0 and X∗1 + X∗2 = Y ∗1 + 1 < 0. This implies that X∗2 < 0
and

X∗1 + 2X∗2 − 1 = X∗2 + Y ∗1 < 0 .

Recalling (3.23) we have X∗1 < 0. Hence (3.24) again holds.

4 Perturbed solutions on a bounded domain

Together with the linear-quadratic game (1.9)-(1.10), we now consider a perturbed game,
where the dynamics and the cost functions have the form

ẋ = (a0x+ f0(x)) + (b1 + h1(x))u1 + (b2 + h2(x))u2 , (4.1)

Ji =

∫ +∞

0
e−γt

(
Rix+ Six

2 + ηi(x) +
u2
i

2

)
dt , (4.2)

for some perturbations f0, h1, h2, η1, η2. The gradients of the value functions ξi(x) = V ′i (x)
will again satisfy the implicit system of ODEs

Λ(x, ξ1, ξ2)

ξ′1
ξ′2

 =

ψ1(x, ξ1, ξ2)

ψ2(x, ξ1, ξ2)

 , (4.3)

where now

Λ
(
x, ξ1, ξ2

)
=

(
Λ11 Λ12

Λ21 Λ22

)
.
=

a0x+ f0 − (b1 + h1)2ξ1 − (b2 + h2)2ξ2 −(b2 + h2)2ξ1

−(b1 + h1)2ξ2 a0x+ f0 − (b1 + h1)2ξ1 − (b2 + h2)2ξ2

 ,

(4.4)ψ1

(
x, ξ1, ξ2

)
ψ2

(
x, ξ1, ξ2

)
 =

(γ − a0 − f ′0)ξ1 −R1 − S1x− η′1

(γ − a0 − f ′0)ξ2 −R2 − S2x− η′2

 . (4.5)

Throughout the following, we assume that the conditions (A1) hold, and let

ξ∗i (x) = V ′i (x) = αix+ βi , i = 1, 2, (4.6)
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be the gradients of the value functions in the affine solution of the linear-quadratic game. We
denote by

Λ∗(x)
.
= Λ(x, ξ∗1(x), ξ∗2(x)) =

a0x− b21ξ∗1 − b22ξ∗2 −b22ξ∗1

−b21ξ∗2 a0x− b21ξ∗1 − b22ξ∗2

 (4.7)

the corresponding matrix at (3.4). Its determinant is

det Λ∗(x) =
[
a0x− b21(α1x+ β1)− b22(α2x+ β2)

]2 − b21b22(α1x+ β1)(α2x+ β2). (4.8)

Under generic assumptions on the coefficients, det Λ∗(x) is a polynomial of degree two, either
with no real root, or with two distinct roots. These two cases are qualitatively very different.

4.1 Det Λ∗ has no real roots.

In this case, the matrix Λ∗(x) is invertible for every x ∈ IR. In a neighborhood of the line ξ∗

the system (4.3) can be written in explicit form asξ′1
ξ′2

 = Λ−1
(
x, ξ1, ξ2

)ψ1

(
x, ξ1, ξ2

)
ψ2

(
x, ξ1, ξ2

)
 . (4.9)

In this setting, the standard theory of uniqueness and continuous dependence for solutions to
ODEs yields

Theorem 1. Assume that the quadratic polynomial det Λ∗(x) in (4.8) has no real roots, and
let Ω ⊂ IR be any bounded interval. Given ε > 0, there exist δ0, δ1 > 0 such that the following
holds. Consider any point x0 ∈ Ω, any perturbations f0, η1, η2 ∈ C1(Ω), h1, h2 ∈ C0(Ω), and
any data ξ̄1, ξ̄2 ∈ IR, satisfying

|ξ̄1 − ξ∗1(x0)| ≤ δ0 , |ξ̄2 − ξ∗2(x0)| ≤ δ0 , (4.10)

‖f0‖C1 + ‖η1‖C1 + ‖η2‖C1 + ‖h1‖C0 + ‖h2‖C0 ≤ δ1 . (4.11)

Then the ODE (4.3)–(4.5) has a unique solution on Ω, with initial data

ξ1(x0) = ξ̄1 , ξ2(x0) = ξ̄2 .

Moreover, this solution satisfies

|ξ1(x)− ξ∗1(x)|+ |ξ2(x)− ξ∗2(x)| ≤ ε for all x ∈ Ω . (4.12)

Notice that in this case, setting f0 = h1 = h2 = η1 = η2 = 0, one can already find infinitely
many solutions to the implicit system of ODEs (4.3) on the interval Ω. One of these solutions
is affine, given by (3.6), while the others are fully nonlinear. In Section 6 we shall analyze
whether these nonlinear solutions can be extended beyond Ω, to the entire real line.
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Remark 4. Assume that the stationary point x∗ in (3.22) is an asymptotically stable equi-
librium for the linear ODE (3.21), contained in the interior of Ω. Then, choosing δ0, δ1 > 0
sufficiently small in (4.10)-(4.11), the interval Ω will be positively invariant for the corre-
sponding feedback dynamics

ẋ = a0x+ f0(x)−
(
b1 + h1(x)

)2
ξ1(x)−

(
b2 + h2(x)

)2
ξ2(x). (4.13)

Example 1. Consider the linear system

ẋ = 3x+ u1 + u2 . (4.14)

and the cost functions

J1 =

∫ ∞
0

e−t ·
(

25x2 + 3x+
1

2
u2

1

)
, J2 =

∫ ∞
0

e−t ·
(

25x2 − 3x+
1

2
u2

2

)
. (4.15)

The corresponding constants in (3.8) are

A = 5 and K1 = K2 = 2 .

Solving (3.12) and (3.11) we obtain

Y ∗1 = 1, Y ∗2 = 0, X∗1 = X∗2 = 1 .

After a few computations, we find that (4.3) admits a linear solution

ξ∗1(x) = 5x+ 1 , ξ∗2(x) = 5x− 1 .

The corresponding dynamic is

ẋ = 3x− ξ∗1(x)− ξ∗2(x) = − 7x ,

having x∗ = 0 as asymptotically stable equilibrium point. By (4.8), the determinant of the
corresponding matrix Λ∗ is

det Λ∗(x) = (−7x)2 − (5x+ 1) · (5x− 1) = 24x2 + 1 ,

which is always positive.

4.2 Det Λ∗ has two real roots.

We now assume that the determinant of the matrix Λ∗(x) at (4.7) vanishes at two distinct
points x̄1 < x̄2 and so that

x̄1, x̄2 6= x∗ and p(x)
.
= det Λ∗(x) = CΛ(x− x̄1)(x− x̄2) (4.16)

where x∗ is the stationary point in (3.22) and CΛ is a nonzero constant. Notice that, if this
assumption holds, the coefficients Ri in (3.3) and βi in (4.6) must satisfy

(R1, R2) 6= (0, 0), (β1, β2) 6= (0, 0). (4.17)

Indeed, if (R1, R2) = (0, 0), then the last two equations of (3.7) together with (3.16) imply
(β1, β2) = (0, 0). By (3.6), for i = 1, 2 we thus have ξ∗i (x) = αix. This yields

det Λ∗(x) =
[
(a0 − b21α1 − b22α2)2 − b21b22α1α2

]
· x2 . (4.18)
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Hence x̄1 = x̄2 = 0, against the assumption.

We rewrite (4.3) as a Pfaffian system{
Λ11 dξ1 + Λ12 dξ2 − ψ1 dx = 0,
Λ21 dξ1 + Λ22 dξ2 − ψ2 dx = 0.

(4.19)

Consider the vectors

v
.
=

−ψ1

Λ11

Λ12

 , w
.
=

−ψ2

Λ21

Λ22

 , (4.20)

and denote by v ∧w their wedge product. To construct trajectories of (4.3), we seek contin-
uously differentiable functions x 7→ (ξ1(x), ξ2(x)) whose graph is obtained by concatenating
trajectories of the system ẋ

ξ̇1

ξ̇2

 = v ∧w =

Λ11Λ22 − Λ12Λ21

Λ22ψ1 − Λ12ψ2

Λ11ψ2 − Λ21ψ1

 . (4.21)

Let us first consider the unperturbed linear-quadratic case, where the matrix Λ and the vector
ψ are given by (3.4) and (3.5), respectively. By (4.16), the equation det Λ∗(x) = 0 has two
solutions. These correspond to the two points

P ∗1 = (x̄1, ξ
∗
1(x̄1), ξ∗2(x̄1)), P ∗2 = (x̄2, ξ

∗
1(x̄2), ξ∗2(x̄2)). (4.22)

Moreover the derivative d
dx det Λ∗(x) does not vanish at x = x̄1 and at x = x̄2. By the implicit

function theorem, there exist two surfaces Σ1,Σ2 ⊂ IR3, containing the above two points,
where the determinant of Λ(x, ξ1, ξ2) vanishes (see Fig. 3).

