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Abstract

The paper studies an optimal decision problem for several groups of drivers on a network
of roads. Drivers have different origins and destinations, and different costs, related to
their departure and arrival time. On each road the flow is governed by a conservation law,
while intersections are modeled using buffers of limited capacity, so that queues can spill
backward along roads leading to a crowded intersection. Two main results are proved: (i)
the existence of a globally optimal solution, minimizing the sum of the costs to all drivers,
and (ii) the existence of a Nash equilibrium solution, where no driver can lower his own
cost by changing his departure time or the route taken to reach destination.

1 Introduction

Optimal traffic assignment and dynamic user equilibria on networks have been widely discussed
in the engineering literature [13, 15]. For conservation law models of traffic flow on a network
of roads, these problems were recently studied in [4]. The basic setting comprises a network
with nodes A1, . . . , Am, and connecting arcs γij . Drivers choose their time of departure and
route to destination in order to minimize the sum of a departure cost ϕ(τd) and an arrival
cost ψ(τa). The problem is highly nontrivial because the arrival time τa depends not only on
the departure time τd but also on the overall traffic pattern.

As in [26, 27], along each arc we model the traffic flow in terms of the conservation law

ρt + [ρ vij(ρ)]x = 0 . (1.1)

Here t is time and x ∈ [0, Lij ] is the space variable along the arc γij . The variable ρ = ρ(t, x)
describes the traffic density, i.e. the number of cars per unit length, while the map ρ 7→ vij(ρ)
is the speed of cars as function of the density, along the arc γij . We assume that vij is
a continuous, nonincreasing function of the density ρ. At each node of the network, the
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conservation laws (1.1) must be supplemented by suitable boundary conditions, modeling
traffic flow at an intersection. In the earlier paper [4] a buffer of unlimited capacity was
assumed to be present at the beginning of each road. Arriving cars are placed in this buffer,
waiting for their turn to enter the new road. With this model, roads never become congested
and queues never propagate backwards.

Aim of the present paper is to prove the existence of global optima and Nash equilibria, for a
more realistic model where queues can propagate backwards along roads leading to a crowded
intersection. Starting with a definition of Riemann Solver, models describing traffic flow at an
intersection were recently developed in [10, 18, 19]. Unfortunately, in the specific context of
our optimization problems, they lead to ill posed Cauchy problems. The counterexamples in
[7] motivated the introduction of new intersection models [6], where each node of the network
contains a buffer of limited capacity. When the buffer is nearly full, cars can access the
intersection only at a very slow rate, and queues propagate backwards along incoming roads.
As proved in [6], for these models the Cauchy problem is well posed within the general class
of L∞ initial data. The solution can be constructed as the unique fixed point of a contractive
transformation, defined in terms of a Lax-type variational formula. A key feature of these
models is that the travel time between any two nodes of the network depends continuously
on the data, w.r.t. the topology of weak convergence. These properties are precisely what is
needed, in order to apply the topological arguments in [4] and establish the existence of global
optima and equilibria.

Our optimal decision problems are formulated for n groups of drivers traveling on the network.
Different groups are distinguished by the locations of departure and arrival, and by their cost
functions. For k ∈ {1, . . . , n}, let Gk be the total number of drivers in the k-th group. All
these drivers depart from a node Ad(k) and arrive at a node Aa(k), but can choose different
paths to reach destination. Of course, we assume that there exists at least one path (i.e., a
concatenation of arcs)

Γ
.
=
(
γ
i(0),i(1)

, γ
i(1),i(2)

, . . . , γ
i(N−1),i(N)

)
(1.2)

with i(0) = d(k) and i(N) = a(k), connecting the departure node Ad(k) with the arrival node
Aa(k). We shall denote by

V .
=
{

Γ1, Γ2, . . . , ΓK

}
the set of all paths which do not contain any closed loop. Since there are m nodes in the
network, and each chain can visit each of them at most once, the set V contains finitely many
elements. For a given k ∈ {1, . . . , n}, let Vk ⊂ V be the set of all paths available to k-drivers,
connecting Ad(k) with Aa(k). By uk,p(·) we denote the departure rate of drivers of the k-th
group, traveling along the viable path Γp. Hence

Uk,p(t)
.
=

∫ t

−∞
uk,p(s) ds (1.3)

is the total number of drivers of the k-th group, traveling along the path Γp, who have started
their journey before time t.

Definition 1. Let the group of k-drivers have size Gk > 0. We say that {uk,p ; k =
1, . . . , n, p ∈ Vk} is an admissible family of departure rates if each uk,p is a nonnegative
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integrable function, and moreover∑
p∈Vk

∫ ∞
−∞

uk,p(t) dt = Gk for each k ∈ {1, . . . , n} . (1.4)

Here the admissibility condition (1.4) means that, sooner or later, every driver of the k-th
group will depart, choosing some path Γp ∈ Vk to reach his destination.

As in [2, 3, 5], we consider a set of departure costs ϕk(·) and arrival costs ψk(·) for the various
drivers. A driver of the k-th group departing at time τd and arriving at destination at time
τa has total cost

ϕk(τ
d) + ψk(τ

a). (1.5)

In this framework, the concepts of globally optimal solution and of Nash equilibrium solution
considered in [2, 3] can be extended to traffic flow on a network of roads.

Definition 2. An admissible family {uk,p} of departure rates is globally optimal if it
minimizes the sum of the total costs of all drivers.

Definition 3. An admissible family {uk,p} of departure rates is a Nash equilibrium so-
lution if no driver of any group can lower his own total cost by changing departure time or
switching to a different path to reach destination.

From the above definition it follows that, in a Nash equilibrium, all drivers in a same group
must bear the same total cost (1.5).

In this paper we prove the existence of a globally optimal solution and of a Nash equilibrium
solution, extending the results in [4] to a model where queues can spill backward through
several nodes of the network. Our existence proofs, worked out in Sections 4 and 5, are
similar to the ones given in [4] for buffers of infinite size. However, a substantial amount of
preliminary analysis is needed.

Indeed, for intersection models with buffers of finite size, the well posedness results proved in
[6] refer to the initial-value problem. These results need to be adapted to the boundary-value
problem, where departure rates are assigned for all times t ∈ R. In addition, one has to study
how the travel time of each driver depends on all the departure rates, w.r.t. the topology
of weak convergence. In this paper, Section 2 recalls the main definitions and modeling
assumptions, while Section 3 establishes the key continuity properties of our solutions.

In addition, the proof of the existence of a Nash equilibrium requires a uniform a priori bound
on the travel time of every driver. In a realistic situation, this is largely expected. In the
case of buffers of unlimited size considered in [4], such a bound is easy to prove. However, in
models where queues can spill backward, it is hard to pinpoint a condition which guarantees
that traffic will never get stuck, and all drivers arrive at destination in finite time. See [9] for
a discussion of this issue. In Section 6 of the present paper we prove a partial result in this
direction. Namely, if the network does not contain any closed cycle, then the traffic will never
get stuck.

For the basic modeling of traffic flow we refer to [1, 26, 27]. Traffic flow on networks has been
the topic of an extensive literature, see for example [10, 13, 16, 19, 23] and references therein.
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More detailed results on optima and equilibria for traffic flow on a single road can be found
in [2, 3, 5] Different kinds of optimization problem for network flows have been considered in
[8, 12, 21, 22].

2 The traffic flow model

2.1 Basic assumptions.

In our model, x ∈ [0, Lij ] is the space variable, describing a point along the arc γij joining the
node Ai to the node Aj . Here Lij measures the length of this arc. The basic assumptions on
the flux functions fij(ρ) = ρ vij(ρ) and on the cost functions ϕk, ψk are as follows.

ij

0 ρmax jam
ρ

max
f

f (ρ) = ρ  v (ρ)

ρ

free congested

ij ij

ij ij

Figure 1: The flux fij as a function of the density ρ, along the arc γij from the node Ai to Aj .

(A1) For every arc γij , the flux function ρ 7→ fij(ρ) = ρ vij(ρ) is twice continuously dif-

ferentiable, strictly concave down, and non-negative on some interval [0, ρjamij ], with

fij(0) = fij(ρ
jam
ij ) = 0. We shall denote by ρmaxij ∈]0, ρjamij [ the unique value such that

fij(ρ
max
ij ) = fmaxij

.
= max

ρ∈[0,ρjamij ]
fij(ρ) . (2.1)

(A2) For every k ∈ {1, . . . , n} the cost functions ϕk, ψk are continuously differentiable and
satisfy 

ϕ′k(t) < 0 ,

ψ′k(t) > 0 ,
lim
|t|→∞

(
ϕk(t) + ψk(t)

)
= +∞ . (2.2)

Remark 1. For each flux fij , consider the Legendre transform gij of fij

gij(v)
.
= inf

u∈[0,ρjamij ]

{
uv − fij(u)

}
. (2.3)

Given a characteristic t 7→ x(t) with speed ẋ = v, the Legendre transform gij can be interpreted
as

gij(v) = − [flux of cars from left to right, across the characteristic]. (2.4)
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Figure 2: The flux function fij and its Legendre transform gij defined at (2.3). Notice that gij(0) =

−fmax
ij , while gij(v) = 0 for v ≥ f ′ij(0) and gij(v) = ρjamij v for v ≤ f ′ij(ρ

jam
ij ).

For v ∈
]
f ′ij(ρ

jam
ij ), f ′ij(0)

[
, differentiating w.r.t. v, one obtains

g′′ij(v) =
∂

∂v
g′ij(u

∗(v)) =
1

f ′′ij(u
∗(v))

< 0 , (2.5)

showing that gij is strictly concave down on this open interval. As shown in Fig. 2, we also
have the implications

v ≤ f ′ij(ρ
jam
ij ) =⇒ gij(v) = ρjamij v,

v ≥ f ′ij(0) =⇒ gij(v) = 0.

(2.6)

2.2 Evolution of traffic density.

We now describe more in detail how the traffic flow on the entire network can be uniquely
determined, given the departure rates uk,p.