The following analysis will show that, under generic conditions, there exist

• Two curves γ1 ⊂ Σ1 and γ2 ⊂ Σ2, containing the points P ∗1 and P ∗2 respectively, where
the right hand side of (4.21) vanishes.

• Two 2-dimensional invariant manifoldsM1,M2, containing γ1 and γ2 respectively, which
intersect transversally.

As shown in Fig. 3, the transversal intersection M1 ∩M2 defines a heteroclinic orbit con-
necting P ∗1 with P ∗2 . Since this configuration is structurally stable, it is preserved by small C1

perturbations of the vector fields v,w in (4.20).

The next lemma provides generic conditions on the coefficients Ri, Si, bi which guarantee the
existence of two smooth curves γ1, γ2 where the vector fields v,w are parallel.

Lemma 1. Together with (A1) and (4.16), assume that at least one of the following equalities
does not hold:

R1

R2
=

S1

S2
=

b22
b21
. (4.23)

Then the Jacobian matrix of the vector field v ∧w has rank 2 at both points P ∗1 and P ∗2 . As
a consequence, the equation

v ∧w = 0 ∈ IR3 (4.24)
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defines two smooth curves γ1, γ2 : [−s0, s0] 7→ IR3, which we can parameterize by arc length,
such that

γi
(
[−s0, s0]

)
⊂ Σi and γi(0) = P ∗i , i = 1, 2. (4.25)

Proof. 1. For i = 1, 2, since we are assuming xi 6= x∗, at the point P ∗i we have

Λ11 = Λ22 = a0 − b21ξ∗1 − b22ξ∗2 6= 0.

Indeed, by (3.21) the above quantity coincides with the time derivative ẋ, which vanishes
only at the equilibrium point x∗. In turn, detΛ∗(x̄i) = 0 implies Λ12Λ21 6= 0 as well. By
continuity, all four coefficients Λjk in (4.19)–(4.21) are nonzero on a neighborhood of P ∗i . As a
consequence, if the first and second components (or the first and third) of the wedge product
in (4.21) vanish, then the remaining component vanishes as well. Next, by (4.16) it follows

∇(Λ11Λ22 − Λ12Λ21)(P ∗i ) 6= 0, i = 1, 2 .

By the implicit function theorem, it thus suffices to show that the Jacobian matrix of the mapx
ξ1

ξ2

 7→

Λ11Λ22 − Λ12Λ21

Λ22ψ1 − Λ12ψ2

Λ11ψ2 − Λ21ψ1


has rank ≥ 2 at the points P ∗1 and P ∗2 . In the following we denote by

J =

J1

J2

J3

 .
=

∇(Λ11Λ22 − Λ12Λ21)
∇(Λ22ψ1 − Λ12ψ2)
∇(Λ11ψ2 − Λ21ψ1)

 (4.26)

this 3 × 3 Jacobian matrix. Moreover, for a fixed index i ∈ {1, 2}, we denote by J i∗ this
particular matrix computed at the point P ∗i in (4.22).

2. We claim that the range of the linear map u 7→ J i∗u has dimension ≥ 2.

Indeed, since the function ξ∗ = (ξ∗1 , ξ
∗
2) in (3.6) is an affine solution of (4.3) through P ∗i , the

system (4.21) has a corresponding solution of form 1
α1

α2

 · x(t) +

 0
β1

β2

 .

This solution satisfies
ẋ = det Λ(x, ξ∗1(x), ξ∗2(x)).

Therefore, as x(t)→ x̄i, we have the convergence

ẍ(t)

ẋ(t)
→ p′(x̄i) 6= 0

where p is defined in (4.16). This implies

J i∗
 1
α1

α2

 = p′(x̄i) ·

 1
α1

α2

 , (4.27)
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Next, we observe that all functions

Λ11 = Λ22 , Λ12 , Λ21 , ψ1 +R1 , ψ2 +R2 ,

are linear homogeneous w.r.t. the variables x, ξ1, ξ2. In general, if a function φ : IR3 7→ IR is
homogeneous of degree β, so that φ(tz) = tβφ(z), its directional derivative satisfies

〈∇φ(z), z〉 =
d

dt
φ(tz)

∣∣∣∣
t=1

= βφ(z). (4.28)

Moreover, since all Λij are linear, for every z ∈ IR3 we trivially have〈
∇Λij(z), z

〉
= Λij(z). (4.29)

For convenience, for a fixed i ∈ {1, 2} we shall write

Λ∗jk = Λjk(P
∗
i ) and ψ∗j = ψj(P

∗
i ).

We now claim that

J i∗
 x̄i
ξ∗1(x̄i)
ξ∗2(x̄i)

 .
=

κ1

κ2

κ3

 =

 0
R1Λ∗22 −R2Λ∗12

R2Λ∗11 −R1Λ∗21

 . (4.30)

Indeed, applying (4.28) to the function φ = Λ11Λ22 − Λ12Λ21 at the point P ∗i we obtain

κ1 = ∇(Λ11Λ22 − Λ12Λ21) ·

 x̄i
ξ∗1(x̄i)
ξ∗2(x̄i)

 = 2(Λ∗11Λ∗22 − Λ∗12Λ∗21) = 0.

Using (4.28)-(4.29), we then compute

κ2 = ∇(Λ22ψ1 − Λ12ψ2)

 x̄i
ξ∗1(x̄i)
ξ∗2(x̄i)


=
[
∇(Λ22(ψ1 +R1)− Λ12(ψ2 +R2))− (R1∇Λ22 −R2∇Λ12)

] x̄i
ξ∗1(x̄i)
ξ∗2(x̄i)


= 2(R1Λ∗22 −R2Λ∗12)− (R1Λ∗22 −R2Λ∗12) .

(4.31)

After an entirely similar computation yields the value of κ3 given in (4.30).

If (κ2, κ3) 6= (0, 0), comparing (4.27) with (4.30) we conclude that the Jacobian matrix J i∗
has rank 2.

Otherwise, if (κ2, κ3) = (0, 0), recalling that Λ11 = Λ22, by (4.30) we obtain(
Λ∗11 Λ∗12

Λ∗21 Λ∗22

)(
R1

R2

)
= 2Λ∗11 ·

(
R1

R2

)
. (4.32)

By (4.3) it follows(
Λ∗11 Λ∗12

Λ∗21 Λ∗22

)(
ψ∗1

ψ∗2

)
= 2Λ∗11 ·

(
ψ∗1

ψ∗2

)
and

(
Λ∗11 Λ∗12

Λ∗21 Λ∗22

)(
α1

α2

)
=

(
ψ∗1

ψ∗2

)
.
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Since (R1, R2) 6= (0, 0), we have(
ψ∗1

ψ∗2

)
= C ·

(
R1

R2

)
and

(
Λ∗11 Λ∗12

Λ∗21 Λ∗22

)(
α1

α2

)
= 2CΛ∗11 ·

(
R1

R2

)
(4.33)

for some constant C. Two cases are considered:

• If C 6= 0 then (4.32) and (4.33) imply

R1

R2
=

ψ∗1
ψ∗2

=
Λ∗12

Λ∗11

=
α1

α2
> 0 . (4.34)

To achieve a contradiction, let J i∗k be the k-th row of the Jacobian matrix J i∗, as in
(4.26). Using the relations

Λ∗11ψ
∗
1 = Λ∗12ψ

∗
2 , Λ∗11ψ

∗
2 = Λ∗21ψ

∗
1 ,

one obtains

Λ∗11J i∗2 + Λ∗12J i∗3 =
(
∗ , ψ∗1b

2
2Λ∗21 , ψ∗1b

2
1Λ∗12

)
,

J i∗3 =
(
∗ , − 2b21Λ∗11 + b22Λ∗21 , − 2b22Λ∗11 + b21Λ∗12

)
.

If the Jacobian matrix J i∗ has rank ≤ 1, then the above two vectors must be parallel.
Hence

b42Λ∗21Λ∗11 = b41Λ∗12Λ∗11 .

This yields
Λ∗12

Λ∗11

=
ξ∗1(x̄i)

ξ∗2(x̄i)
=

b22
b11
.

Recalling (4.34), we obtain

R1

R2
=

α1

α2
=

β1

β2
=

b22
b21
.

Thus, from the first two equations of (3.7), we deduce

S1

S2
=

b21α
2
1 + 2b22α1α2 + (γ − 2a0)α1

b22α
2
2 + 2b21α1α2 + (γ − 2a0)α2

=
b22
b12
,

contradicting the assumption (4.23).

• If C = 0 then (4.33) implies the identities

ψ∗1 = ψ∗2 = 0, Λ∗11α1 = − Λ∗12α2, Λ∗21α1 = − Λ∗11α2 .

Therefore (
Λ∗11 Λ∗12

Λ∗21 Λ∗22

)(
α1

−α2

)
= 2Λ∗11

(
α1

−α2

)
.