We assume that the set N of all nodes of the network can be partitioned as

N = Nd ∪Nt ∪Na ,

where the three sets on the right hand side denote the departure nodes, the transit nodes and
the arrival nodes, respectively (Fig. 3).

I - Dynamics at departure nodes. Departure nodes have no incoming road and only one
outgoing road. As in [4], let u(t) be the rate of departures from a node Ai ∈ Nd, and let
ρ(t, x), x ∈ [0, L], be the density of traffic along this single outgoing road. We assume that ρ
satisfies the conservation law

ρt + f(ρ)x = 0.

Call q(t) the length of the queue at the entrance of the road, and let

ρ̄(t) = lim
x→0+

ρ(x, t)
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Figure 3: In this network, A1, A2 are entrance nodes, A3, . . . , A8 are transit nodes, and A9, A10 are
exit nodes. We denote by Pij the mid-point of the arc γij from Ai to Aj .

be the boundary value for the density. Moreover, define

ω(t) =

{
fmax if ρ̄(t) ≤ ρ∗,
f(ρ̄(t)) if ρ̄(t) ≥ ρ∗.

Notice that ω(t) is the maximum flux of cars that can enter the road at time t.

The boundary value for the flux and the length of the queue are then governed by the equations

f(ρ̄(t)) =

{
ω(t) if q(t) > 0 ,
u(t) if q(t) = 0 ,

(2.7)

q̇(t) = u(t)− ω(t) if q(t) > 0. (2.8)

Here and throughout the sequel, an upper dot denotes a derivative w.r.t. time.

II - Dynamics at arrival nodes. We assume that each arrival node Aj ∈ Na has one
incoming road, say γij , and no outgoing road. Cars exit instantly upon reaching the node Aj ,
and no backward queue is ever formed along the road leading to Aj . We can thus assume that
the density ρij satisfies

ρij ≤ ρ∗ij , f ′ij(ρij) ≥ 0,

for all t ≥ 0, x ∈ [0, Lij ]. Since all characteristics have positive speed, the initial-boundary
value problem along the arc γij is well posed without assigning any condition at the terminal
point x = Lij .

III - Dynamics at transit nodes. Following [6], we assume that at each intersection there
is a buffer of limited capacity. The incoming fluxes of cars toward the intersection are related
to the current degree of occupancy of the buffer. To fix the ideas, consider an intersection
with m incoming and n outgoing roads. To simplify the notation, we label with the index
i ∈ I the incoming roads and j ∈ O the outgoing roads. As in [6], the space variable is x < 0
along incoming roads and x > 0 along outgoing roads. For k ∈ I ∪ O, we denote by ρk the
density of cars on the k-th road. Moreover, for i ∈ I and j ∈ O, we denote by θij the fraction
of cars in road i who wish to turn into road j. The above functions evolve according to the
conservation laws

(ρk)t + fk(ρk)x = 0 , k ∈ I ∪ O, (2.9)

6



and the linear transport equations

(θij)t + vi(ρi)(θij)x = 0 , i ∈ I, j ∈ O . (2.10)

The state of the buffer at the intersection is described by an n-vector

q = (qj)j∈O .

Here qj(t) is the number of cars at the intersection waiting to enter road j ∈ O, i.e., the length
of the queue in front of road j. Boundary values at the junction will be denoted by

θ̄ij(t)
.
= limx→0− θij(t, x), i ∈ I, j ∈ O ,

ρ̄i(t)
.
= limx→0− ρi(t, x), i ∈ I ,

ρ̄j(t)
.
= limx→0+ ρj(t, x), j ∈ O ,

f̄i(t)
.
= fi(ρ̄i(t)) = limx→0− fi(ρi(t, x)), i ∈ I ,

f̄j(t)
.
= fj(ρ̄j(t)) = limx→0+ fj(ρj(t, x)), j ∈ O .

(2.11)

Conservation of the total number of cars implies

q̇j =
∑
i∈I

f̄iθ̄ij − f̄j for all j ∈ O . (2.12)

Following [19], we say that a density ρ ∈ [0, ρjamk ] along the k-th road is

- a free state if ρ ∈ [0, ρmaxk ],

- a congested state if ρ ∈ ]ρmaxk , ρjamk ].

We also define

ωi = ωi(ρ̄i)
.
=


fi(ρ̄i) if ρ̄i is a free state,

fmaxi if ρ̄i is a congested state,
i ∈ I ,

the maximum possible flux at the end of an incoming road. Notice that this is the largest flux
fj(ρ) among all states ρ that can be connected to ρ̄i with a wave of negative speed.

Similarly, we define

ωj = ωj(ρ̄j)
.
=


fj(ρ̄j) if ρ̄j is a congested state,

fmaxj if ρ̄j is a free state,
j ∈ O ,

the maximum possible flux at the beginning of an outgoing road. This is the largest flux fj(ρ)
among all states ρ that can be connected to ρ̄j with a wave of positive speed.

We consider two different sets of equations relating the incoming and outgoing fluxes f̄i and
f̄j , depending on the drivers’ choices θ̄ij and on the lengths qj of the queues in the buffer. As
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proved in [6], both models lead to well posed Cauchy problems within the general class of L∞

data.

In the first model, the junction contains one single buffer of size M . Incoming cars are
admitted at a rate depending of the amount of free space left in the buffer, regardless of their
destination. Once they are within the intersection, cars flow out at the maximum rate allowed
by the outgoing road of their choice. As usual, if the queue size qj is nonzero, drivers respect
their place in the queue: first-in-first-out.

Single Buffer Junction (SBJ). Consider a constant M > 0, describing the maximum
number of cars that can occupy the intersection at any given time, and constants ci > 0, i ∈ I,
accounting for priorities given to different incoming roads.

We then require that the incoming fluxes f̄i satisfy

f̄i = min

ωi , ci

(
M −

∑
j∈O

qj

) , i ∈ I , (2.13)

while the outgoing fluxes f̄j satisfy
if qj > 0, then f̄j = ωj,

if qj = 0, then f̄j = min
{
ωj ,

∑
i∈I f̄iθij

}
,

j ∈ O . (2.14)

In our second model, there are n buffers, one for each outgoing road. Incoming drivers are
admitted at a rate depending on the length of the queue at the entrance of the road of their
choice. Once they are within the intersection, cars flow out at the maximum possible rate,
respecting their place in the queue: first-in-first-out.

Multiple Buffer Junction (MBJ) Consider constants Mj, j ∈ O, describing the size of
the buffer at the entrance of the j-th outgoing road, and constants ci > 0, i ∈ I, accounting
for priorities given to different incoming roads.

We then require that the incoming fluxes f̄i satisfy

f̄i = min

{
ωi ,

ci(Mj − qj)
θij

, j ∈ O
}
, i ∈ I , (2.15)

while the outgoing fluxes f̄j satisfy (2.14).

We now consider the Cauchy problem for the system of equations (2.9), (2.10), (2.12), assuming
that at each node the boundary conditions (2.13)-(2.14) or (2.15)-(2.14) are satisfied. We allow
the possibility that the conditions (SBJ) hold at some nodes, while (MBJ) hold at other

8



nodes. The initial data have the form

ρk(0, x) = ρ♦k (x) k ∈ I ∪ O ,

θij(0, x) = θ♦ij(x) i ∈ I, j ∈ O ,

qj(0) = q♦j j ∈ O .

(2.16)

By an admissible solution of the above system we mean a family of functions (ρk, θij , qj), with

ρk ∈ [0, ρjamk ] , θij ∈ [0, 1],
∑
j∈O

θij = 1 , (2.17)

qj ≥ 0,


∑

j∈O qj < M, in case of (SBJ) ,

qj < Mj for every j ∈ O, in case of (MBJ) ,

(2.18)

and with the following properties.

(i) The functions ρk provide entropy-weak solutions to the conservation laws in (2.9).

(ii) The functions θij provide solutions to the linear transport equations in (2.10).

(iii) The functions qj are Lipschitz continuous and satisfy the ODEs (2.12).

(iv) The initial values of ρk, θij and qj satisfy (2.16).

(v) The boundary values ρ̄k(t), f̄k(t), θ̄ij(t) in (2.11) are well defined in the sense of traces,
and satisfy the boundary conditions (2.13)-(2.14) or (2.15)-(2.14) for a.e. t ≥ 0.

IV - Dynamics on the entire network. The models studied in [6] dealt with one single
intersection. In that case, the drivers’ turning choices θij at (2.10) had to be assigned only on
incoming roads i ∈ I. To model traffic flow on an entire network, we also need to keep track
of how many drivers choose the path Γp to reach destination. For this purpose, we denote by

ρi`,p = θp · ρi` (2.19)

the density of cars on road γi` that follow path Γp. Clearly θp = 0 if the arc γi` is not part of
the path Γp. Moreover, at every point (t, x) we have

θp(t, x) ∈ [0, 1] ,
∑
p

θp(t, x) = 1 .

Notice that the coefficients θp are passive scalars, transported along the flow. Along any arc
γi`, they satisfy the linear transport equations

(θp)t + vi`(ρi`) · (θp)x = 0 . (2.20)

Along the road γi`, the fraction θij(t, x) of drivers traveling on road γi` who will turn into
road γ`j is recovered from the coefficients θp by

θij =
∑
γ`j∈Γp

θp
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Indeed a driver currently on the arc γi`, after reaching the intersection A` will turn into the
road γ`j iff this road is part of the path Γp that he is using to reach destination.

Thanks to the finite propagation speed, all the equations can be solved iteratively in time.
Indeed, the positive quantity

∆min
.
=

1

2
·min

ij

Lij

f ′ij(0)− f ′ij(ρ
jam
ij )

(2.21)

provides a lower bound on the time needed for characteristic to travel half way across any
arc γij of the network. Given the departure rates uk,p, if the densities ρij and the queues q`
are known at time τ , one can uniquely determine the solution also for t ∈ [τ , τ + ∆min], by
solving separately the Cauchy problem in a neighborhood of each node. More precisely, let
Pij = Lij/2 be the mid-point along the arc γij = [0, Lij ]. Then for any given time τ ∈ R the
following holds.