Recalling (4.32), we obtain
R1α2 = −R2α1 .
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Since α1, α2 > 0, this implies R1 6= 0, R2 6= 0. Recalling (4.30) and (4.17), we thus have
Λ∗11 6= 0.

On the other hand, using the identities ψ∗1 = ψ∗2 = 0, a direct computation yields

J i∗ =


∗ (γ − a0)Λ∗11 −(γ − a0)Λ∗12

∗ ∗ ∗

∗ −2b21Λ∗11 + b22Λ∗21 −2b22Λ∗11 + b21Λ∗12

 .

We claim that this matrix J at P ∗i has rank ≥ 2. If not, then

Λ∗11 · (−2b22Λ∗11 + b21Λ∗12) + Λ∗12 · (−2b21Λ∗11 + b22Λ∗21) = 0 .

This implies
b22Λ∗11 + b21Λ∗12 = 0 , b21Λ∗21 + b22Λ∗11 = 0 . (4.35)

Recalling (4.30) we obtain

−α1

α2
=
R1

R2
=

Λ∗12

Λ∗11

= − b22
b21
. (4.36)

Hence
b21α1 = b22α2 . (4.37)

Moreover, (4.35) also implies

b21 · ξ∗1(x̄i) = b22 · ξ∗2(x̄i),

which yields
b21β1 = b22β2 . (4.38)

Inserting (4.37) and (4.38) in the last two equations of the system (3.7), we obtain
b21R1 = b22R2, reaching a contradiction with (4.36).

In all cases, we conclude that the Jacobian matrix J has rank ≥ 2 at the points P ∗1 and P ∗2 .
Hence the curves γ1, γ2 are well defined.

The same conclusion remains true also in the presence of sufficiently small nonlinear pertur-
bations. Indeed, a straightforward application of the implicit function theorem yields:

Lemma 2. Under the same assumptions as in Lemma 1, there exists δ0 > 0 sufficiently small
such that the following holds. Let f0, η1, η2, h1, h2, be perturbations such that

‖f0‖C2 + ‖η1‖C2 + ‖η2‖C2 + ‖h1‖C1 + ‖h2‖C1
.
= δ ≤ δ0 . (4.39)

Then there exists equilibrium points P 1, P 2 for the ODE (4.21), with Λ, ψ given at (4.4)-(4.5),
such that

‖P i − P ∗i ‖ ≤ C δ .
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Moreover, there exist two surfaces Σ1,Σ2 ⊂ IR3, containing the above two points, where the
determinant of Λ(x, ξ1, ξ2) vanishes. The equation (4.24) defines two curves γi : [−s0, s0] →
Σi, parameterized by arc-length, such that γi(0) = P i and

|γ̇i(0)− γ̇∗i (0)| ≤ Cδ (4.40)

for some constant C > 0.

We observe that

• Since the vector field v ∧w vanishes on the curve γi and P i ∈ γi, the curve γi describes
the unique local center manifold for P i.

• At every point Q ∈ Σi \ γi, the vector field v ∧w is vertical (i.e., its first component is
zero while the last two components do not both vanish). Hence, a trajectory through Q
cannot be the graph of a C1 solution of (4.3).

To construct a global, continuously differentiable solution to (4.3), we need to concatenate
orbits of (4.21) which cross the surfaces Σi through some point along the curves γi, i = 1, 2.
This can be achieved by a trajectory which lies in the intersection of two invariant manifolds
M1,M2, as shown in Fig. 3.

4.3 Constructing a solution as a concatenation of orbits.

Let us first consider the unperturbed, linear-quadratic case. As before, for i = 1, 2, we denote
by J i∗ the Jacobian matrix J at the point P ∗i =

(
x̄i, ξ

∗
1(x̄i), ξ

∗
2(x̄i)

)
. Two of the eigenvalues

of J i∗ are known, namely

λ∗i,1 = 0, λ∗1,2 = p′(x̄1) = CΛ(x̄1 − x̄2) and λ∗2,2 = p′(x̄2) = CΛ(x̄2 − x̄1) . (4.41)

On the other hand, at an arbitrary point (x, ξ1, ξ2), by (3.4) the Jacobian matrix in (4.26) has
the form

J =


2a0Λ11 ∗ ∗

∗ −b21ψ1 + b22ψ2 + (γ − a0)Λ11 ∗

∗ ∗ −b22ψ2 + b21ψ1 + (γ − a0)Λ11

 .

At the point P ∗i , the trace of the matrix J i∗ = J (P ∗i ) is

Trace(J i∗) = 2γΛi∗11 .

The third eigenvalue of J i∗ is thus computed as

λ∗i,3 = Trace(J i∗)− λ∗i,2 = 2γΛi∗11 − p′(x̄i) . (4.42)

To proceed, we now impose generic conditions implying that, at P ∗i , the three eigenvalues of
the Jacobian matrix J are distinct. By (4.41) and (4.42), this will be the case if{

2γΛi∗11 6= p′(x̄i),

γΛi∗11 6= p′(x̄i),
i = 1, 2. (4.43)
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Let x = x̂i be the solution to the equation

2γΛ∗11(x) = p′(x̄i) = λ∗i,2 for i = 1, 2 . (4.44)

The first condition in (4.43) is equivalent to

x̂i 6= x̄i for i = 1, 2 .

We observe that, since x̄i and x̂i depend on the coefficients of the dynamics and the cost func-
tions (3.2)-(3.3), the inequalities (4.43) will be satisfied for generic values of these coefficients.

In order to construct a solution ξ(·) as a concatenation of orbits of (4.21), one needs to study
the flow in a neighborhood of the equilibrium points P ∗1 and P ∗2 . We recall that, since all
points on the curve γi, i = 1, 2, are steady states, the 3×3 Jacobian matrix J in (4.26) always
has a zero eigenvalue at P ∗i . Different cases arise, depending on the sign of the two remaining
eigenvalues λ∗i,2, λ

∗
i,3. In turn, these signs depend on the relative position of x̂i with respect to

x̄i.

CASE 1: If CΛ > 0, then (4.41) implies

λ∗1,2 < 0 < λ∗2,2 .

Recalling that
Λ∗11(x) = (a0 − b21α1 − b22α2)x− (b21β1 + b22β2), (4.45)

with (a0 − b21α1 − b22α2) < 0, from (4.44) we obtain x̂1 > x̂2. Moreover, for i = 1, 2,
λ∗i,3 > 0 if x̄i < x̂i ,

λ∗i,3 < 0 if x̄i > x̂i .
(4.46)

Three sub-cases can occur:

• If x̄1 < x̂1 and x̄2 > x̂2, then

λ∗1,2 < 0 < λ∗1,3 and λ∗2,3 < 0 < λ∗2,2 ,

hence both P ∗1 and P ∗2 are saddle points.

• If x̄1 > x̂1, then x̄2 > x̂2 and

λ∗1,2, λ
∗
1,3 < 0 and λ∗2,3 < 0 < λ∗2,2 .

In this case P ∗1 is a stable point while P ∗2 is a saddle point.

• if x̄2 < x̂2 then x̄1 < x̂1 and

λ∗1,2 < 0 < λ∗1,3 and λ∗2,2, λ
∗
2,3 > 0 .

In this case P ∗1 is a a saddle point and P ∗2 is an unstable source.
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CASE 2: If CΛ < 0 then (4.41) implies

λ∗2,2 < 0 < λ∗1,2 and x̂1 < x̂2 .

Recalling (4.45), with (a0 − b21α1 − b22α2) < 0, from (4.44) we obtain x̂1 < x̂2, together with
(4.46).

Four sub-cases can now occur:

• If [x̄1, x̄2] ⊂ [x̂1, x̂2], then

λ∗1,3 < 0 < λ∗1,2 and λ∗2,2 < 0 < λ∗2,3 ,

In this case, both P ∗1 and P ∗2 are saddle points.

• If [x̂1, x̂2] ⊂ [x̄1, x̄2], then

λ∗1,3, λ
∗
1,2 > 0 and λ∗2,3, λ

∗
2,2 < 0 .

In this case, P ∗1 is an unstable source while P ∗2 is stable.

• If x̂1 < x̄1 ≤ x̂2 < x̄2, then

λ∗1,3 < 0 < λ∗1,2 and λ∗2,3, λ
∗
2,2 < 0 .

Hence P ∗1 is a saddle point while P ∗2 is stable.

• If x̄1 < x̂1 ≤ x̄2 < x̂2, then

λ∗1,3, λ
∗
1,2 > 0 and λ∗2,2 < 0 < λ∗2,3 .

Hence P ∗1 is an unstable source while P ∗2 is a saddle point.

Consider again the affine solution ξ∗ = (ξ∗1 , ξ
∗
2) of the system (4.3) in the linear-quadratic

case, constructed in (3.6). Depending on the signs of the eigenvalues λ∗i,2, λ
∗
i,3, by looking at

the dynamics generated by (4.21) we see that the following cases can occur, under generic
assumptions.

(I) Assume that λ∗1,2 ·λ∗1,3 < 0 and λ∗2,2 ·λ∗2,3 < 0, so that both P ∗1 and P ∗2 are saddle points.
Then in the linear-quadratic case ξ∗ is the unique globally smooth solution to the system
(4.3). If a small nonlinear perturbation is present, so that Λ, ψ are given by (4.4)-(4.5),
then (4.3) has a unique globally smooth solution close to ξ∗ (see Fig. 3).

(II) Assume that λ∗1,2 < 0 < λ∗1,3 and λ∗2,2, λ
∗
2,3 < 0, so that P ∗1 is a saddle and P ∗2 is a sink.

Then in the linear-quadratic case the system (4.3) has a 1-parameter family of globally
smooth solutions close to ξ∗. The same holds in the presence of a small nonlinear
perturbation.

(III) Assume that λ∗1,2, λ
∗
1,3 > 0 and λ∗2,2, λ

∗
2,3 < 0, so that P ∗1 is a source and P ∗2 is a sink.

Then in the linear-quadratic case the system (4.3) has a 2-parameter family of globally
smooth solutions close to ξ∗. The same holds in the presence of a small nonlinear
perturbation.
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To conclude this section we give three examples corresponding to three cases I, II and III.

Example 2 (two saddle points). Consider the linear system (4.14), but with cost functions

J1 =

∫ ∞
0

e−t ·
(

25x2 + 13x+
1

2
u2

1

)
, J2 =

∫ ∞
0

e−t ·
(

25x2 + 13x+
1

2
u2

2

)
. (4.47)

In this case, (4.3) admits the affine solution

ξ∗1(x) = ξ∗2(x) = 5x+ 1 .

This yields equilibrium point x∗ = −2
7 , which is asymptotically stable for the dynamics

ẋ = 3x− ξ∗1(x)− ξ∗2(x) = − 7x− 2 .

The determinant of the corresponding matrix Λ∗ is computed by

det Λ∗(x) = (−7x− 2)2 − (5x+ 1)2 = 24
(
x+

1

4

)(
x+

1

2

)
.

It vanishes at the two points x̄1 = −1
2 , x̄2 = −1

4 . We thus have x∗ ∈ ]x̄1, x̄2[ . Moreover, the
equilibrium points

P ∗1 =

(
−1

2
,−3

2
,−3

2

)
and P ∗2 =

(
−1

4
,−1

4
,−1

4

)
.

On the other hand, the constant in (4.16) is CΛ = 24 > 0. Hence, (4.41) implies that
λ∗1,2 = −6 and λ∗2,2 = 6. By (4.42), the remaining eigenvalues are then computed as λ∗1,3 = 9

and λ∗2,3 = −13
2 . Therefore, both P ∗1 and P ∗2 are saddle points.

Example 3 (one saddle point). Consider the linear system (4.14), but with cost functions

J1 =

∫ ∞
0

e−4t ·
(

4x2 + 7x+
1

2
u2

1

)
, J2 =

∫ ∞
0

e−4t ·
(

4x2 + 7x+
1

2
u2

2

)
. (4.48)

In this case, (4.3) admits the affine solution

ξ∗1(x) = ξ∗2(x) = 2x+ 1 .

This yields equilibrium point x∗ = −2, which is asymptotically stable for the dynamics

ẋ = 3x− ξ∗1(x)− ξ∗2(x) = − x− 2 .

The determinant of the corresponding matrix Λ∗ is computed by

det Λ∗(x) = (−x− 2)2 − (2x+ 1)2 = − 3(x− 1)(x+ 1).

It vanishes at the two points x̄1 = −1, x̄2 = 1. Notice that now x∗ /∈ [x̄1, x̄2]. At the
equilibrium points P ∗1 = (−1,−1,−1), P ∗2 = (1, 3, 3), the second eigenvalues of the Jacobian
matrix J are found to be λ∗1,2 = 6 and λ∗2,2 = −6. Moreover, recalling (4.42), the third
eigenvalues are computed as λ∗1,3 = −14 and λ∗2,3 = −18. We thus conclude that P ∗1 is a
saddle and P ∗2 is a sink.
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Example 4 (no saddle points). Consider the linear system (4.14), but with cost functions

J1 =

∫ ∞
0

e−4t ·
(

4x2 − 3x+
1

2
u2

1

)
, J2 =

∫ ∞
0

e−4t ·
(

4x2 + 3x+
1

2
u2

2

)
. (4.49)

In this case, we find that (4.3) admits the affine solution

ξ∗1(x) = 2x− 1, ξ∗2(x) = 2x+ 1 .

This yields equilibrium point x∗ = 0, which is asymptotically stable for the dynamics

ẋ = 3x− ξ∗1(x)− ξ∗2(x) = − x .

The determinant of the corresponding matrix Λ∗ is computed by

det Λ∗(x) = (−x)2 − (2x− 1)(2x+ 1) = 1− 3x2.

It vanishes at the two points x̄1 = −1/
√

3, x̄2 = 1/
√

3. Notice that x∗ ∈ [x̄1, x̄2]. Moreover,

P ∗1 =
(
− 1√

3
, − 2√

3
− 1, − 2√

3
+ 1
)
, P ∗2 =

( 1√
3
,

2√
3
− 1,

2√
3

+ 1
)
.

The eigenvalues of J ∗ at P ∗1 and at P ∗2 are found to be

λ∗1,2 = 2
√

3, λ∗1,3 =
2
√

3

3
, λ∗2,2 = − 2

√
3, λ∗2,3 = − 2

√
3

3
.

Therefore, P ∗1 is a source and P ∗2 is a sink.

5 The case with unique solutions

In this section we study in greater detail the case where both P ∗1 and P ∗2 are saddle points,
for the auxiliary dynamical system (4.21). We consider first the linear-quadratic case. To fix
the ideas, let λ∗1,1 = λ∗2,1 = 0 and assume that

λ∗1,2 < 0 < λ∗1,3 and λ∗2,3 < 0 < λ∗2,2 . (5.1)

Notice that this will be the case if the constant CΛ in (4.16) is positive and the equilibrium
point x∗ is asymptotically stable and lies in the interior of the interval [x̄1, x̄2]. Indeed, in this
case

λ∗1,2 = p′(x̄1) = CΛ(x̄1 − x̄2) < 0 and λ∗2,2 = p′(x̄2) = CΛ(x̄2 − x̄1) > 0 .

Moreover, the matrix Λ∗ in (4.7) satisfies

det Λ∗(x̄1) > 0, det Λ∗(x̄2) < 0 .

Therefore

λ∗1,3 = 2γΛ∗(x̄1)− λ∗1,2 > 0, λ∗2,3 = 2γΛ∗(x̄2)− λ∗2,2 < 0 .
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By continuity, we can then choose s̄ ∈ ]0, s0] sufficiently small such that, for every s ∈ [−s̄, s̄]
the Jacobian matrix J at the equilibrium point γi(s) defined at (4.25) has three real distinct
eigenvalues λi,j(s), j = 1, 2, 3, which satisfy λi,j(0) = λ∗i,j , together with

λi,1(s) = 0, λ1,2(s) < 0 < λ1,3(s) and λ2,3(s) < 0 < λ2,2(s). (5.2)

LetM1 be the center-stable manifold for the equilibrium point P ∗1 . In other words,M1 is an
invariant 2-dimensional manifold, whose tangent space at P ∗1 is spanned by the eigenvectors

v1 =
∂γ1(s)

∂s

∣∣∣∣
s=0

, v2 = P ∗2 − P ∗1 ,

corresponding to the eigenvalues λ∗1,1 = 0 and λ∗2,2 < 0, respectively.

We observe that, for general systems, a center manifold is not uniquely defined [3, 10, 18].
However, in the present setting it is clear that the local center manifold trough P ∗1 is unique,
because it must coincide with the curve of steady states γ1. Indeed, the 2-dimensional manifold
M1 can be uniquely determined as the union of the 1-dimensional stable manifolds of all
equilibrium points γ1(s).

Similarly, let M2 be the center-unstable manifold at P ∗2 . Notice that M2 is uniquely deter-
mined as the union of the 1-dimensional unstable manifolds of all equilibrium points γ2(s).
Its tangent space at P ∗2 is spanned by the two eigenvectors

v1 =
∂γ2(s)

∂s

∣∣∣∣
s=0

, v2 = P ∗2 − P ∗1 .

The segment joining P ∗2 with P ∗1 (with endpoints removed) is a heteroclinic orbit of the system
(4.21), contained in the intersectionM1 ∩M2. To proceed, we now make the key assumption
that this intersection is transversal:

(A2) At any point P along the segment joining P ∗1 with P ∗2 , the manifoldsM1andM2 intersect
transversally. Namely, the union of the tangent spaces to M1 and M2 spans the whole
space IR3.