1) Let A` be a departure node, with outgoing arc γ`j . Let the departure rates uk,p(t) be
given, for t ∈ [τ, τ+∆min]. Moreover, let the traffic densities ρ`j,p = θp ·ρ`j be given at time τ ,
along the entire arc γ`j . Then these initial and boundary data uniquely determine the traffic
density ρ`j,p(t, x), for t ∈ [τ, τ + ∆min] and x ∈ [0, L`j/2].

2) Let A` be an exit node, with incoming arc γi`. Let the traffic density ρi`(τ, ·) be given at
time τ , along the entire arc γi`. Then these initial conditions uniquely determine the traffic
density ρi`(t, x), for t ∈ [τ, τ + ∆min] and x ∈ [Li`/2 , Li`].

3) Let A` be a transit node, with incoming arcs γi`, i ∈ I`, and outgoing arcs γ`j , j ∈ O`.
Let the traffic densities ρi`,p(τ, ·) be given at time τ , along each of the the above arcs γi`, γ`j ,
together with the sizes of the queues qj , j ∈ O`. Then, for t ∈ [τ, τ + ∆min], these initial
conditions uniquely determine the traffic densities ρi`(t, x) for i ∈ I`, x ∈ [Li`/2 , Li`], and
ρ`j(t, x), for j ∈ O`, x ∈ [0, L`j/2].

To complete the inductive step, and determine the traffic densities ρ`j,p = θp ·ρ`j for all times,
we still need a formula to determine the fraction θp of drivers following path Γp, along the
outgoing roads j ∈ O`.

To fix the ideas, consider a node A` and let γi∗` and γ`j∗ be consecutive arcs in the path Γp
(see Fig. 4, left). Let qj∗(t) be the length of the queue at the entrance of road γ`j∗ . To keep
track of the composition of this queue, at each given time t let ξ ∈ [0, qj∗(t)] be a Lagrangian
variable labeling drivers in this queue. Moreover, call Θ`,p : [0, qj∗(t)] 7→ [0, 1] the fraction
of these drivers that follow the path Γp to reach their eventual destination (Fig. 4, right).
Recalling (2.11) the function Θ`,p can be determined by solving the linear boundary value
problem

Θ`,p(t, 0) =
f̄i∗(t)θ̄i∗,p(t)∑
i∈I`

f̄i(t)θ̄ij(t)
, (2.22)

∂

∂t
Θ`,p(t, ξ) +

∑
i∈I`

f̄i(t)θ̄ij(t)

 ∂

∂ξ
Θ`,p(t, ξ) = 0 . (2.23)

Indeed, on the right hand side of (2.22) the numerator is the rate at which p-drivers (i.e.,
those following Γp to reach destination) join the queue qj∗ , while the denominator is the rate
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at which drivers of all types join this same queue. Call ξ(t) the position of a particular driver
inside this queue, i.e. the number of cars behind him, in the queue. Clearly, ξ(t0) = 0 at
the first time t0 when this driver joins the queue, while ξ(τ) = qj∗(τ) at the time τ when he
reaches the end of the queue. Since the map t 7→ Θ`,p(t, ξ(t)) is constant, this yields (2.23).

On the outgoing road γ`j∗ , the boundary value for θp is now determined by

θp(t, 0+) = Θ`,p(t, qj∗(t)). (2.24)

γ
i*l

γ
l j*

lA

pΓ

1

q  (t)
*j

0

Θ
l,p

ξ

A
i*

Aj*

Figure 4: Left: a node A` along the path Γp. Right: the function ξ 7→ Θ`,p(t, ξ), determining the
distribution of p-drivers within the queue qj∗ .

2.3 The optimal decision problems.

Let Gk,p be the total number of drivers of the k-th group who travel along the path Γp.
The admissibility condition implies Gk,1 + · · ·+Gk,N = Gk. We use the Lagrangian variable
β ∈ [0, Gk,p] to label a particular driver in the subgroup Gk,p of k-drivers traveling along the
path Γp. The departure and arrival time of this driver will be denoted by τdk,p(β) and τak,p(β),

respectively. Let Udepartk,p (t) = Uk,p(t) denote the amount of drivers of the subgroup Gk,p who

have departed before time t. Similarly, let Uarrivek,p (t) be the amount of Gk,p-drivers who have
arrived at destination before time t. For a.e. β ∈ [0, Gk,p] we then have

τdk,p(β) = inf
{
t ; Udepartk,p (t) ≥ β

}
, τak,p(β) = inf

{
t ; Uarrivek,p (t) ≥ β

}
. (2.25)

With this notation, the definition of globally optimal and of Nash equilibrium solution can be
more precisely formulated.

Definition 2′. An admissible family of departure distributions {Uk,p} is a globally optimal
solution if it provides a global minimum to the functional

J
.
=
∑
k,p

∫ Gk,p

0

(
ϕk(τ

d
k,p(β)) + ψk(τ

a
k,p(β))

)
dβ . (2.26)

Definition 3′. An admissible family of departure distributions {Uk,p} is a Nash equilibrium
solution if there exist constants c1, . . . , cn such that:

(i) For almost every β ∈ [0, Gk,p] one has

ϕk(τ
d
k,p(β)) + ψk(τ

a
k,p(β)) = ck . (2.27)
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(ii) For all τ ∈ R, there holds

ϕk(τ) + ψk(T
arrival
k,p (τ)) ≥ ck . (2.28)

Here T arrivalk,p (τ) is the arrival time of a driver that starts at time τ from the node Ad(k) and
reaches the node Aa(k) traveling along the path Γp.

In other words, condition (i) states that all k-drivers bear the same cost ck. Condition (ii)
means that, regardless of the starting time τ , no k-driver can achieve a cost < ck.

3 Continuity properties of the flow

The well posedness results proved in [6] apply to the Cauchy problem, where initial data
are assigned on every road of the network at a given time t = t0. On the other hand, to
study optimal traffic assignment and users equilibria, we need to consider boundary conditions
describing the departure rates uk,p(t), for any t ∈ ] − ∞, +∞[ . The results in [6] on the
well posedness of the Cauchy problem must therefore be adapted to this somewhat different
situation. In particular, we need to study the continuous dependence of solutions w.r.t. weak
convergence of the departure rates. Let (uk,p) be an admissible family of departure rates. For
every arc γij , contained in some path Γp, we consider the following functions:

Vij(t, x) = total amount of cars that have crossed the point x ∈ [0, Lij ] before time t.

Vij,p(t, x) = total amount of cars that have crossed the point x ∈ [0, Lij ] before time t and
follow the path Γp to reach their destination.

Clearly, Vij(t, x) =
∑

p Vij,p(t, x). Given a sequence (uνk,p)ν≥1 of departure rates, the corre-
sponding functions V ν

ij , V
ν
ij,p are defined in the same way. In addition, we introduce

Definition 4. A sequence uν = (uνk,p) of admissible departure rates is tight if, for every
ε > 0, there exists Tε such that the corresponding solutions satisfy∑

k,p

(∫ −Tε
−∞

uνk,p(t) dt+

∫ ∞
Tε

uνk,p(t) dt

)
< ε for all ν ≥ 1. (3.29)

According to (3.29), for every ν the total number of drivers departing before time −Tε or after
Tε is < ε.

The next lemma shows that, if the total number of cars traveling on the network is sufficiently
small, all roads remain in a free state and no queue is formed at any intersection.

Lemma 3.1. There exists ε0 > 0 small enough and a travel time ∆T such that the following
holds. Assume that the total amount of drivers departing before a given time T is∑

k,p

∫ T

−∞
uk,p(t) dt ≤ ε0 . (3.30)

Then

12



(i) For t < T all queues at all intermediate nodes are empty.

(ii) Every driver departing at a time τd ≤ T −∆T reaches destination at time τ q ≤ T .

(iii) Consider a second family of departure rates ũp,k, satisfying (3.30) together with

ũp,k(t) = up,k(t) for all k, p and all t > T −∆T . (3.31)

Then the corresponding densities and queues satisfy ρij(t, x) = ρij(t, x), qj(t) = q̃j(t) for
all i, j, x ∈ [0, Lij ], and t > T .

Proof. 1. Consider the quantities

ρ]
.
=

1

2
min
ij

ρmaxij , δ]
.
= min

ij
f ′ij(ρ

]) > 0 .

Notice that, if the density satisfies ρ(t, x) ≤ ρ] then on any road γij , the characteristic speed
is

f ′ij(ρ) ≥ f ′ij(ρ
]) ≥ δ].

We claim that, given ρ[ > 0, there exists ε0 > 0 such that the following holds. If at any
entrance node A` the total amount of drivers is ≤ ε0, on the first arc [0, L`j ] the density
satisfies

ρ`j(t, x) ≤ ρ[ for all t and all x ∈ [L`j/2 , L`j ]. (3.32)

Indeed, set

δmin
.
=

1

2
·min

ij

Lij
f ′ij(0)

< ∆min.

For any (t0, x0) ∈ R× [L`j/2, L`j ], two cases are considered:

CASE 1: There exists y0 ∈ [0, L`j [ such that

V`j(t0, x0) = V`j(t0 − δmin, y0)− δmin · g`j
(y0 − x0

δmin

)
,

and

f ′`j(ρ`j(t0, x0)) =
y0 − x0

δmin
.

In this case we have

g`j

(
f ′`j(ρ`j(t0, x0))

)
= −

V`j(t0, x0)− V`j(t0 − δmin, y0)

δmin
≥ − ε0

δmin
.

Choosing ε0 > 0 sufficiently small, this yields (3.32).

CASE 2: There exists τ ∈ ]t0 − δmin, t0[ such that

V`j(t0, x0) = V`j(τ, L`j)− (t0 − τ) · g`j
(x0 − L`j
t0 − τ

)
.

Assume that A`0 is the exit node of road γ`j . From [6], we have

V`j(τ, L`j) ≥ δmin ·min
{
fmax
ij , cj

(
M −

∑
k∈O`

‖qk‖L∞[t0−δmin,t0]

)}
in case of (SBJ) ,
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and

V`j(τ, L`j) ≥ δmin ·min
{
fmax
ij , cj ·

Mk − ‖qk‖L∞[t0−δmin,t0]

θjk(t)
; k ∈ O`

}
in case of (MBJ) .