Clearly, if the intersection is transversal at one such point P , then it is transversal at every
other point.

For reader’s convenience, we collect all the assumptions that will be used in our main theorem.

(i) The assumption (A1) holds, providing the existence of the affine solution (ξ∗1 , ξ
∗
2) in (3.6).

(ii) The determinant of the matrix Λ(x, ξ1, ξ2) at (3.4) vanishes at the two points P ∗i =
(x̄i, ξ

∗
1(x̄i), ξ

∗
2(x̄i)), i = 1, 2.

(iii) At least one of the equalities in (4.23) does NOT hold. By Lemma 1, the curves of
steady states γ1, γ2 are thus well defined.

(iv) At the points P ∗1 and P ∗2 , the eigenvalues of the Jacobian matrix J in (4.26) satisfy the
sign conditions (5.1).
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(v) As in (A2), the manifolds M1,M2 intersect transversally.

We are now ready to state our main uniqueness and stability theorem, for feedback solutions
to the noncooperative differential game.

Theorem 2. Let the above assumptions (i)–(v) hold, and let Ω ⊂ IR be any bounded interval
containing x̄1, x̄2 in its interior. Then, for any ε > 0 there exists δ > 0 such that the following
holds. If the perturbations f0, h1, h2, η1, η2 are small enough, i.e. if they satisfy (4.39), then
the system (4.3)–(4.5) has a unique C1 solution (ξ1, ξ2) defined on the whole interval Ω, such
that

|ξ1(x)− ξ∗1(x)|+ |ξ2(x)− ξ∗2(x)| ≤ ε for all x ∈ Ω . (5.3)

Remark 5. In the above theorem, the interval Ω can be taken large enough so that it contains
the stable equilibrium point x∗ in (3.22). Choosing δ > 0 sufficiently small, the set Ω will then
be positively invariant for the corresponding feedback dynamics (4.13).

Proof of Theorem 2. Consider the vectors v,w introduced at (4.20). To prove the result,
it suffices to check that all steps in the construction of the heteroclinic orbit connecting P ∗1
with P ∗2 remain valid also in the presence of a small C1 perturbation of the vector fields v,w.

1. Thanks to the assumption (iii), by the implicit function theorem the two curves γ1, γ2

where v ∧w = 0 (i.e., where v and w are parallel) are still well defined also in the presence
of a small C1 perturbation. By continuity, at every point along these curves, the eigenvalues
of the Jacobian matrix J in (4.26) still satisfy the strict inequalities (5.2).

2. Given the dynamical system
ẋ = v(x) ∧w(x), (5.4)

let M1 be the 2-dimensional manifold obtained as the union of all the 1-dimensional stable
manifolds of the points along γ1. Similarly, letM2 be the 2-dimensional manifold obtained as
the union of all the 1-dimensional unstable manifolds of the points along γ2. By the regularity
theory of invariant manifolds (see Chapter 4 in [10]), the tangent space to these manifolds
varies continuously with the vector field v ∧w, w.r.t. the C1 norm. In particular, if a small
C1 perturbation is added to v and w, then the intersectionM1 ∩M2 is still transversal. This
1-dimensional intersection provides the unique heteroclinic orbit connecting a point P1 ∈ γ1

with a point P2 ∈ γ2.

3. The graph of the the desired solution x 7→ (ξ1, ξ2)(x) of (4.3)–(4.5) is now obtained con-
catenating the 1-dimensional stable manifold for P1 with the 1-dimensional unstable manifold
for P2.

We conclude this section by providing an example where the crucial transversality condition
(A2) can be directly checked.

Example 2 (continued). Consider again the linear-quadratic system with dynamics (4.14)
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and cost functionals (4.47). In this case, we have

S1 = S2 = 50, R1 = R2 = 13, b1 = b2 = 1, a0 = 3,

ξ∗1(x) = ξ∗2(x) = 5x+ 1, ψ∗1(x) = ψ∗2(x) = − 60x− 15 . (5.5)

and
Λ∗11(x) = − 7x− 2, Λ∗12(x) = Λ∗21(x) = − 5x− 1 .

At the point P (x) = (x, ξ∗1(x), ξ∗2(x)), the Jacobian matrix takes the form

J ∗(x) =


−42x− 12 9x+ 3 9x+ 3

−80x+ 5 14x+ 4 50x+ 13

−80x+ 5 50x+ 13 14x+ 4

 .

The eigenvalues are

λ1(x) = − 9(4x+ 1), λ2(x) = 48x+ 18, λ3(x) = − 13(2x+ 1)

with corresponding eigenvectors

v1(x) =

 0
1
−1

 , v2(x) =

1
5
5

 v3(x) =

18x+6
16x−1

1
1

 .

Notice that v1 and v2 are independent of x. As in Fig. 3, let M1 be the center-stable
manifold for the point P ∗1 , and letM2 be the center-unstable manifold for the point P ∗2 . Then
the line {P (x) = (x, ξ∗1(x), ξ∗2(x)) ; x ∈ IR} lies in the intersection M1 ∩M2. To check that
this intersection is transversal we observe that, at every point P (x) = (x, ξ∗1(x), ξ∗2(x)), the
tangent space to the manifoldM1 is spanned by the vectors v1 and v2, independent of x. On
the other hand, at P (x̄2), the tangent space to M2 is spanned by v2 and v3(x̄2). Hence M1

and M2 have transversal intersection.

6 Perturbed solutions on the entire real line

In the previous sections we studied the existence of solutions to the perturbed system (4.3)
on a bounded interval Ω ⊂ IR, possibly containing the two points where det Λ∗(x) vanishes.
We now examine whether these perturbed solutions can be extended to the whole real line.
The heart of the matter is illustrated in Fig. 1. In the linear-quadratic case, the determinant
of the matrix Λ(x, ξ1, ξ2) in (3.4) is negative inside the double cone

Γ−
.
=
{

(x, ξ1, ξ2) ; (a0x− b21ξ1 − b22ξ2)2 − b21b22ξ1ξ2 < 0
}
. (6.1)

To fix the ideas, assume that detΛ∗(x) 6= 0 for all x ∈ [x0, +∞[ . Notice that trajectories
of the implicit ODE (4.3) can become singular near the boundary of Γ−. In this case, they
cannot be prolonged any further (Fig. 1, left). To make sure that a small perturbation of the
trajectory ξ∗(·) is well defined for all x ∈ [x0,+∞[ we must check that it never approaches
the surface where det Λ(x, ξ1, ξ2) = 0.
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Recalling (3.8), set ā0
.
= a0

A . By (3.6) and (4.7) all entries of the matrix Λ∗(x) are polynomials
of degree one. Recalling (3.20), the matrix of leading coefficients is computed as

Λ∗2
.
= lim

x→∞

Λ∗(x)

x
=

a0x− b21α1 − b22α2 −b22ξ1

−b21α2 a0x− b21α1 − b22ξ2


= A ·

ā0 −X∗1 −X∗2 − b22
b21
X∗1

− b21
b22
X∗2 ā0 −X∗1 −X∗2

 .

(6.2)

Throughout the following, we assume that Λ∗2 is invertible, i.e.,

p∗2
.
= detΛ∗2 =

1

A2
·
[(
ā0 −X∗1 −X∗2

)2
−X∗1X∗2

]
6= 0 . (6.3)

The inverse matrix of Λ∗2 is

(Λ∗2)−1 =
1

A ·
(
[ā0 −X∗1 −X∗2 ]2 −X∗1X∗2

) ·

ā0 −X∗1 −X∗2 − b22

b21
X∗1

− b21
b22
X∗2 ā0 −X∗1 −X∗2

 .

Let λ1, λ2 be the eigenvalues of (Λ∗2)−1 and denote by r1, r2 the corresponding normalized
eigenvectors, so that |r1| = |r2| = 1. We have

λ1 + λ2 =
2(ā0 −X∗1 −X∗2 )

A ·
(
[ā0 −X∗1 −X∗2 ]2 −X∗1X∗2

) ,
λ1 · λ2 =

1

A2 ·
(
[ā0 −X∗1 −X∗2 ]2 −X∗1X∗2

) . (6.4)

We introduce the constant

λmax
.
= max

{
Re(λ1), Re(λ2))

}
. (6.5)

Lemma 3. Under the assumption (A1), if

p∗2 =
1

A2
·
[(
ā0 −X∗1 −X∗2

)2
−X∗1X∗2

]
> 0 . (6.6)

then there exists x0 > 0 such that the affine solution (3.6) satisfies

(x, ξ∗1(x)), ξ∗2(x)) ∈ Γ+ .
=
{

(x, ξ1, ξ2) ; det Λ(x, ξ1, ξ2) > 0
}

for all x ∈]−∞,−x0] ∪ [x0,∞[ . Moreover, one has

λmax < 0 . (6.7)

Proof. For |x| large, the determinant of Λ∗(x) has the same sign as the determinant of the
matrix of leading order coefficients Λ∗2. Hence the first assertion of the lemma is clear.

To prove (6.7), we consider two cases.
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• If a0 < 0, then

A < 0 , ā0 > 0 and X∗1 +X∗2 < 0 .

Recalling (6.6) and (6.4), we obtain

λ1 · λ2 > 0 and λ1 + λ2 < 0 . (6.8)

• If 0 < γ
2 < a0 and K1 +K2 > 1/2, then

A > 0 , ā0 > 0 , X∗1 +X∗2 > 1 > ā0 and X∗i > 0 .

By (6.6) and (6.4) one again obtains (6.8).

In both cases, (6.8) implies (6.7).

Lemma 4. Under the assumptions (A1), if

p∗2 =
1

A2
·
[(
ā0 −X∗1 −X∗2

)2
−X∗1X∗2

]
< 0 , (6.9)

then there exists x0 > 0 such that the affine solution (3.6) satisfies

(x, ξ∗1(x), ξ∗2(x)) ∈ Γ−
.
=
{

(x, ξ1, ξ2) ; det Λ(x, ξ1, ξ2) < 0
}

for all x ∈ ]−∞,−x0]∪ [x0,∞[ . Moreover, the eigenvalues λ1 and λ2 of (Λ∗2)−1 are real, with
opposite signs. In particular,

λmax = max{λ1, λ2} > 0 . (6.10)

In the case a0 > 0 there exists a constant 0 < γ∗1 < 2a0, depending on S1, S2, α1, α2, such that{
γ · λmax < 2 if 0 < γ < γ∗1 ,

γ · λmax > 2 if γ∗1 < γ < 2a0 .
(6.11)

Proof. As in Lemma 3, the first statement is clear, because for |x| large detΛ∗(x) and detΛ∗2
have the same sign.

By (6.4) and (6.9) we have

λ1 · λ2 =
1

A2 ·
(
[ā0 −X∗1 −X∗2 ]2 −X∗1X∗2

) < 0 .

Hence the eigenvalues are real and (6.10) holds.

To prove the last statement, we observe that

γ · λmax =
γ

2a0 − γ
· 1(
ā0 −X∗1 −X∗2 +

√
X∗1X

∗
2 )
.

This yields (6.11), for some γ∗1 ∈ ]0, 2a0[ .
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The following theorem provides the existence of solutions to the perturbed ODE (4.3) on
an unbounded interval [x0,+∞[ . An entirely similar result holds on a domain of the form
]−∞, −x0]. We recall that λmax is the constant introduced at (6.5).

Theorem 3. Let the assumption (A1) hold together with (6.3). If

γ · λmax < 2 , (6.12)

then there exist δ0, δ1 > 0 sufficiently small and x0 > 0 such that the following holds. For any
perturbations such that

‖f0‖C1 + ‖η1‖C1 + ‖η2‖C1 + ‖h1‖C0 + ‖h2‖C0 ≤ δ1 (6.13)

and any initial data

ξi(x0) = ξ̄i with |ξ̄i − ξ∗i (x0)| ≤ δ0 · x0 , i = 1, 2, (6.14)

the implicit ODE in (4.3)-(4.5) admits a unique solution (ξ1, ξ2) which is defined for all x ∈
[x0, +∞[ .

Remark 6. There are two main cases where Theorem 3 applies.

(i) If (6.6) holds, then Lemma 3 implies that γλmax < 0 < 2. In this case, for |x| sufficiently
large, we have detΛ∗(x) > 0 , and the solution ξ∗ lies outside the cone Γ−. This is
illustrated in Fig. 1, left and center.

(ii) If (6.9) holds, then Lemma 4 yields γλmax < 2, provided that γ < 2a0. In this case, for
|x| sufficiently large, we have detΛ∗(x) < 0 , and the solution ξ∗ lies inside the cone Γ−.
This is illustrated in Fig. 1, right.

Proof of Theorem 3. By a rescaling of coordinates, without loss of generality we can assume
that x0 = 1. The proof will be given in several steps.

1. We first consider the unperturbed case, where f0 = g1 = g2 = h1 = h2 = 0.

From (4.3) it follows

Λ
(
x, ξ1, ξ2

)ξ′1
ξ′2

− Λ∗
(
x)

(ξ∗1)′

(ξ∗2)′

 =

(γ − a0)(ξ1 − ξ∗1)

(γ − a0)(ξ2 − ξ∗2)

 .

Notice that ξ′ is determined by the implicit ODE (4.3), while the derivative (ξ∗)′ =

(
α1

α2

)
is

constant, according to (3.6). Introducing the variable ζ = ξ − ξ∗, by a direct computation we
obtain

Λ
(
x, ξ1, ξ2

)ζ ′1
ζ ′2

−
b21ζ1 + b22ζ2 b22ζ1

b21ζ2 b21ζ1 + b22ζ2

α1

α2

 =

(γ − a0)ζ1

(γ − a0)ζ2

 .
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This can be written as

Λ
(
x, ξ1, ξ2

)ζ ′1
ζ ′2

 = (γI − Λ∗2)

ζ1

ζ2

 ,

where Λ∗2 is the matrix of leading order terms (6.2) and I is the 2 × 2 identity matrix. We
thus have ζ ′1

ζ ′2

 =
[
Λ−1

(
x, ξ1, ξ2

)
Λ∗(x)

][
(Λ∗(x))−1(γI − Λ∗2)

]ζ1

ζ2

 . (6.15)

To bring out the leading order terms in the right hand side of (6.15), we estimate

(Λ∗(x))−1(γ I − Λ∗2) =
1

x
·
[
γ(Λ∗2)−1 − I

]
+O(1) · 1

x2
(6.16)

and

Λ−1
(
x, ξ1, ξ2

)
Λ∗(x) =

I − (Λ∗(x))−1

b21ζ1 + b22ζ2 b22ζ1

b21ζ2 b21ζ1 + b22ζ2

−1

,

where the Landau symbol O(1) denotes a uniformly bounded matrix-valued function.

Observing that |(Λ∗(x))−1| ≤ C/x, for some constant C and all x sufficiently large, we can
thus write (6.15) asζ ′1

ζ ′2

 =
1

x
·
[
γ(Λ∗2)−1 − I

]ζ1

ζ2

+ Ψ(x, ζ1, ζ2)

ζ1

ζ2

 . (6.17)

Here the remainder term satisfies the bound

|Ψ(x, ζ1, ζ2)| ≤ C2

x2
·
(
1 + |ζ1|+ |ζ2|

)
, (6.18)

as long as
|ζ1|+ |ζ2|
|x|

≤ δ2 ,

for some large constant C2 > 0 and for δ2 > 0 sufficiently small, depending on all coefficients
ai, bi.

2. Given any solution ξ(·) to the implicit ODE (2.7), we introduce the auxiliary variables

t
.
= − 1

x
, z(t) = − t ζ

(
1

−t

)
= − t

[
ξ

(
1

−t

)
− ξ∗

(
1

−t

)]
. (6.19)

Here x ∈ [1, +∞[ , t ∈ [−1, 0[ , while ζ = (ζ1, ζ2)(x) is a solution to (6.15). Denoting the
derivative w.r.t. t by an upper dot, we obtain

ż =
1

t
z(t)− 1

t
ζ ′
(

1

−t

)
. (6.20)
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To bring out the leading order terms in the above equation, we use (6.17) and obtain

ż(t) =

(
γ(Λ∗2)−1 − 2I

|t|
+K(t, z)

)
z(t) t ∈ [−1, 0[ , (6.21)

where

K(t, z) =
1

|t|
·Ψ
(

1

|t|
,
z1

|t|
,
z2

|t|

)
.

By (6.18), the matrix K(t, z) remains uniformly bounded, as long as |z| = |ζ|/|x| remains
sufficiently small. Notice that γ(Λ∗2)−1− 2I is a matrix with eigenvalues γλi− 2, i = 1, 2. By
the assumption (6.12) the real parts of these eigenvalues satisfy

max
{
Re(γλ1 − 2), Re(γλ2 − 2)

}
< − λ. (6.22)

for some constant λ > 0. By a classical result on the stability of linear systems (see for
example Theorem 2.61 in [10]), there exists an equivalent norm ‖ · ‖ on IR2 such that every
solution to the homogeneous equation

ż =
[
γ(Λ∗2)−1 − 2I

]
z (6.23)

satisfies
d

dt
‖z(t)‖ < − λ‖z(t)‖ . (6.24)

Let C3 be an upper bound on the corresponding operator norm of the matrix K, as long as
‖z‖ ≤ δ3, for some constant δ3 > 0. Then the solution of (6.21) satsfies

d

dt
‖z(t)‖ ≤

(
− λ
|t|

+ C3

)
‖z(t)‖, t ∈ [−1, 0[ . (6.25)

as long as ‖z(t)‖ ≤ δ3.