On the other hand, we also have that V`j(τ, L`j) ≤ ε0 and qk(τ) ≤ Kε0 for all τ . Thus, it
yields a contradiction if ε0 > 0 is small enough.

Then by induction, if ρ[ is chosen sufficiently small and (3.32) holds for every entrance arc,
then no queue is ever formed and the maximum density is ρij(t, x) ≤ ρ] one every other arc
of the network. In particular, this achieves the proof of (i).

2. From step 1, for 0 < ε0 < 1 small enough, one can see that on any arc γij the flow is always
free at any time t < T , i.e. ρij(t, x) ≤ ρmaxij . This yields the uniform bound

vij(ρij(t, x)) ≥ vmin
.
= inf

ij
vij(ρ

max
ij ) > 0 for all t < T .

On the other hand, the waiting time in the queue at any entrance node A` of each driver who
departs before time T is less than ε0

minij fmax
ij

< 1
minij fmax

ij
. Define

∆T
.
=

1

minij fmax
ij

+

∑
ij Lij

vmin
.

Then the total traveling time of any driver who departs before time T −∆T is less than ∆T .
This yields (ii).

3. Notice that
vij(ρ) ≥ f ′ij(ρ) .

By (ii) and the non-crossing of backward characteristics, the value of ρij(T, x) for x ∈ [0, Lij [
depends only on the value of {uk,p} in [T −∆T, T ]. Thus, from (3.31), one has that

ρ̃ij(T, x) = ρij(T, x), x ∈ [0, Lij [ .

Recalling that for t ∈ ]−∞, T ] there is no queue at any transit node, we obtain (iii).

In the following, given a node A`, the incoming arcs will be denoted by γi`, with i ∈ I`, while
outgoing arcs are γ`j , j ∈ O`. At the node A`, we denote by q`j(t) the length of the queue of
cars waiting to enter the outgoing road γ`j . Relying on the analysis in [6], we now prove

Lemma 3.2. Consider a tight sequence of admissible departure rates uν = (uνk,p) which satisfy
the uniform bounds

0 ≤ uνk,p(t) ≤ M0 for all t ∈ R . (3.33)

for some constants M0 and all k, p, ν. Then, by possibly taking a subsequence, as ν →∞ one
has the weak convergence

uνk,p ⇀ u∗k,p (3.34)

for some admissible family (u∗k,p) of departure rates. In addition, one has

14



(i) For any T > 0, as ν →∞ one has the convergence

V ν
ij (t, x)→ V ∗ij(t, x) , (3.35)

V ν
ij,p(t, x)→ V ∗ij,p(t, x), (3.36)

qν`j(t)→ q∗`j(t), (3.37)

uniformly for all x ∈ [0, Lij ] and t ∈ ]−∞, T ]. In turn, for every t one has

ρνij(t, ·) → ρ∗ij(t, ·) in L1([0, Lij ]). (3.38)

(ii) If all drivers reach their destination before some fixed time T ∗ > T , then there exists a
constant vmin > 0 such that all velocities vνij on all roads satisfy the uniform lower bound

vνij(t, x) ≥ vmin (3.39)

for all t, x, ν.

P
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Figure 5:

Proof. Because of the tightness assumption, an entirely standard argument yields the exis-
tence of a subsequence converging to an admissible family of departure rates (u∗k,p). For clarity
of exposition, we first prove (i)-(ii) assuming that all uνk,p(t) vanish for t < −T . At the end,
we describe the modifications needed to cover the general case.

1. We start by proving (i), assuming that no driver departs before time −T . For t ≤ −T all
functions ρνij , V

ν
ij , q

ν
`j are thus identically zero and the result is trivially true. Recalling (2.21),

consider the times
τn = − T + n∆min .

By induction, assume that the convergence in (3.35)-(3.38) holds on every arc γij and every
t ≤ τn.

2. For each departure node A` ∈ Nd, consider the initial-boundary value problem with
initial data given at t = τn and boundary data at x = 0 given for t ∈ [τn, τn+1]. By finite
propagation speed these data uniquely determine the solution on the domain t ∈]τn, τn+1] and
x ∈ [0, L`j/2]. Call u`,p the rate of departures from node A` of drivers who follow the path
Γp. The total number of departures up to time t is computed by

U`(t)
.
=
∑
p

U`,p(t) , U`,p(t)
.
=

∫ t

−∞
u`,p(τ) dτ .
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For every ν ≥ 1, the Lax type formula derived in [6] yields

V ν
`j(t, x) = min

{
min
y≥0

{
V ν
`j(τn, y)− (t− τn) · g`j

(
x− y
t− τn

)}
,

min
τn≤s≤t

{
Uν` (s)− (t− s) · g`j

(
x

t− s

)}}
.

(3.40)

We recall that g`j is the Legendre transform of the flux function f`j , as in (2.3). The assump-
tions (3.33)-(3.34) imply the uniform convergence Uν` → U∗` , while the inductive assumption
yields the uniform convergence

V`j(τn, x) → V ∗`j(τn, x) x ∈ [0, L`j ].

By (3.40) this yields the convergence

V ν
`j(t, x) → V ∗`j(t, x), (t, x) ∈ [τn, τn+1]× [0, L`j/2]. (3.41)

In turn, since
(V ν
`j)x = − ρν`j , (V ∗`j)x = − ρ∗`j ,

(3.41) implies the weak convergence

ρν`j(τn, ·) ⇀ ρ∗`j(τn, ·) on [0, L`j/2] (3.42)

for t ∈ [τn, τn+1]. We now observe that, by Oleinik’s estimates, the functions ρν`j(τn, ·) have
uniformly bounded variation on any subinterval of the form [ε, L`j/2], with ε > 0. Therefore,
the weak convergence (3.42) implies the strong convergence

‖ρν`j(τn, ·)− ρ∗`j‖L1([0,L`j/2]) → 0. (3.43)

It remains to prove the uniform convergence in (3.36), for each path Γp. For this purpose,
given t ∈ [τn, τn+1] and x ∈ [0, L`j/2], consider the departure time of the driver who reaches
point x on the road γ`j at time t, namely

τν(t, x) = inf
{
s ≤ t ; Uν` (s) = V ν

j`(t, x)
}
,

τ∗(t, x) = inf
{
s ≤ t ; U∗` (s) = V ∗j`(t, x)

}
.

By the uniform convergence V ν
j` → V ∗j` and Uν` → U∗` it follows

lim inf
ν→∞

τν(t, x) ≥ τ∗(t, x). (3.44)

Therefore

lim inf
ν→∞

∑
p

∫ τ∗(t,x)

−∞
uν`,p(s)ds ≤ lim inf

ν→∞

∑
p

∫ τν(t,x)

−∞
uν`,p(s)ds

= lim inf
ν→∞

V ν
`j(t, x) = V ∗`j(t, x) ≤

∑
p

∫ τ∗(t,x)

−∞
u∗`,p(s)ds .
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Recalling that uν`,p ⇀ u∗`,p, we have limν→∞
∫ τ∗(t,x)
−∞ uν`,p(s)ds =

∫ τ∗(t,x)
−∞ u∗`,p(s)ds. Therefore,

lim
ν→∞

∑
p

∫ τ∗(t,x)

−∞
uν`,p(s)ds = lim

ν→∞

∑
p

∫ τν(t,x)

−∞
uν`,p(s)ds =

∑
p

∫ τ∗(t,x)

−∞
u∗`,p(s)ds .

For every p this implies

lim
ν→∞

V ν
`j,p(t, x) = lim

ν→∞

∫ τν(t,x)

−∞
uν`,p(s)ds =

∫ τ∗(t,x)

−∞
u∗`,p(s)ds = V ∗`j,p(t, x) ,

proving the convergence (3.36). Since all functions V ν
`j,p are uniformly Lipschitz continuous,

the convergence holds uniformly on bounded sets.

3. A similar argument is valid for a terminal arc γi`, ending at some arrival node A`. Indeed,
consider the Cauchy problem with initial data given at t = τn for x ∈ [0, Li`]. By the Lax
formula,

Vj`(t, x) = min
y≥0

{
Vj`(τn, y)− (t− τn) · gj`

(
x− y
t− τn

)}
, (3.45)

these data uniquely determine the solution on the domain t ∈ [τn, τn+1] and x ∈ [Li`/2 , Li`].
The inductive assumption yields the uniform convergence

V ν
j`(τn, x) → V ∗j`(τn, x) , x ∈ [0, Li`]. (3.46)

Using (3.46) in (3.45) we obtain in turn the uniform convergence

V ν
i`(t, x) → V ∗i`(t, x) (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`],

the weak convergence ρνj`(t, ·) ⇀ ρ∗j`(t, ·) on [Li`/2 , Li`], and finally the strong convergence
‖ρν`j(t, ·)− ρ∗`j(t, ·)‖L1([0,L`j/2]) → 0, for every t ∈ [τn, τn+1].

To prove the convergence (3.36) for every p, we argue as follows. Fix any (t, x) ∈ [τn, τn+1]×
[Lj`/2, Lj`] and define

τν(t, x) = inf
{
s ≤ t ; V ν

j`(s, 0+) = V ν
j`(t, x)

}
,

τ∗(t, x) = inf
{
s ≤ t ; V ∗j`(s, 0+) = V ∗j`(t, x)

}
.

Observe that τ(t, x) ≤ τn. Since V ν
j`(t, x) → V ∗j`(t, x) and V ν

j`(·, 0+) → V ∗j`(·, 0+) uniformly
for t ≤ τn, the inequality (3.44) again holds. Therefore,

lim inf
ν→∞

∑
p

V ν
j`,p(τ

∗(t, x), 0+) ≤ lim inf
ν→∞

∑
p

V ν
j`,p(τ

ν(t, x), 0+)

= lim inf
ν→∞

∑
p

V ν
j`,p(t, x) = lim inf

ν→∞
V ν
j`(t, x) = V ∗j`(t, x) =

∑
p

V ∗j`,p(t, x) .

On the other hand, by the inductive assumption, we also have

lim inf
ν→∞

∑
p

V ν
j`,p(τ

∗(t, x), 0+) =
∑
p

V ∗j`,p(τ
∗(t, x), 0+) =

∑
p

V ∗j`,p(t, x) .
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Therefore, for all p it holds

lim
ν→∞

V ν
j`,p(t, x) = V ∗j`,p(t, x) .

4. Next, consider a transit node A`. By the inductive assumption, at time τn we have the
strong convergence

‖ρνi`(τn, ·)− ρ∗i`(τn, ·)‖L1([0,Li`]) → 0 i ∈ I` ,

‖ρν`j(τn, ·)− ρ∗`j(τn, ·)‖L1([0,L`j ]) → 0 j ∈ O` ,
(3.47)

together with the convergence of the queue sizes

qν`j(τn) → q∗`j(τn) , (3.48)

and, for every p, the uniform convergence
V ν
i`,p(τn, x) → V ∗i`,p(τn, x) on [0, Li`] i ∈ I` ,

V ν
`j,p(τn, x) → V ∗`j,p(τn, x) on [0, L`j ] j ∈ O` .

(3.49)

By (3.49) we also have the weak convergence

ρνi`(τn, ·) · θνij(τn, ·) ⇀ ρ∗i`(τn, ·) · θ∗ij(τn, ·) on [0, Li`] i ∈ I` . (3.50)

Notice, however, that here the strong convergence in L1 may not hold, because the coefficients
θij satisfy a linear transport equation and can have unbounded variation. For all t ∈ [τn, τn+1],
according to Theorem 2 in [6] one has the weak convergence

ρνi`(t, ·) ⇀ ρ∗i`(t, ·) on [Li`/2, Li`] i ∈ I` ,

ρν`j(t, ·) ⇀ ρ∗`j(t, ·) on [0, L`j/2] j ∈ O` ,
(3.51)

together with the uniform convergence of the queue sizes

qν`j(t) → q∗`j(t). (3.52)

For any i ∈ I` and (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`], let

τ∗(t, x) = inf
{
s ≤ t ; V ∗i`(s, 0+) = V ∗i`(t, x)

}
.

With the same argument in step 3, one can show that

lim
ν→∞

∑
p

V ν
i`,p(τ

∗(t, x), 0+) = lim
ν→∞

∑
p

V ν
i`,p(τ

ν(t, x), 0+) =
∑
p

V ∗(τ∗(t, x), 0+) .

Thus, for all p and i ∈ I`, it holds

lim
ν→∞

V ν
i`,p(t, x) = V ∗i`,p(t, x) for all (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`] .
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To complete this step, we need to show that, for every j ∈ O` and every p one has

lim
ν→∞

V ν
`j,p(t, x) = V ∗`j,p(t, x) for all (t, x) ∈ [τn, τn+1]× [0, L`j/2] . (3.53)

Indeed, for any (t, x) ∈ [τn, τn+1]× [0, , L`j/2]] and i ∈ I`, let

τ(t, x) = inf
{
τ ≤ t

∣∣ Vi`(τ, Pi`) = V`j(t, x)
}
,

one has

lim
ν→∞

∑
p

V ν
i`,p(τ

∗(t, x), Pi`) = lim
ν→∞

∑
p

V ν
i`,p(τ

ν(t, x), Pi`) =
∑
p

V ∗(τ∗(t, x), Pi`) .

This implies (3.53).

5. The proof of the convergence (3.35) is now achieved by induction on n. Since all functions
Vij are uniformly Lipschitz continuous w.r.t. both t, x, it is clear that the convergence is
uniform for t, x in bounded sets.

In turn, this implies the weak convergence

ρνij(t, ·) ⇀ ρ∗ij(t, ·) (3.54)

for every time t. Since the flux function fij is strictly concave, by Oleinik’s estimate the
restriction of ρνij(t, ·) to each compact subinterval of ]0, Lij [ has uniformly bounded variation.
Therefore, the weak convergence (3.54) implies the strong convergence (3.38).

6. In this step we remove the assumption that uνk,p(t) = 0 for all k, p and t < −T . For this
purpose, for each integer N ≥ 1 consider the truncated functions

uν,Nk,p (t) =

{
uνk,p(t) if t ≥ −N,

0 if t < −N.

Let V ν,N
ij , V ∗,Nij , etc. . . be the corresponding functions, obtained by replacing uνk,p with uν,Nk,p .

Recalling Lemma 3.1, consider any ε ∈ ]0, ε0] and consider any two integers N,N ′ such that
Tε + ∆T < N < N ′. By Lemma 3.1, for every t > Tε we have

ρν,Nij (t, x) = ρν,N
′

ij (t, x)

for every road γij . Hence, the position of any driver departing after time Tε will be exactly

the same in the two solutions with departure rates uν,Nk,p and uν,N
′

k,p . This implies

|V ν,N
ij (t, x)− V ν,N ′

ij (t, x)| ≤ ε, |V ν,N
ij,p (t, x)− V ν,N ′

ij,p (t, x)| ≤ ε,

for all i, j, p, t, x, provided that Tε < N < N ′. Since ε > 0 was arbitrary, letting N → ∞ we
obtain the convergence in (3.35)-(3.36).

7. Toward a proof of (ii), consider any transit node A` ∈ Nt. By assumption, for t < −T all
roads and all buffers qj are empty. For t ∈ [−T, T ∗], the queues q`,j may be strictly positive.
However, the buffers never become completely full.
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More precisely, assume first that the flow at the node A` is governed by (SBJ), where M is
the size of the single buffer. Then, by Remark 1 in [6], there exists a constant C > 0 such
that, for all ν, j ∈ O` and t ∈ [−T, T ∗] one has

M −
∑
j∈O`

qνj (t) ≥ C . (3.55)

Next, assume that the flow at the node A` is governed by (MBJ), with buffers of sizes Mj ,
j ∈ O`. Again by Remark 1 in [6], there exists a constant C > 0 such that, for all ν, j ∈ O`
and t ∈ [−T, T ∗] one has

Mj − qνj (t) ≥ C . (3.56)

8. On an exit arc γij the flow is always free, i.e. ρij(t, x) ≤ ρmaxij . This yields the uniform
bound vi,j ≥ vij(ρmaxij ) > 0.

Next, consider any arc γi` ending at the transit node A`. Fix any x ∈ ]0, Li`[ , t ∈ [−T, T ∗].
Two cases can be considered.

CASE 1: The backward characteristic though (t, x) has positive speed: f ′i`(ρi`(t, x)) ≥ 0. In
this case ρi`(t, x)) ∈ [0, ρmaxi` ] and we conclude as before: vi` ≥ vi`(ρmaxi` ) > 0.

CASE 2: The backward characteristic though (t, x) has negative speed: f ′i`(ρi`(t, x)) < 0. In
this case, this characteristic originates at some point (τ, Li,`), for some τ < t ≤ T ∗. By (3.55)
or (3.56), the flux f̄i`(τ)

.
= fi`(τ, Li`−) exiting from road γi` is strictly positive. Indeed, for a

single buffer we have

f̄i`(τ) = ci

(
M −

∑
j∈O`

qj(τ)
)
≥ ciC ,

while in the case of multiple buffer we have

f̄i`(τ) = min
j∈O`

ci(Mj − qj(τ))

θij
≥ ciC .

Since both the density and the flux are constant along characteristics, this implies

fi`(ρi`(t, x)) ≥ ciC .

Observing that v(ρ) = f(ρ)/ρ, we obtain the uniform lower bound

vi`(ρi`(t, x)) ≥ ciC

ρjami`

> 0 .

Assuming that the vehicle speed v(ρ) remains uniformly positive, the following lemma shows
that the arrival time of any car depends Hölder continuously on the departure time.

Lemma 3.3. Let all departure rates uk,p(t) be uniformly bounded as in (3.33), and assume
that the speed v(ρ) remains uniformly positive, on all roads. Then, for every viable path Γ,
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there exist constants K,α such that the following holds. For any two cars departing at times
τ < τ̃ and traveling along Γ, the arrival times T a(τ) < T a(τ̃) satisfy

T a(τ̃)− T a(τ) ≤ K(τ̃ − τ)α. (3.57)

Proof. 1. Consider two drivers, joining the queue at the entrance of a given road γ at times
Tqueue < T̃queue. Call Tdepart < T̃depart the times where they clear the queue and start traveling
along γ. Since the total flux of cars joining the queue is uniformly bounded, and the rate at
which cars flow out of the queue is uniformly positive, the difference between the departure
times can be bounded as

T̃depart − Tdepart ≤ C ′ · (T̃queue − Tqueue) , (3.58)

for some uniform constant C ′.

Next, consider two drivers traveling along the road γ, departing at times Tdepart < T̃depart.

Call Tarrive < T̃arrive the times when they arrive at the end of road γ. To estimate the
difference between these arrival times, let L be the length of the road and call p(t), p̃(t) ∈ [0, L]
respectively the positions of the two cars at time t. Observe that p, p̃ satisfy the ODE with
discontinuous right hand side

ṗ(t) = v
(
ρ(t, p(t))

)
t ∈ [Tdepart , Tarrive] . (3.59)

By assumption, v is bounded and uniformly positive. Hence the distance between the two
drivers at the time when the second one departs is bounded by

p(T̃depart)− p̃(T̃depart) = p(T̃depart) ≤ vmax · (T̃depart − Tdepart).

Since the time difference Tarrive − Tdepart is a priori bounded, by Theorem 2.2 in [11] the
distance between the two drivers at time t = Tarrive when the first one arrives can be estimated
as

p(Tarrive)− p̃(Tarrive) ≤ C ·
(
p(T̃depart)− p̃(T̃depart)

)α
, (3.60)

for some constants C,α > 0. Since the second driver travels with uniformly positive speed
v ≥ vmin > 0, his arrival time will satisfy

T̃arrive − Tarrive ≤
p(Tarrive)− p̃(Tarrive)

vmin

≤ C

vmin
·
(
p(T̃depart)− p̃(T̃depart)

)α
≤ C

vmin
·
(
vmax · (T̃depart − Tdepart)

)α
.