We now choose t0 < 0 such that

C3 ≤
λ

2|t0|
.

For t ∈ [t0, 0[, (6.25) implies
d

dt
‖z(t)‖ ≤ − λ

2|t|
‖z(t)‖, (6.26)

hence

‖z(t)‖ ≤
∣∣∣∣ tt0
∣∣∣∣λ/2 ‖z(t0)‖.

If now ‖z(−1)‖ is sufficiently small, then ‖z(t0)‖ ≤ δ3. In turn, (6.26) implies that z(t) is well
defined for all t ∈ [t0, 0[ and z(t)→ 0 as t→ 0− . Returning to the original variables x, ξ, we
conclude that if ζ(1) = ξ(1) − ξ∗(1) is sufficiently small, then the solution x 7→ ξ(x) of (4.3)
is well defined for all x ∈ [1, +∞[ . This proves the theorem in the unperturbed case, where
f0 = h1 = h2 = η1 = η2 = 0.

3. In the remainder of the proof, we check that the same conclusion holds for the perturbed
problem, where the dynamics is determined by (4.3)–(4.5). A minor modification of the
argument in step 2 yields
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Figure 4: For t ∈ [t0, 0[ , the domain ‖z‖ ≤ δ3 is positively invariant for the ODE (6.21).

Lemma 5. Assume that both eigenvalues of the matrix γ(Λ∗2)−1 − 2I have strictly negative
real part. Given C3 and δ3 > 0, there exist sufficiently small constants δ4, δ5 ∈ ]0, δ3] such that
the following holds. Let z : [−1, 0[ 7→ IR2 be a solution of the Cauchy problem

z(−1) = z̄, ż(t) =

(
γ(Λ∗2)−1 − 2I

|t|
+M(t, z)

)
z(t) + ψ(t, z) , (6.27)

with |z̄| ≤ δ5 and

|M(t, z)| ≤ C3

(
1 +

δ4

|t|

)
, |ψ(t, z)| ≤ δ4 , for t ∈ [−1, 0[ , |z| ≤ δ3 . (6.28)

Then z satisfies
|z(t)| ≤ δ3 for all t ∈ [−1, 0[ . (6.29)

Indeed, let λ > 0 be as in (6.22). Using the equivalent norm introduced at (6.23)-(6.24), we
obtain

d

dt
‖z(t)‖ ≤

{
− λ
|t|

+ C
(

1 +
δ4

|t|

)}
‖z(t)‖+ Cδ4 ,

for some constant C, depending on C3 and on the equivalent norm ‖ · ‖. Choosing δ4 and then
t0 < 0 so that

Cδ4 <
λ

3
,

λ

3|t0|
= C,

for all t ∈ [t0, 0[ we obtain

d

dt
‖z(t)‖ ≤

(
− 2λ

3|t|
+ C

)
‖z(t)‖+ Cδ4 ≤ − λ

3|t|
‖z(t)‖+ Cδ4 . (6.30)

By possibly taking a smaller constant δ4, from (6.30) we deduce that the ball {z ∈ IR2 ; ‖z‖ ≤
δ3} is positively invariant for the ODE in (6.27), for t ∈ [t0, 0[ . Next, by choosing the initial
condition z(−1) = |z̄| sufficiently small, we can achieve the bound

‖z(t)‖ ≤ δ3 for all t ∈ [−1, t0].
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By positive invariance, this implies ‖z(t)‖ ≤ δ3 for all t ∈ [−1, 0[ .

We have thus proved (6.29), with the Euclidean norm replaced by the equivalent norm ‖ · ‖.
Since the constant δ3 was arbitrary, this achieves a proof of Lemma 5.

4. To complete the proof of the theorem it now suffices to check that, if (6.13)-(6.14) hold with
δ0, δ1 > 0 sufficiently small, then the change of variables (6.19) yields a function z(t) which
satisfies the assumptions of Lemma 5. This is achieved by a lengthy but straightforward
computation.

Repeating the argument in step 1, one obtains

Λ
(
x, ξ1, ξ2

)ζ ′1
ζ ′2

 =
[
(γ − f ′0)I − Λ∗2 + Λp(x)

]ζ1

ζ2

+

Φ1(x)

Φ2(x)

 ,

where

Λp(x) =

α1(2b1 + h1)h1 + α2(2b2 + h2)h2 α1(2b2 + h2)h2

α2(2b1 + h1)h1 α1(2b1 + h1)h1 + α2(2b2 + h2)h2


and Φ1(x)

Φ2(x)

 =

(−f0 + f ′0)α1 − η′1

(−f0 + f ′0)α2 + η′2

+ Λp(x) ·

α1x+ β1

α2x+ β2

 .

As long as that matrix Λ
(
x, ξ1, ξ2

)
is invertible, we can thus writeζ ′1

ζ ′2

 = Λ
(
x, ξ1, ξ2

)−1
[
(γ − f ′0)I − Λ∗2 + Λp(x)

]ζ1

ζ2

+ Λ
(
x, ξ1, ξ2

)−1

Φ1(x)

Φ2(x)

 . (6.31)

We now have

Λ−1
(
x, ξ1, ξ2

)
Λ∗(x) = [(Λ∗(x))−1Λ

(
x, ξ1, ξ2

)
]−1 = I +K2(x, ζ1, ζ2)

for some matrix K2 whose norm satisfies the bound∥∥K2(x, ζ1, ζ2)
∥∥ ≤ C6

x2
·
(
1 + |ζ1|+ |ζ2|

)
provided ∣∣∣ζ1

x

∣∣∣+
∣∣∣ζ2

x

∣∣∣ ≤ δ6 , (6.32)

for some constant C6 > 0 and some δ6 > 0 sufficiently small.

Recalling (6.16), one can write (6.31) in the formζ ′1
ζ ′2

 = (I +K2(x, ζ1, ζ2))

[
1

x
·
[
(γ − f ′0)(Λ∗2)−1 − I

]
+
O(1)

x2
+ (Λ∗(x))−1Λp(x)

]ζ1

ζ2


+(I +K2(x, ζ1, ζ2))(Λ∗(x))−1

Φ1(x)

Φ2(x)

 .
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We now have the estimates

‖Λp(x)‖ = O(1) · (|h1(x)|+ |h2(x)|),

|Φi(x)| = O(1) ·
[
|f0(x)|+ |f ′0(x)|+ |η′1(x)|+ |η′2(x)|+ (|h1(x)|+ |h2(x)|) · (|1|+ |x|)

]
.

In turn, these yieldζ ′1
ζ ′2

 =

[
1

x
·
[
γ(Λ∗2)−1 − I

]
+

1

x
·K3(x, ζ1, ζ2)

]ζ1

ζ2

+ b(x, ζ1, ζ2) ,

where the matrix K3 and the vector b satisfy

K3(x, ζ1, ζ2) = O(1) ·
(
|f ′0(x)|+ |h1(x)|+ |h2(x)|+ 1

x2
(1 + |ζ1|+ |ζ2|)

)
, (6.33)

and

b(x, ζ1, ζ2) = O(1) ·
(
|h1(x)|+ |h2(x)|+ 1

|x|
· (|f0(x)|+ |f ′0(x)|+ |η′1(x)|+ |η′2(x)|)

)
(6.34)

as long as (6.32) holds. Under the assumptions (6.13) and (6.32) we thus have

‖K3(x, ζ1, ζ2)‖ ≤ C7

(
δ1 +

1 + δ3

|x|

)
‖b(x, ζ1, ζ2)‖ ≤ C7 δ1 , (6.35)

for some constant C7.

Performing the change of coordinates (6.19) we obtain

d

dt
z(t) =

[
γ(Λ∗2)−1 − 2I

|t|
+M(t, z(t))

]
z(t) + ψ(t, z(t)) , (6.36)

where

M(t, z) =
1

|t|
K3

(
1

|t|
,
z1

|t|
,
z2

|t|

)
, ψ(t, z) = b

(
1

|t|
,
z1

|t|
,
z2

|t|

)
.

By (6.35) one has the bounds

‖M(t, z)‖ ≤ C7

(
δ1

|t|
+ (1 + δ3)

)
, ‖ψ(t, z)‖ ≤ C7δ1 . (6.37)

Given the constants C7 and δ3 > 0, set C3
.
= C7(1 + δ3) and let δ4, δ5 be as in Lemma 5. By

choosing δ1 > 0 sufficiently small, we achieve

‖M(t, z)‖ ≤ C7

(
δ1

|t|
+ (1 + δ3)

)
≤ C3

(
δ4

|t|
+ 1

)
.

while ‖ψ(t, z)‖ ≤ C7δ1 ≤ δ4. An application of Lemma 5 now yields the existence of a solution
z : [−1, 0[ 7→ IR2. Going back to the original variables, we obtain a solution x 7→ ξ(x), globally
defined for all x ∈ [1,+∞[ .
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Remark 7. From the inequality (6.30) it follows

lim
t→0−

‖z(t)‖ = 0.