(3.61)

2. After a relabeling, it is not restrictive to assume that Γ is the concatenation of N − 1 arcs,
joining the nodes A1, A2, . . . , AN . Namely,

Γ =
(
γ

12
, . . . , γ

N−1, N

)
. (3.62)

Consider a driver starting his journey at A1 at time τ . For k = 1, 2, . . . , N , define:

T 1
queue = τ = time when the car joins the queue at the entrance of the first arc γ

12
,
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T k−1
arrive = T kqueue = time when the car arrives at the node Ak, joining the queue to enter γ

k,k+1
,

T kdepart = time when the queue at node Ak is cleared, and the car starts moving along γ
k,k+1

,

TNarrive = T a(τ) = time when the car arrives at the final node AN .

Define the corresponding times T̃ k−1
arrive = T̃ kqueue, T̃ kdepart, for a driver starting at time τ̃ .

By (3.58), for every k there exists a constant C ′k such that

T̃ kdepart − T kdepart ≤ C ′k · (T̃ kqueue − T kqueue) . (3.63)

By (3.61), for every k there exist constants Ck, αk such that

T̃ karrive − T karrive ≤ Ck (T̃ kdepart − T kdepart)αk . (3.64)

Since the composition of Hölder continuous maps is Hölder continuous, by induction on k =
1, . . . , N we obtain (3.57).

The next lemma states the uniform convergence of the travel times along any path Γ.

Lemma 3.4. Consider a sequence of departure rates uν = (uνk,p) satisfying the uniform bounds
(3.33). Assume that, as ν → ∞, one has the weak convergence uνk,p ⇀ u∗k,p for all k, p. In
addition, assume that the car speed remains uniformly positive, on all roads, say vνij(ρ(t, x)) ≥
vmin > 0.

Let Γ be any viable path, and call τν(t), τ∗(t) the corresponding arrival times of a driver who
departs at time t and travels along Γ. One then has the convergence

lim
ν→∞

τν(t) = τ∗(t), (3.65)

uniformly for t in bounded sets.

Proof. 1. By taking a subsequence, we can assume:

(i) The uniform convergence of the queue sizes at each node A`

qν`,j(t) → q∗`,j(t) j ∈ O` . (3.66)

(ii) The uniform convergence of the functions Vij , namely

V ν
ij (t, x) → V ∗ij(t, x) x ∈ [0, Lij ]. (3.67)

(iii) The L1 convergence of the densities on each arc γij :

ρνij(t, ·) → ρ∗ij(t, ·) in L1([0, Lij ]). (3.68)

2. After a relabeling, we can assume that Γ has the form (3.62). For each k = 1, . . . , N − 1,

consider a driver arriving at the node Ak at time t. Denote by T ν,kdepart(t) ≥ t the time when
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this driver starts moving on the following road γk,k+1, possibly after spending some time in

the queue. Notice that these functions T ν,kdepart are uniformly Lipschitz continuous, for t in
bounded sets. By (i)-(ii), as ν →∞ we have the convergence

T ν,kdepart(t) → T ∗,kdepart(t), (3.69)

uniformly for t in bounded sets.

3. Next, consider a driver starting to move along the road γk,k+1 at time t. Denote by

T ν,karrive(t) ≥ t the time when this driver reaches the end of this road. By (iii), using Theorem 2.2
in [11], we obtain the pointwise convergence

T ν,karrive(t) → T ∗,karrive(t) . (3.70)

Since all functions T ν,karrive are uniformly Hölder continuous, the convergence is uniform for t
in bounded sets.

4. We now observe that, with the previous notation, the arrival time of a driver starting at
time t and traveling along the path Γ in (3.62) can be written as the composition

τν(t) = T ν,Narrive ◦ T
ν,N
depart ◦ · · · ◦ T

ν,k
arrive ◦ T

ν,k
depart ◦ · · · ◦ T

ν,1
arrive(t).

The convergence τν(t) → τ∗(t) thus follows from (3.69)-(3.70), by an inductive argument.

4 Globally optimal solutions

In this section we establish the existence of a globally optimal solution. The proof follows the
direct method of the Calculus of Variations, constructing a minimizing sequence of solutions
and showing that a subsequence converges to the optimal one.

Theorem 4.1. (existence of a globally optimal solution). Let the flux functions fij
and the cost functions ϕk, ψk satisfy the assumptions (A1)-(A2). Then, for any n-tuple
(G1, . . . , Gn) of positive numbers, there exists an admissible family of departure rates uk,p
which yield a globally optimal solution of the traffic flow problem. These rates are uniformly
bounded.

Proof. 1. By possibly adding a constant, because of (A2) it is not restrictive to assume that
ϕk(t) + ψk(t) ≥ 0 for every time t. Calling m0 the infimum of the total costs in (2.26), taken
among all admissible departure rates {uk,p}, this implies m0 ≥ 0.

We first claim that m0 < +∞. Indeed, let G =
∑

kGk be the total number of drivers, and
choose an integer N large enough so that G/N ≤ ε0. We can then partition the set of all
drivers into N subgroups, each with size ≤ ε0. We let all drivers of the first group start at time
t0 = 0. By Lemma 3.1, these drivers will all arrive at destination within time t1 = ∆T . We
then let all drivers of the second group depart at time t1. In turn, they will all arrive within
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time t2 = 2 ∆T . Continuing by induction, we let the drivers of the N -th group depart at time
tN−1 = (N − 1) ·∆T . By Lemma 3.1, all of these drivers will arrive within time tN = N ·∆T .
The total cost of this strategy is bounded by

G ·max
k

(
max

t∈[0,N ·∆T ]
ϕk(t) + max

t∈[0,N ·∆T ]
ψk(t)

)
≤ G ·max

k

(
ϕk(0) + ψk(N ∆T )

)
< ∞.

Recalling Definitions 1 and 4, consider a minimizing sequence of departure rates uνk,p, and let

Uνk,p(t)
.
=

∫ t

−∞
uνk,p(t) dt .

Gνk,p =

∫ ∞
−∞

uνk,p(t) dt.

By choosing a subsequence, we can assume

lim
ν→∞

Gνk,p = Gk,p with
∑
p

Gk,p = Gk . (4.1)

2. Fix ε > 0. By (A2), there is Tε > 0 such that for all k ∈ {1, 2, ..., n} it holds

ϕk(t) + ψk(t) ≥
m0 + 1

ε
for all t ∈]−∞,−Tε[ ∪ ]Tε,∞[ . (4.2)

For β ∈ [0, Gνk,p], let

β 7→ τd,νk,p (β) and β 7→ τa,νk,p (β)

describe the departure and arrival time of the β-driver, in the subgroup Gk,p. From (A2), we
have

ϕk(τ
d,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) ≥ ϕk(τ

d,ν
k,p (β)) + ϕk(τ

d,ν
k,p (β)) .

Thus,∫ Uνk,p(−Tε)

0
ϕk(τ

d,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) dβ

≥
∫ Uνk,p(−Tε)

0
ϕk(τ

d,ν
k,p (β)) + ϕk(τ

d,ν
k,p (β)) dβ ≥ Uνk,p(−Tε) ·

m0 + 1

ε
.

Since the total cost approaches the infimum m0, there exists N0 > 0 sufficiently large such
that for all ν > N0

Uνk,p(−Tε) =

∫ −Tε
−∞

uνk,p(t) dt ≤ ε . (4.3)

On the other hand, from (A2), we also have

ϕk(τ
d,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) ≥ ϕk(τ

a,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) .

Set
Tεa,ν

.
= sup

{
t ∈ R ; τa,νk,p (Uνk,p(t)) ≤ Tε

}
. (4.4)
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Thus,∫ Gνk,p

Uνk,p(Tεa,ν )
ϕk(τ

d,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) dβ

≥
∫ Gνk,p

Uνk,p(Tεa,ν )
ϕk(τ

a,ν
k,p (β)) + ϕk(τ

a,ν
k,p (β)) dβ ≥ (Gνk,p − Uνk,p(Tεν,a)) · m0 + 1

ε
.

Since the total cost approaches the infimum m0, there exists N0 > 0 sufficiently large such
that for all ν > N0

Gνk,p − Uνk,p(Tεν,a) ≤ ε . (4.5)

3. We claim that it is not restrictive to assume

uνk,p(t) ≤ max
ij

fmaxij for a.e. t . (4.6)

Indeed, if one of these departure rates does not satisfy (4.6), then a queue is formed at some
entrance node. But this is certainly not optimal. We can construct a second departure rate
ũνk,p where each driver departs at exactly the same time where he would have cleared the queue
in the original configuration. The departure time of each driver is later, while the arrival time
is exactly the same. Hence the family {ũνk,p} yields a total cost which is no greater than {uνk,p}.

4. Choosing a subsequence, we can assume the weak convergence uνk,p ⇀ uk,p. This implies
the uniform convergence Uνk,p → Uk,p. From (4.3) and (4.5), the limit family of departure rates
{uk,p} is admissible.

To complete the proof, we show that the family of departure rates {uk,p} is optimal. From
(4.3), (4.5) one has that

τd,νk,p (β), τa,νk,p (β) ∈ [−Tε, Tε] for all β ∈ [ε,Gk,p − ε] ,

for a constant Tε > 0. Moreover, the map β 7→ τd,νk,p (β) is nondecreasing. By Helly’s compact-
ness theorem, we can assume that

τd,νk,p (β) → τdk,p(β) for a.e. β ∈ [ε,Gk,p − ε] .

On the other hand, by Lemma (3.2), for ε > 0 sufficiently small, we have that V ν
ij,p(t, x) →

V ∗ij,p(t, x) uniformly for all x ∈ [0, Lij ] and t ∈]−∞, Tε[. Thus, by using again Helly’s theorem
we obtain

τa,νk,p (β) → τak,p(β) for a.e. β ∈ [ε,Gk,p − ε] .