In terms of the original variables, this implies that the perturbed solutions satisfy

lim
|x|→+∞

|ξ(x)− ξ∗(x)|
|x|

= 0.

7 Equilibrium solutions to differential games

All previous analysis has been concerned with the system of ODEs (1.12) describing the
derivatives of value functions for the two players. We conclude the paper by showing that,
starting with a smooth solution to these ODEs, one obtains a pair of value functions V1, V2

satisfying the H-J equations (2.5). In turn, this yields the existence of a Nash equilibrium
solution to the differential game (1.1)-(1.2), in the sense of Definition 1. Since here we are
dealing with smooth value functions, all these claims can be proved by standard arguments.

Proposition 1. Let f, g1, g2 : IR 7→ IR be smooth maps with sublinear growth, as in (2.2),
and let ϕi be such that

|ϕi(x)| ≥ C1|x|2 − C2 i = 1, 2 (7.1)

for some positive constant C1, C2. Let x 7→ (ξ1(x), ξ2(x)) provide a solution to the implicit
system of ODEs (2.7)–(2.9), and assume that the corresponding feedback dynamics (2.10) has
a unique equilibrium point x∗, which is stable. If in addition

|ξi(x)| ≤ α|x|+ β i = 1, 2 (7.2)

for some positive constants α, β, then the feedback controls

u∗i (x) = − ξi(x)gi(x), x ∈ IR, i = 1, 2 (7.3)

provide a Nash equilibrium solution to the differential game with dynamics (2.1) and cost
functionals (2.3).

Proof. 1. Define the functions V1, V2 by setting
γV1(x)

.
=
[
f(x)− 1

2
g2

1(x)ξ1(x)− g2
2(x)ξ2(x)

]
ξ1(x) + ϕ1 ,

γV2(x)
.
=
[
f(x)− g2

1(x)ξ1(x)− 1

2
g2

2(x)ξ2(x)
]
ξ2(x) + ϕ2 .

(7.4)

By (2.7)–(2.9), a direct computation yields

Λ(x, ξ1, ξ2)

ξ′1
ξ′2

 =

−f ′ξ1 + g1g
′
1ξ

2
1 + 2g2g

′
2ξ1ξ2 − ϕ′1)

−f ′ξ2 + g2g
′
2ξ

2
2 + 2g1g

′
1ξ1ξ2 − ϕ′2)

+

γV ′1
γV ′2

 .
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Since (ξ1, ξ2) is a a solution to the implicit system of ODEs (2.7)–(2.9),for i = 1, 2 we have

V ′i = ξi . (7.5)

Therefore V1, V2 satisfy the H-J equations in (2.6).

2. Consider the the optimal control problem for the first player:

minimize

∫ +∞

0
e−γt

[
u2(t)

2
+ ϕi(x(t))

]
dt (7.6)

subject to
ẋ(t) = f(x) + gi(x)u(t) + gj(x)u∗2(x), x(0) = x0 . (7.7)

Here u∗2(·) is the feedback control of the second player, defined at (7.3). We claim that V1(·)
is the value function for this problem.

Indeed, if the first player implements the feedback control u = u∗1(·) in (7.3), then for any
initial datum x(0) = x0 the system evolves according to

ẋ(t) = f(x(t)) + g1(x)u∗1(x) + g2(x)u∗2(x), x(0) = x0 .

By (7.4) and (7.5) it follows

d

dt
V1(x(t))− γV1(x(t)) = − [u∗1(t)]2

2
− ϕ1(x(t)) .

Hence, for every τ ,∫ τ

0
e−γt

[ [u∗1(t)]2

2
+ ϕ1(x(t))

]
dt = V1(x(0))− e−γτV1(x(τ)).

Letting τ → ∞ and recalling that limτ→∞ x(τ) = x∗, we conclude that the right hand side
converges to V1(x(0)). Calling V ∗1 (·) the minimum value function for the problem (7.6)-(7.7),
we thus have

V ∗1 (x0) ≤ V1(x0). (7.8)

To prove the converse inequality we need to show that, for any control u(·) such that the
Cauchy problem (7.7) admits a global solution in time, one has

V1(x0) ≤
∫ ∞

0
e−γt

[
u2(t)

2
+ ϕ1(x(t))

]
dt . (7.9)

Indeed, consider the function

Φ(τ) =

∫ τ

0
e−γt

[
u2(t)

2
+ ϕ1(x(t))

]
dt+ e−γτ V1(x(τ)) .

37



For a.e τ ∈ [0,+∞), we compute

d

dτ
Φ(τ) = e−γτ

{
u2(τ)

2
+ ϕ1(x(τ))

+V ′1(x(τ))
[
f(x(τ)) + g1(x(τ))u(τ) + g2(x(τ))u∗2(x(τ))

]
− γ V1(x(τ))

}
≥ e−γτ

{
[u∗1(τ)]2

2
+ ϕ1(x(τ))

+V ′1(x(τ))
[
f(x(τ)) + g1(x(τ))u∗1(τ) + g2(x(τ))u∗2(x(τ))

]
− γ V1(x(τ))

}
= 0 .

Hence, Φ(τ) is a nondecreasing function. We now estimate

V1(x0) = Φ(0) ≤ lim
τ→+∞

Φ(τ) =

∫ ∞
0

e−γt
[
u2(t)

2
+ ϕ1(x(t))

]
dt+ lim

τ→+∞
e−γτ V1(x(τ)) .

(7.10)
If now

lim
τ→+∞

e−γτ V1(x(τ)) ≤ 0 ,

then the inequality (7.9) follows. Assume that, on the contrary, there exist τ0, ε > 0 such that

e−γτ |V1(x(τ))| ≥ ε for all τ ≥ τ0 .

By (7.2) and (7.5), we have
|V1(x)| ≤ c1 + c2|x|2

for some constant c1, c2 > 0. Hence, for all t ≥ τ0,

|x(t)|2 ≥ eγt
ε

c2
− c1

c2
.

Recalling (7.1), we now estimate∫ τ

τ0

e−γt
[
u2(t)

2
+ ϕ1(x(t))

]
dt ≥

∫ τ

τ0

e−γt
[
C1|x(t)|2 − C2

]
dt

≥
∫ τ

τ0

C1ε

c2
− e−γt

[C1c1

c2
+ C2

]
dt =

C1ε

c2
(τ − τ0) +

1

γ

[C1c1

c2
+ C2

]
(1− e−γτ ) .

Letting τ → +∞, we thus obtain∫ ∞
0

e−γt
[
u2(t)

2
+ ϕ1(x(t))

]
dt ≥

∫ ∞
τ0

e−γtϕ1(x(t)) dt = +∞ .

Hence (7.9) trivially holds.

3. Having proved that V1(·) is the value function, it is clear that the feedback control u∗1(·)
in (7.3) is optimal for player 1. An entirely similar argument shows that u∗2(·) is an optimal
feedback control for player 2.
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A similar result holds in the case where the solution (ξ1, ξ2) of (2.7)–(2.9) is constructed only
on a bounded interval.

Proposition 2. Let f, g1, g2 : IR 7→ IR be smooth maps with sublinear growth, as in (2.2). Let
x 7→ (ξ1(x), ξ2(x)) provide a solution to the implicit system of ODEs (2.7)–(2.9) restricted to
some interval [a, b], and assume that the corresponding feedback dynamics (2.10) has a unique
equilibrium point x∗ ∈ [a, b], which is stable. Then the controls u∗i in (7.3) are optimal for the
game with dynamics (2.1) and cost functionals

Ji =

∫ ∞
0

e−γt Li
(
x(t), ui(t)

)
dt i = 1, 2, (7.11)

where

Li(x, ui) =

 ϕi(x) +
u2
i

2
if x ∈ [a, b],

+∞ if x /∈ [a, b].

(7.12)

Indeed, by (7.12) both players face an optimization problem with state constraint x ∈ [a, b].
The proof is achieved by the same arguments used in the previous case.

Remark 8. As a consequence of Proposition 1, the perturbed solution (ξ1, ξ2) constructed
in Section 6 on the whole real line yields a Nash equilibrium solution to the differential game
with dynamics (2.1) and cost functionals (2.3). Indeed, (6.13) implies (7.1) and (2.2). By
Remark 7, there exists a constant C > 0 such that

|ξi(x)− (αix+ βi)| = |ξi(x)− ξ∗i (x)| ≤ |x|+ C i = 1, 2.

Hence the condition (7.2) holds.

On the other hand, by Proposition 2 the perturbed solution (ξ1, ξ2) constructed in Sections 4
and 5 on a bounded interval [a, b] yields a Nash equilibrium solution to the differential game
with dynamics (2.1) and cost functionals (7.11)-(7.12).

Acknowledgments. The authors would like to thank the anonymous referee, whose sugges-
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