Therefore,

∑
k,p

∫ Gk,p−ε

ε
ϕk(τ

d
k,p(β))+ψk,p(τ

a
k,p(β)) dβ = lim

ν→∞

∑
k,p

∫ Gk,p−ε

ε
ϕk(τ

d,ν
k,p (β))+ψk,p(τ

a,ν
k,p (β)) dβ

≤ lim
ν→∞

∑
k,p

∫ Gk,p

0
ϕk(τ

d,ν
k,p (β)) + ψk,p(τ

a,ν
k,p (β))dβ = m0 .
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Since ε > 0 was arbitrary, this implies∑
k,p

∫ Gk,p

0
ϕk(τ

d
k,p(β)) + ψk,p(τ

a
k,p(β))dβ ≤ m0 ,

completing the proof.

5 Nash equilibria

In this section we prove the existence of a Nash equilibrium solution for traffic flow on a
network. Toward this goal, in addition to (A1)-(A2), we need an additional assumption ruling
out the possibility that drivers remain stuck in traffic for an arbitrarily large time.

(A3) Given the n-tuple (G1, . . . , Gn), there exists a sufficiently large constant K such that,
for every admissible family of departure rates {uk,p} satisfying (1.4), the time spent on the
road by every driver is ≤ K.

Theorem 5.1. (existence of a Nash equilibrium). Let the flux functions fij and the cost
functions ϕk, ψk satisfy the assumptions (A1)-(A2). Fix any n-tuple (G1, . . . , Gn) and assume
that (A3) holds. Then

(i) There exists at least one admissible family of departure rates {u∗k,p} which yields a Nash
equilibrium solution.

(ii) In every Nash equilibrium solution, all departure rates are uniformly bounded and have
compact support.

Proof. Thanks to the continuity results proved in the previous sections, the proof can rely
on the same ideas used in [4].

1. There exists a time interval I0 = [−T0, T0] so large that, in any Nash equilibrium, no driver
will depart or arrive at a time t /∈ I0. Indeed, assume that a k-driver departs at time t = 0.
Let T1 be an upper bound on the time he needs to reach destination, under the worst possible
traffic conditions. Then the total cost to this driver will be not larger than ϕk(0) + ψk(T1).
By the assumptions (2.2) on the cost functions, there exists T0 large enough so that

ϕk(−T0) > ϕk(0) + ψk(T1), ψk(T0) > ϕk(0) + ψk(T1). (5.1)

Hence it is never convenient to depart at a time t /∈ [−T0, T0]. This proves (ii).

2. Let fmax
.
= maxi,j f

max
ij be an upper bound for the fluxes over all arcs, and define

ϕ′max
.
= max

1≤k≤n
max
t∈I0

|ϕ′k(t)| , ψ′min
.
= min

1≤k≤n
min
t∈I0

ψ′k(t).

The same argument used in the proof of Theorem 2 in [4] shows that, in a Nash equilibrium,
all departure rates uk,p must satisfy the priori bound

uk,p(t) ≤ κ
.
=

ϕ′max · fmax
ψ′min

for a.e. t . (5.2)
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3. Let κ be as in (5.2) and let G
.
=
∑n

k=1Gk be total number of drivers. Choosing the time

T
.
= T0 +

G

κ
, (5.3)

we consider the family of admissible departure rates

U .
=

{
(uk,p)1≤k≤n, 1≤p≤N ; uk,p : R 7→ [0, 4κ] , uk,p(t) = 0 for t /∈ [−T, T ] ,

∑
p∈Vk

∫
uk,p(t) dt = Gk for every k ∈ {1, 2, ..., n}

}
,

(5.4)
which is a closed convex subset of L1(R; Rn×N ).

For each fixed ν ≥ 1, we consider a finite dimensional subset Uν ⊂ U consisting of all u = (uk,p)
which are piecewise constant on time intervals of length T/ν, i.e.,

Uν
.
=
{
u = (uk,p) ∈ U ;

every function uk,p is constant on each subinterval Iν`
.
= ]tν`−1, t

ν
` ]
}
,

(5.5)
where

tν`
.
=

`

ν
T , −ν ≤ ` ≤ ν .

4. Given u = (uk,p) ∈ U , let τq(t) be the arrival time of a driver starting at time t and traveling
along the path Γq. Clearly, this arrival time depends on the overall traffic conditions, hence
on all functions uk,p. If this driver belongs to the j-th family, his total cost is

Φ
(u)
j,q (t) = ϕj(t) + ψj(τq(t)) .

We now observe that, for each ν ≥ 1, the domain Uν is a finite dimensional, compact, convex

subset of L2([−T, T ]; Rn×N ). Moreover, by Lemma 3.4 the map u 7→ Φ
(u)
k,p(·) are continuous

from Uν into L2. Hence, by the theory of variational inequalities [25], there exists a function
ūν = (ūνj,q) ∈ Uν which satisfies

∑
j,q

∫ T

−T
Φ

(ūν)
j,q (t) ·

(
vj,q(t)− ūνj,q(t)

)
dt ≥ 0 for all v ∈ Uν . (5.6)

5. We now let ν → ∞. By the previous steps, there exists a sequence of piecewise constant
functions ūν = (ūνk,p) ∈ Uν such that (5.6) holds for every ν ≥ 1. Since all functions ūνk,p are
uniformly bounded and supported inside the interval I = [−T, T ], by taking a subsequence we
can assume the weak convergence

(ūνk,p) ⇀ (u∗k,p) (5.7)

for some function u∗ = (u∗k,p) ∈ U . From Lemma 3.4 and Lemma 3.3, by Ascoli’s compactness
theorem we can assume that

τνk,p(t) → τ∗k,p(t) for all k, p, uniformly for t ∈ [−T, T ], (5.8)
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By the continuity of ϕ(·) and ψ(·), we also get

Φ
(ūν)
k,p (·) → Φ

(u∗)
k,p (·) for all k, p uniformly for t ∈ [−T, T ] .

We claim that the departure rates u∗k,p yield a Nash equilibrium solution. More precisely:

(NE) Given any k ∈ {1, 2, ..., n}, p ∈ Vk, any t1 ∈ Supp(u∗k,p), t2 ∈ R and any path Γq with
the same initial and final nodes as Γp, one has

Φ
(u∗)
k,p (t1) ≤ Φ

(u∗)
k,q (t2). (5.9)

Indeed, (5.9) implies that no k-driver can lower his own cost by switching to the time t2 or
choosing the alternative path Γq to reach destination. We recall that t is in the support of a

function f ∈ L1 if and only if
∫ t+ε
t−ε |f(s)| ds 6= 0 for every ε > 0.
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Figure 6: Proving that the limit departure rates {u∗k,p} provide a Nash equilibrium. If (NE) fails,
different cases are considered. In Case 1 (top left) the average of the cost Φk,p on the interval Iνi is
higher than on the interval Iνj . To obtain a contradiction with (5.6) we simply move some of the mass
from Iνi to Iνj . In Case 2a (top right) one cannot increase the value of uνk,p on the interval Iνj because
of the constraint u ≤ 4κ. However, some mass can be moved from Iνi to the previous interval Iνj−1. In
Case 2b (bottom) there are several adjacent intervals where uνk,p ≡ 4κ. In this case, if Iνj∗ is the first
interval to the left of Iνj where uνk,p < 4κ, we argue that (i) tνj∗ > −T , and (ii) the average of the cost
Φk,p on Iνj∗ is strictly less than on Iνj . In this last case, to obtain a contradiction with (5.6) we move
some mass from Iνj to Iνj∗ .

6. If (5.9) fails, then by continuity there exists δ > 0 such that

Φ
(u∗)
k,p (t) > Φ

(u∗)
k,q (t′) + 2δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (5.10)
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By uniform convergence, for all ν large enough we have

Φ
(ūν)
k,p (t) > Φ

(ūν)
k,q (t′) + δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (5.11)

Observe that it is not restrictive to assume that t2 ∈ [−T0, T0]. Indeed, if (5.9) fails for some
t2 /∈ [−T0, T0], then (5.1) implies

Φ
(u∗)
k,p (t1) > Φ

(u∗)
k,q (t2) > Φ

(u∗)
k,q (0),

and we can simply replace t2 with zero.

The weak convergence (5.7), together with the assumption on the support of the function u∗k,p,
now implies

lim
ν→∞

∫ t1+δ

t1−δ
ūνk,p(t) dt =

∫ t1+δ

t1−δ
u∗k,p(t) dt > 0 .

Therefore, for every ν sufficiently large we can find two intervals

Iνi = ]tνi−1, t
ν
i ] ⊂ [t1 − δ , t1 + δ], Iνj = ]tνj−1, t

ν
j ] ⊂ [t2 − δ , t2 + δ] (5.12)

with tνj > t2 and ūνk,p(t) > 0 for t ∈ Iνi .

7. We now derive a contradiction, showing that, for ν sufficiently large, the departure rates
ūνk,p do not satisfy the variational inequality (5.6). Two possibilities can arise

CASE 1: ūνk,q,j < 4κ. In this case we define a new set of departure rates vε = (vεk,p) ∈ Uν by
setting

vεk,p(t) = uνk,p(t)− ε if t ∈ Iνi ,

vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj ,

and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,p,i, 4κ−uνk,q,j} then
these new departure rates are still admissible. By (5.11) and (5.12), this construction yields

∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

∫
Iνj

Φ
(ūν)
k,q (t) dt−ε

∫
Iνi

Φ
(ūν)
k,p (t) dt ≤ −2εδ , (5.13)

providing a contradiction with (5.6).

CASE 2: ūνk,q,j = 4κ. If this equality holds, consider the index

j∗
.
= max {i < j ; ūνk,q,i < 4κ} .

Notice that tνj∗ > −T . Indeed, by construction t2 > −T0. If tνj∗ ≤ −T , by (5.3) this would
imply

ūνk,q(t) = 4κ for all t ∈ [tνj∗ , t
ν
j ] ⊇ [−T, −T0] ,∫

ūνk,q(t) dt ≥ 4κ(tνj − tνj∗) ≥ 4κ(T − T0) > G ,

reaching a contradiction. We consider two subcases.
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CASE 2a: j∗ = j − 1. In this case, since it is not restrictive to assume T
ν < δ

4 , we have
Iνj−1 = [tνj−2, t

ν
j−1] ⊂ [t2− δ, t2 + δ]. We can thus derive a contradiction as in CASE 1, simply

replacing j by j − 1.

CASE 2b: j∗ ≤ j − 2. Observe that, for all s1 < s2,

τνk,q(s2)− τνk,q(s1) ≥ 1

fmax

∫ s2

s1

ūνk,q(ξ) dξ . (5.14)

In particular, for any s1 ∈ Iνj∗ and s2 ∈ Iνj we have

τνk,q(s2)− τνk,q(s1) ≥ 1

fmax

∫ s2

s1

ūνk,q(ξ) dξ ≥
1

fmax
4κ [tj−1 − tj∗ ] ≥

4κ(s2 − s1)

3fmax
. (5.15)

This yields the estimate

ψk
(
τνk,q(s2)

)
− ψk

(
τνk,q(s1)

)
≥ ψ′min

(
τνk,q(s2)− τνk,q(s1)

)
≥ ψ′min ·

4κ(s2 − s1)

3fmax
. (5.16)

On the other hand, we have

ϕk(s2)− ϕk(s1) ≥ − ϕ′max(s2 − s1) . (5.17)

Recalling the definition of the constant κ in (5.2), from (5.16)-(5.17) we obtain

Φūν

k,q(s2)− Φūν

k,q(s1) ≥
(

4κψ′min
3fmax

− ϕ′max
)

(s2 − s1) =
1

3
ϕ′max · (s2 − s1) (5.18)

for all s1 ∈ Iνj∗ and s2 ∈ Iνj .

We now choose the departure rates vε = (vεk,p) ∈ Uν by setting

vεk,p(t) = uνk,q(t)− ε if t ∈ Iνj ,
vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj∗ ,

(5.19)

and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,q,j , 4κ − uνk,q,j∗}
then these new departure rates are still admissible.

Using (5.18) with s1 = t, s2 = t+ tνj − tνj∗ we compute

∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

(∫
Iν
j∗

Φ
(ūν)
k,q (t) dt−

∫
Iνj

Φ
(ūν)
k,q (t) dt

)

= ε

∫
Iν
j∗

(
Φ

(ūν)
k,q (t)− Φ

(ūν)
k,q (t+ tνj − tνj∗)

)
dt ≤ − ε

3
ϕ′max · (tνj − tνj∗) < 0 .

(5.20)

Once again we reached a contradiction with (5.6), completing the proof.
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6 Stuck traffic

In this section we discuss the key assumption (A3) used in Theorem 5.1. Namely, regardless of
the departure rates {uk,p}, the travel time of every driver should remain uniformly bounded.

We begin with an example showing that, in some cases, (A3) can fail. A similar situation was
considered in [9] in connection with a traffic circle.

Example 1. Consider a network with 9 arcs, as in Fig. 7, left. Assume there are three groups
of drivers:

• G1, departing at node 1, arriving at node 7,

• G2, departing at node 2, arriving at node 8,

• G3, departing at node 3, arriving at node 9.

Assume that, at each of the transit nodes 4,5,6, the two incoming arcs are given equal priority.
In other words, if both incoming roads are congested, then cars are admitted to the intersection
at equal rate from the two roads.

Assume that the maximum flux on every road is fmax = 1, and assume that for t > 0, cars
depart from nodes 1, 2, 3 at unit rate. Call ∆ the triangle of roads joining the intermediate
nodes 4,5,6. At each time t > 0, at each intermediate node the rate at which cars enter ∆ is
at least twice as the rate at which cars exit from ∆. We thus conclude that

For each t > 0, the total number of drivers that have reached their destination within
time t is smaller than the number of drivers that at time t are still located within the
triangle of roads ∆, including the buffers at the nodes 4, 5, 6.

Since the total amount of cars that can be contained in the triangle of roads ∆ and in the
buffers at the nodes 4,5,6, is finite, this implies that only a fixed number of drivers will reach
their destination in finite time, while all the others will be stuck in traffic forever.
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2
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6 3

7

8

9 1

2
8

3

7

6

4

9

5

Figure 7: Left: a network where the traffic can become completely stuck. For some departure rates,
part of the drivers never reach their destination. Right: a network that does not contain cycles. In
this case, for any departure rates, all drivers will eventually reach their destinations.

In the following, by a cycle we mean a path such as (1.2) with i(0) = i(N), so that the initial
and terminal nodes coincide.
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Lemma 6.1. If the network of roads does not contain any cycle, then for every n-tuple
(G1, . . . , Gn) the assumption (A3) is satisfied.

Proof. 1. Call G = G1 + · · · + Gn the total number of drivers. Let A = {γα ; α ∈ I} be
the set of all the arcs in the network. We say that γα precedes γβ, and write γα ≺ γβ, if there
exist a chain of arcs Γ where γα is the first arc and γβ is the last one. In other words, γα ≺ γβ
if it is possible to drive first along γα and then along γβ.

If the network has no cycles, the ordering “≺” is strict. We can thus partition the set A of all
arcs into disjoint classes, say

A = A1 ∪ · · · ∪ Am ,

in such a way that
γα ∈ Ai , γβ ∈ Aj , i ≤ j

implies that γβ does not precede γα.

2. To prove an upper bound on the travel time, it suffices to prove a uniformly positive
lower bound on the speed v, on all roads. This will be achieved by backward induction on
i = m,m− 1, . . . , 2, 1.

Exit arcs γα ∈ Am are never congested. Hence on these arcs the speed is v ≥ vα(ρmaxα ) > 0.

By induction, assume that for h ∈ {k, k + 1, . . . ,m} the speed of cars over every arc γα ∈ Ah
satisfies a uniform lower bound:

vα ≥ vminh > 0. (6.1)

In particular, this implies that, if the road γα is in a congested state, then the flux fα is
bounded below. Namely, there exists a constant Fk > 0 such that

ρ > ρmaxα =⇒ fα = ρ vα(ρ) ≥ Fk (6.2)

for all roads γα ∈ Ak ∪ Ak+1 ∪ · · · ∪ Am

Consider an arc γβ ∈ Ak−1. To fix the ideas, let γβ = γi` be an arc reaching the node A`.
Then for each j ∈ O`, the outgoing arc γ`j lies in Ak ∪ Ak+1 ∪ · · · ∪ Am. By the inductive
assumption, on all these outgoing arcs the speed v`j remains uniformly positive, as in (6.1).

3. We now derive an upper bound on the length of the queue qj at the entrance of γ`j . Two
cases must be considered.

(i) Assume that the node A` is governed by (SBJ), where M is the size of the single buffer.
Then, by (2.13) the flux of cars at the end of road γi` is

f̄i`(t) ≤ ci ·
(
M −

∑
j∈O`

qj(t)
)
, for all i ∈ I` .

If at least one of the queues is nonempty, i.e. if
∑

j∈O` qj(t) > 0, then (2.12) implies

d

dt

∑
j∈O`

qj(t) =
∑
i∈I`

f̄i`(t)−
∑
j∈O`

f̄`j(t) ≤
(∑
i∈I`

ci

)
·
(
M −

∑
j∈O`

qj(t)
)
− Fk .
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Indeed, if some qj > 0, then the corresponding outgoing road γ`j is in a congested state.
Hence the outgoing flux is f̄`j(t) ≥ Fk. In turn, this implies

d

dt

(
M − qj(t)

)
≥ Fk −

(∑
i∈I`

ci

)
·
(
M −

∑
j∈O`

qj(t)
)
.

Therefore, for every time t we have the uniform lower bound

M −
∑
j∈O`

qj(t) ≥
Fk∑
i∈I` ci

> 0 . (6.3)

(ii) Next, assume that the node A` is governed by (MBJ), with buffers of sizes Mj , j ∈ O`.
Then, by (2.15),

f̄i`(t)θ̄ij(t) ≤ ci · (Mj − qj(t)), i ∈ I`, j ∈ O` .

Thus, by recalling (2.12), we obtain that for all j ∈ O`,

q̇j(t) =
∑
i∈I

f̄i`(t)θ̄ij(t)− f̄`j(t) ≤
(∑
i∈I`

ci

)
· (Mj − qj(t))− Fk .

Hence,
d

dt

(
Mj − qj(t)

)
≥ Fk −

(∑
i∈I`

ci

)
· (Mj − qj(t)) .

For every time t this yields the uniform lower bound

Mj − qj(t) ≥
Fk∑
i∈I` ci

> 0 . (6.4)

4. From (6.3)-(6.4), a lower bound on the speed vi` on the incoming road γi` ∈ Ak−1 is
obtained as follows. At a point (t, x) where the road is not congested we have the trivial
bound

vi`(ρ(t, x)) ≥ vi,`(ρ
max
i,` ) > 0.

Next, consider a point (t̄, x̄) where the road is congested, i.e. ρ(t̄, x̄) > ρmaxi,` . Then the
characteristic t 7→ x(t) through this point has negative speed. Let τ ≤ t be the time when
this characteristic reaches the end of the arc γi`, so that x(τ) = Li`. Since the flux is constant
along characteristics, we have

fi`(ρ(t̄, x̄)) = ρ(t̄, x̄) vi`(ρ(t̄, x̄)) = f̄i`(τ) ≥ ci ·
Fk∑
i∈I` ci

> 0.

This provides a uniform lower bound on vi`(ρ(t̄, x̄)). Since γi` was an arbitrary arc in the set
Ak−1, the induction step is complete.

5. By backwards induction on i = m,m − 1, . . . , 2, 1, the above arguments show that the
speed of cars remains uniformly positive at all times on all roads. In addition, if a queue is
present, the flux at the entrance of each road remains strictly positive. This yields a uniform
a priori bound on the time that every driver needs to reach destination.
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